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Abstract

Pulse wave velocity (PWV) is the most important index of arterial stiffness. It is conventionally 

estimated by non-invasively measuring central and peripheral blood pressure (BP) and/or velocity 

(BV) waveforms and then detecting the foot-to-foot time delay between the waveforms wherein 

wave reflection is presumed absent. We developed techniques for improved estimation of PWV 

from the same waveforms. The techniques effectively estimate PWV from the entire waveforms, 

rather than just their feet, by mathematically eliminating the reflected wave via an arterial tube-

load model. In this way, the techniques may be more robust to artifact while revealing the true 

PWV in absence of wave reflection. We applied the techniques to estimate aortic PWV from 

simultaneously and sequentially measured central and peripheral BP waveforms and 

simultaneously measured central BV and peripheral BP waveforms from 17 anesthetized animals 

during diverse interventions that perturbed BP widely. Since BP is the major acute determinant of 

aortic PWV, especially under anesthesia wherein vasomotor tone changes are minimal, we 

evaluated the techniques in terms of the ability of their PWV estimates to track the acute BP 

changes in each subject. Overall, the PWV estimates of the techniques tracked the BP changes 

better than those of the conventional technique (e.g., diastolic BP root-mean-squared-errors of 3.4 

vs. 5.2 mmHg for the simultaneous BP waveforms and 7.0 vs. 12.2 mmHg for the BV and BP 

waveforms (p < 0.02)). With further testing, the arterial tube-load model-based PWV estimation 

techniques may afford more accurate arterial stiffness monitoring in hypertensive and other 

patients.
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Index Terms

arterial stiffness; blood pressure; blood velocity; pulse transit time; pulse wave velocity; transfer 
function

I. INTRODUCTION

Pulse wave velocity (PWV) is the speed of energy wave transmission in the arteries. 

According to the Bramwell-Hill equation, PWV varies inversely with the square root of 

arterial compliance [1]. PWV indeed increases as the arteries stiffen with aging and disease 

[2][3][4]. PWV in the aorta is now the most important index of arterial stiffness for two 

reasons [5]. Firstly, it is an independent predictor of all-cause mortality and cardiovascular 

events in hypertensive and other patients [5][6]. Secondly, while direct measurement of 

arterial compliance involves nontrivial tracking of changes in vessel area and BP, PWV is 

easier to measure [5][7].

PWV is most easily determined as the ratio of the distance and pulse transit time (PTT) 

between central and peripheral arterial sites. Conventionally, PTT is estimated by measuring 

blood pressure (BP) or velocity (BV) waveforms at these sites with non-invasive tonometers 

or Doppler ultrasound probes and then detecting the foot-to-foot time delay between the 

waveforms. This foot-to-foot detection technique is also applicable to sequential 

measurements of the waveforms via a simultaneously measured ECG (i.e., ECG gating).

The foot-to-foot detection technique may be explained as follows. BP and BV waveforms 

arise as the superposition of transmitted and reflected waves. As a result, as shown in Fig. 1a 

[8], they vary in shape throughout the arterial tree. If wave reflection were absent, a pair of 

BP (or BV) waveforms would mainly differ by just a time delay equal to PTT, whereas a 

pair of BP and BV waveforms would likewise differ by the time delay as well as a scale 

factor (equal to the arterial area times the characteristic impedance) [8]. Hence, the premise 

of this technique is that interference from the reflected wave is negligible during late 

diastole and early systole.

However, wave reflection interference around the waveform feet can become nontrivial with 

changes in heart rate (HR) [9]. For example, during tachycardia, the time delay between the 

forward and backward waves in the central aorta is a large fraction of the cardiac cycle 

length. Hence, as shown in Fig. 1b, the backward wave may be prominent near the central 

BP waveform foot. Further, the relative magnitude of wave reflection increases with 

peripheral resistance [8][10]. Just as important, since the technique restricts its analysis to 

one pair of waveform samples per cardiac cycle, it is not robust to motion and other artifact 

often present in the non-invasive waveforms, as shown in Fig. 1c [11]. In fact, detection of 

the foot can be subjective even for invasive waveforms during normal conditions (Fig. 1c) 

[12].

Even seemingly small detection errors caused by wave reflection interference and/or artifact 

can result in serious PWV errors. For example, using average adult values of 0.5 m and 0.06 

s for the distance and PTT between carotid (central) and femoral (peripheral) arteries [13]
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[14], just a 0.01 s error in foot detection, which is not uncommon (Fig. 1c), yields a PWV 

error of about 1.4 m/s. This error magnitude is of concern, as the physiologic range of PWV 

is, for the most part, only from about 6 to 16 m/s [13]. Indeed, a 1 m/s change in PWV has 

been shown to increase the risk of mortality by 39% and to yield an adjusted relative risk for 

mortality of 0.71 in end-stage renal disease patients [15][16].

Hence, while the conventional technique does yield PWV estimates with predictive value, it 

also produces errors that carry clinical consequences. Three examples follow.

First, PWV and BP often show positive correlation. In fact, PWV is frequently advocated as 

a way to achieve continuous, non-invasive, and cuff-less BP monitoring [17][18][19][20]. 

The mechanism is well known. Increases in BP cause decreases in arterial compliance, as 

slack collagen fibers become stiffer. The arterial compliance decreases, in turn, cause 

increases in PWV as per the Bramwell-Hill equation. While changes in vasomotor tone 

could also acutely modulate arterial compliance, this effect is less of a factor in large arteries 

wherein smooth muscle is relatively sparse [21]. However, plots of BP versus PWV 

typically show excessive scatter about the line of best fit even under general anesthesia 

wherein changes in vasomotor tone are minimal [17]. As shown herein, this scatter can be 

reduced with improved analysis techniques.

Second, arterial elastic modulus, which is another more difficult-to-measure index of arterial 

stiffness, does not change by increasing HR [22]. Yet, PWV was shown to increase with 

atrial pacing-induced increases in HR despite no change in BP or other relevant variables 

[23]. This finding, which suggests the need for a HR correction of PWV for risk 

stratification [23], must be due to error in estimating PWV [24] caused by progressive wave 

reflection interference (Fig. 1b).

Third, several studies that have compared PWV to arterial compliance and other more 

difficult-to-measure indices of arterial stiffness have shown that PWV is of inferior clinical 

value. In one study, arterial compliance discriminated the severity of coronary artery 

disease, which is strongly associated with large artery stiffness, better than PWV [25]. In 

another study, arterial elastic modulus discriminated arterial stiffness patients from healthy 

subjects better than PWV (p < 0.0001 vs. p = 0.004) [26]. In a third exemplary study, arterial 

elastic modulus afforded a greater odds ratio for predicting all-cause mortality in end-stage 

renal disease patients than PWV (9.2 vs. 5.4) [15][27]. Hence, improving the accuracy of 

estimating PWV could enhance its predictive value.

In this study, we conceived techniques for improved PWV estimation from central and 

peripheral BP and/or BV waveforms. These techniques effectively estimate PWV from the 

entire waveforms, rather than just their feet, by mathematically eliminating the reflected 

wave via an arterial tube-load model. In this way, the techniques may be robust to artifact 

while revealing the true PWV (i.e., PWV in absence of wave reflection). Further, they may 

be applied to sequential waveform measurements via a simultaneously measured ECG. We 

tested these techniques in terms of the ability of their PWV estimates to track large changes 

in BP in anesthetized animals. Our results show superior BP-PWV correlation than the 
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conventional technique. Preliminary versions of this study have been reported in abbreviated 

form [28][29].

II. ARTERIAL TUBE-LOAD MODEL-BASED PWV ESTIMATION TECHNIQUES

The techniques are illustrated in Figs. 2 and 3 and are implemented in four steps. First, 

arterial transmission and reflection are represented with a tube-load model that has been 

shown to have excellent predictive value in other applications (see Discussion section) [30]

[31][32][33]. Second, the transfer function coupling measured central and peripheral BP 

and/or BV waveforms is defined in terms of the unknown model parameters. The parameters 

represent the true PTT, peripheral resistance and compliance, and possibly the characteristic 

impedance times the arterial area. Third, all parameters are estimated by finding the transfer 

function, which when applied to one of the waveforms, optimally fits the other. Fourth, 

PWV is calculated from the PTT estimate. Below, we describe the techniques and a way to 

augment the computational speed in implementing them.

A. PWV Estimation from Simultaneous Measurements

The arterial tree is modeled as m parallel, uniform tubes with terminal loads, as shown in 

Fig. 2a. The ith tube (i = 1, …, m) represents the wave travel path between the central aorta 

and the ith peripheral artery. Each tube is frictionless and thus has constant characteristic 

impedance

(1)

where Li, Ai, and Ci are large artery length, area, and compliance while ρ is the blood 

density, and allows waves to travel along the tube with constant PTT

(2)

[30][31][34]. The ith load represents the arterial bed distal to the ith peripheral artery. Each 

load has frequency-dependent impedance [Zi(ω)] characterized by peripheral resistance [ri] 

and compliance [ci] while matching Zci at high frequency [30][31][34].

This model may be explained as follows. Cardiac ejection initiates pressure and velocity 

waves that travel from left to right along a tube. These forward waves move without 

distortion and are proportional to each other (via a characteristic impedance time arterial 

area scale factor). The waves are reflected in the opposite direction at the terminal load with 

relative magnitude and phase based on frequency according to the wave reflection 

coefficient
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(3)

The backward pressure and velocity waves likewise travel along the tube without distortion 

and are proportional to each other. The actual BP (or BV) waveform at any point on the tube 

may thus be expressed as the sum (or difference) of the forward and backward pressure (or 

velocity) waves after time shifting to account for the wave travel time (as determined with 

PTT). In this way, the model mimics the progressive distortion that experimental BP and BV 

waveforms undergo with increasing distance from the heart (see Fig. 1a). Also, from these 

expressions, transfer functions relating a pair of BP and/or BV waveforms at any points on 

the tube may be defined d in terms of the model parameters.

In particular, the transfer functions relating a peripheral BP or BV waveform [ppi(t) or upi(t)] 

to a central BP or BV waveform [pc(t) or uc(t)] may be defined in terms of Tdi, rici, Zcici, 

and possibly AiZci, as shown in Fig. 2b. (The central waveform is regarded as the output 

here to increase computational speed, as described below.) These three or four parameters 

are estimated by finding the transfer function, which when applied to the former waveform, 

best fits the latter waveform in the least squares sense. This optimization is achieved via a 

numerical search, as described below. PWV is then computed from the Tdi estimate and the 

distance between the two arterial measurement sites [Li], as shown in Fig. 2c. (Note that 

only the parameters characterizing a single tube and load are relevant; however, the parallel 

tube-load model is shown in Fig. 2a to better indicate the physical meaning of the relevant 

tube and load.)

B. PWV Estimation from Sequential Measurements

An ECG is simultaneously obtained during sequential measurements of the central and 

peripheral waveforms [x(t) and y(t), which represent any of the input-output pairs shown in 

Fig. 2b]. Then, an impulse train [rx(t)] is formed from the segment of the ECG obtained 

during the x(t) measurement by placing unit impulses at the R-wave locations, as shown in 

Fig. 3a [35]. (Note that the R-wave is generally straightforward to detect due to its relatively 

high frequency characteristic, and effective R-wave detection techniques are available [36].) 

Next, an impulse response [hx(t)] is identified, which when convolved with rx(t), best fits 

x(t) in the least squares sense, as indicated in Fig. 3b [35]. This optimization is achieved in 

closed-form via autoregressive exogenous input (ARX) identification [37]. Next, this 

analysis is repeated for the y(t) measurement to yield an impulse response relating ry(t) to 

y(t) [hy(t)], as shown in Fig. 3ab. The impulse responses hx(t) and hy(t) represent x(t) and 

y(t) in response to the same cardiac excitation (i.e., a single, average cardiac contraction). 

Consequently and finally, the appropriate technique in Fig. 2b is applied to hx(t) and hy(t) 

(instead of x(t) and y(t)), as indicated in Fig. 3cd.

C. Implementation to Augment Computational Speed

The three or four unknown model parameters (i.e., Tdi, rici, Zcici, and possibly AiZci) of the 

transfer functions in Fig. 2b are estimated by searching over a physical range of candidate 

parameter sets. That is, the output is predicted by applying the transfer function to the input 

Gao et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for each candidate set of parameters. The parameter set that yields the minimum mean 

squared error between the predicted and measured output is then selected as the final 

estimate. This numerical search generally produces the optimal solution but is 

computationally expensive. Its speed is augmented as follows.

Firstly, the number of candidate parameter sets is reduced. More specifically, since large 

artery characteristic impedance is often much smaller than peripheral resistance [8], the 

following constraint is employed: 0 < Zcici < rici. Further, the Tdi parameter is confined to 

be within a range established by the foot-to-foot detection technique.

Secondly, the number of search dimensions is reduced when AiZci is an unknown parameter. 

In particular, if the other three parameters were known, AiZci or its reciprocal is a linear 

parameter in the transfer function. Hence, for ea ach candidate Tdi, rici, and Zcici, this 

remaining parameter is computed in closed-form via the linear least squares solution.

Thirdly, the number of transfer function applications (i.e., convolutions) is reduced. The idea 

is to apply the transfer function in parts according to how it was derived (i.e., by adding or 

subtracting forward and backward waves after time shifting to account for their wave travel 

time). More specifically, first, the forward wave at the terminal load is computed by 

applying the transfer function 1/(1+Γi(ω)) to the peripheral input for each candidate rici and 

Zcici. The key point here is that this transfer function is not parameterized by Tdi. Then, the 

backward wave at the terminal load is computed by either subtracting the forward wave 

from the measured peripheral BP input or subtracting the measured peripheral BV input 

from the forward wave. Next, the forward wave is advanced in time and the backward wave 

is delayed in time, both by Tdi, for each candidate Tdi. Then, the time shifted waves are 

either added to predict the central BP output (exactly or to within an AiZci scale factor) or 

subtracted to predict the central BV output (exactly or to within a 1/AiZci scale factor). In 

this way, the transfer function applications are performed only over a two-dimensional space 

(defined by rici and Zcici) rather than a three-dimensional space (defined by Tdi, rici, and 

Zcici).

Finally, the speed in executing the search is increased by parallel computation. That is, the 

mean squared error between the predicted and measured output is computed for multiple 

candidate parameter sets at a time using multiple processors.

III. TECHNIQUE EVALUATION

We applied the new and conventional techniques to invasive BP and BV waveforms from 

animals during wide changes to BP. We evaluated and compared the techniques in terms of 

the ability of their PWV estimates to track BP in each subject. We provide details below.

A. Experimental Data

We collected data from six healthy adult beagles (10–12 kg) under an experimental protocol 

approved by the Michigan State University All-University Committee on Animal Use and 

Care. For each dog, we induced and maintained general anesthesia using an intravenous 

injection of propofol (2.2– 6.6 mg/kg) and an inhaled mixture of oxygen and isoflurane 
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(1.5–2.5%). We inserted a micromanometer-tipped catheter (Millar Instruments) 

percutaneously into a femoral artery for a peripheral BP waveform. We likewise inserted a 

similar catheter into the opposite femoral artery and used fluoroscopic guidance (GE) to 

position it in the aorta for a central BP waveform. We placed a catheter in a cephalic vein for 

drug and fluid infusions as well as other instruments to address different specific aims. We 

interfaced all analog transducer outputs to a personal computer via a data acquisition system 

(DataQ Instruments). We then recorded the measurements at a sampling rate of 500 Hz 

during a baseline period and infusions of dobutamine, phenylephrine, and nitroprusside in 

three of the dogs and esmolol and saline in the remaining dogs. We used several infusion 

rates for each intervention and allowed recovery periods between the interventions.

We also studied two datasets previously collected from healthy animals under general 

anesthesia. The data collection procedures were approved by institutional animal care 

committees and are described in detail elsewhere [32][38]. One dataset included central 

(ascending aorta) and peripheral (femoral artery) BP waveforms via micromanometer-tipped 

catheters, along with surface ECGs, from six dogs (10–12 kg adult beagles) during a 

baseline period and hemodynamic drug infusions, blood volume changes, and cardiac 

pacing. The other dataset consisted of a central (ascending aorta) blood flow waveform via 

an ultrasonic flow probe and a peripheral (femoral artery) BP waveform via a fluid-filled 

catheter from five swine (30–34 kg) before and after the infusion of hemodynamic drugs and 

blood volume changes. The waveforms were available at a sampling rate of >250 Hz.

Importantly, isoflurane was used to achieve a deep plane of anesthesia in all 17 animals. 

Isoflurane is a potent vasodilator and severely blunts cardiovascular reflexes [39]. Indeed, 

the animals were hypotensive at baseline, and there was little HR response to the vasoactive 

drug infusions and blood volume changes. So, both basal vasomotor tone and changes in 

vasomotor tone were minimal. As a result, the acute BP changes served as a particularly 

useful reference for PWV estimates in this study. However, there was one exception in the 

dog in which low rate cardiac pacing was performed. As the pacing rate was decreased to 25 

bpm, severe hypotension ensued. Under this dire situation, peripheral resistance, which was 

measured using a femoral artery blood flow probe that happened to be placed in this 

particular dog [32], increased reflexively perhaps due to a central ischemic response. We 

therefore excluded the data during the low rate cardiac pacing, which was last intervention 

performed in this dog.

B. Data Analysis

With these data, we were able to assess the new techniques as applied to (a) simultaneous 

central and peripheral BP waveforms, (b) sequential central and peripheral BP waveforms, 

and (c) simultaneous central BV and peripheral BP waveforms. We obtained the central BV 

waveform by dividing the central blood flow waveform by the nominal aortic cross-

sectional area of the swine.

For the simultaneous measurements, we applied the techniques to estimate PWV for each 

beat of the waveforms. We then averaged the PWV estimates over 15-sec intervals.
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For the sequential measurements, we applied the technique to 15-sec intervals of the 

waveforms to obtain a PWV estimate. For the ARX identification step, we set the 

autoregressive and moving average orders to the number of samples between the R-wave 

and the peak of the BP waveform. We determined this order empirically. For the tube-load 

model parameter estimation step, we used one beat length of the impulse responses, as they 

should eventually converge to the same exponential diastolic decay [38].

For comparison, we applied the foot-to-foot detection technique to estimate average PWV 

over 15-sec intervals from the same waveform pairs. We specifically implemented all of the 

automatic foot detection methods in [40][41] including a recently proposed diastole-

patching method [42] and settled on the tangent line intersection method, as it performed 

best overall. (Note that the diastole-patching method performed similarly to this method as 

applied to the BP waveforms but is not applicable to BP and BV waveforms [42].)

We evaluated the PWV estimates of each technique in terms of their ability to track diastolic 

and mean BP in particular. In theory, the PWV estimates of the conventional technique 

should track diastolic BP best by virtue of being derived from the waveform feet, whereas 

the PWV estimates of the new techniques should correlate best with mean BP by virtue of 

arising from all waveform samples. First, we measured the average diastolic and mean BP 

over 15-sec intervals. Then, we found the line of best fit between the PWV estimates of a 

technique and one of the measured BP parameters for each subject. (Note that use of higher 

order polynomials did not materially improve the fit.) We used the resulting correlation 

coefficient between the PWV estimates and measured BP parameters as one evaluation 

metric. Next, we predicted each BP parameter from the corresponding PWV estimate and 

best-fit-line. Finally, we computed the root-mean-squared-error (RMSE) between the 

predicted and measured BP parameters for another evaluation metric. (Note that we used the 

same data for determining the line of best fit and computing the RMSE, as our goal was to 

establish the ability of the PWV estimates to track the BP parameters rather than the 

capacity of the best fit line to predict BP parameters from PWV estimates. Further, we 

employed this procedure for all techniques to obtain a fair comparison.)

We statistically compared the correlation coefficients and RMSEs of the techniques. We 

specifically applied paired t-tests to compare the subject average metrics after log 

transformation to make the data more normally distributed.

IV. RESULTS

Table I shows the mean and standard deviation for diastolic and mean BP in each subject. 

The average standard deviation was 16±8 mmHg, so BP usually changed appreciably in 

each subject. If the BP changes were trivial, then a meaningful assessment of the techniques 

could not have been obtained in terms of tracking BP in each subject.

Fig. 1b shows a sample of the measured and fitted central BP waveforms and estimated 

forward and backward waves in the central aorta from simultaneous central and peripheral 

BP waveforms from a dog during high rate cardiac pacing. The foot of the measured 

waveform is ambiguous (e.g., there are multiple local minima). The forward and backward 

waves, which are buttressed by the agreement between the fitted and measured waveforms, 
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indicate that wave reflection is the main cause of the ambiguity. That is, the backward wave 

is prominent during late diastole and early systole. As a result, the foot of the central BP 

waveforms, relative to the foot of the forward wave (i.e., the true foot), is to the left (when 

defined as the global minimum) or right (when defined as the initial, steep BP rise). This 

example suggests that the arterial tube-load model-based techniques can mitigate wave 

reflection interference.

Fig. 4 illustrates sample plots of mean BP versus the PWV estimates from simultaneous and 

sequential central and peripheral BP waveforms from Dog 3, while Fig. 5 shows sample 

plots of mean BP versus the PWV estimates from simultaneous central BV and peripheral 

BP waveforms from Pig 2. The arterial tube-load model-based techniques and the foot-to-

foot detection technique showed the expected positive correlation between MAP and PWV. 

However, the new techniques exhibited noticeably reduced scatter about the line of best fit 

compared to the conventional technique. Note that this latter technique performed about the 

same for simultaneous and sequential measurements.

Tables II – IV illustrate the quantitative results for each subject. For the simultaneous central 

and peripheral BP waveforms from dogs, the arterial tube-load model-based technique was 

able to reduce the average of the RMSEs by 35% and increase the average of the correlation 

coefficients by 11% relative to the foot-to-foot detection technique. These differences were 

all statistically significant. For the sequential central and peripheral BP waveforms from 

dogs, the new technique was able to decrease the average of the RMSEs by 30% and 

increase the average of the correlation coefficients by 4% compared to the conventional 

technique. These differences were statistically significant only for diastolic BP. Further, the 

RMSEs and correlation coefficients of the new techniques were not significantly different 

for simultaneous and sequential measurements (not shown in Tables). For the simultaneous 

central BV and peripheral BP waveforms from swine, the new technique was able to 

decrease the average of the RMSEs by 38% and increase the average of the correlation 

coefficients by 43% relative to the conventional technique. These differences were all 

statistically significant. Hence, the arterial tube-load model-based paradigm afforded 

superior improvement in the pigs. The likely reason is that the swine waveforms were 

contaminated by a greater amount of measurement artifact. That is, these waveforms were 

measured with an aortic flow probe, which yielded noticeable noise that obfuscated the 

central BV foot detection as shown in Fig 6, and a low fidelity BP catheter, whereas all of 

the canine waveforms were obtained with high fidelity BP catheters. These results suggest 

that the new techniques can mitigate waveform artifact.

Finally, the computational speed of the arterial tube-load model-based techniques was about 

20% faster than real time when executed in MATLAB on a desktop computer with eight 2.5 

GHz processors. In other words, the average PWV estimate over a 15-sec interval of the 

waveforms could be obtained in about 12 sec on this platform. The speed of the techniques 

using just one processor would be about five times slower than real time but may likely be 

enhanced to at least real time via another programming language.

Gao et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V. DISCUSSION

A. Summary

We have proposed techniques for improved estimation of PWV, which has emerged as the 

most important index of arterial stiffness, from central and peripheral BP and/or BV 

waveforms. The idea is to estimate PWV from the entire waveforms, rather than just their 

feet, by mathematically eliminating the reflected wave via an arterial tube-load model. 

Hence, these techniques may be more robust to waveform artifact and more closely indicate 

the true PWV than the conventional foot-to-foot detection technique. Further, the new 

techniques are applicable to simultaneously or sequentially measured waveforms and can 

estimate PWV within or near real-time.

It is not easy to measure the true PWV in absence of wave reflection, so we did not evaluate 

the techniques against direct reference measurements. However, BP is the major acute 

determinant of aortic PWV [21], especially under general anesthesia wherein vasomotor 

tone changes are usually minimal. Hence, we indirectly tested the techniques using BP 

changes as a reference. We specifically applied the techniques to estimate aortic PWV from 

simultaneously and sequentially measured central and peripheral BP waveforms and 

simultaneously measured central BV and peripheral BP waveforms from 17 anesthetized 

animals during diverse acute interventions that often perturbed BP widely (see Table I).

Overall, the techniques tracked the BP changes in each subject better than the foot-to-foot-

detection technique (see Tables II – IV). This improvement was greater in magnitude in 

terms of RMSE (about 35% on average) than correlation coefficient (about 20% on average) 

and reached statistical significant in most cases. The improvement may have been attained 

by mitigation of both artifact and wave reflection.

Although the waveforms here were obtained with invasive sensors and thus generally of 

high quality, the central BV waveforms from the swine still showed a noticeable level of 

noise (see Fig. 6). The relative performance of the new techniques was best when applied to 

these waveforms (see Tables II – IV), thereby indicating their artifact mitigation capability. 

We expect that these techniques will be able to offer greater improvements in PWV 

estimation accuracy over the conventional technique when applied to patient waveforms, 

which are obtained with non-invasive sensors and thus often show much more artifact.

During high rate cardiac pacing, the estimated backward wave was prominent near the 

central BP waveform foot (see Fig. 1b). As a result, this apparent foot was at a significantly 

different location than the “true” foot of the estimated forward wave (see Fig. 1b), thereby 

suggesting wave reflection interference mitigation capability of the new techniques.

B. Extension of Techniques for Local PWV Estimation

According to the Waterhammer equation [8], PWV is also sometimes determined as the 

characteristic impedance times the arterial area divided by the blood density. The numerator 

term is estimated by measuring central BP and BV waveforms and then finding the slope of 

the line that best relates the initial systolic samples of the waveforms [43]. This technique 

estimates local PWV unlike the foot-to-foot detection technique, which estimates regional 
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PWV. However, the early systolic BV-BP slope technique can similarly be compromised by 

wave reflection interference and waveform artifact.

The arterial tube-load model-based techniques were designed to obtain an artifact robust 

estimate of the true regional PWV from central and peripheral BP and/or BV waveforms. 

However, they can potentially be extended to likewise yield an artifact robust estimate of the 

true local PWV from central BV and BP waveforms as follows.

The arterial tree is modeled as a single uniform tube with terminal load, as shown in Fig. 7a. 

The tube represents the wave travel path along a segment of the aorta and likewise has 

constant characteristic impedance

(4)

where L0, A0, and C0 are aortic segment length, area, and compliance and allows waves to 

travel with constant PTT

(5)

The load represents the remainder of the arterial tree and similarly has frequency-dependent 

impedance [Z0(ω)] characterized by the total peripheral resistance [r0] and compliance [c0] 

and Zc0. According to this model, the transfer function relating a central BV waveform 

[uc(t)] to a central BP waveform [pc(t)] may be defined in terms of Td0, r0c0, Zc0c0, and 

A0Zc0, as shown in Fig. 7b. These four parameters are estimated analogously to the regional 

PWV estimation techniques. Local PWV is then computed from the A0Zc0 estimate and the 

nominal ρ value, as shown in Fig. 7c.

However, this extended technique obviously needs to be tested. Note that it may likewise be 

amenable to sequential waveform measurements (see Fig. 3).

C. Relationship to Previous Techniques

Related techniques have been proposed in the literature. We compare and contrast the 

arterial tube-load model-based techniques here with several previous techniques.

Techniques have been proposed to estimate regional PWV from central and peripheral 

waveforms using a black-box, rather than physical model-based, transfer function [44][45]. 

In particular, an impulse response is identified that optimally couples the central waveform 

to the peripheral waveform. Then, PTT is determined as the time delay of the impulse 

response. Hence, these techniques may likewise be robust to artifact and reveal the true 

PWV. A significant advantage of the techniques is that they are applicable to arbitrary 

waveforms (e.g., pulse oximeter and impedance waveforms) rather than being limited to BP 

and BV waveforms. On the other hand, the arterial tube-load model-based techniques here 
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extract PTT not just from the time delay of the transfer function but also from its shape (see 

Tdi parameter in the transfer functions of Fig. 2b) and could thus be more accurate.

Arterial tube-load model-based techniques have been proposed to estimate regional PWV 

from only peripheral BP waveforms. One technique models multiple peripheral BP 

waveforms as outputs to the common central BP waveform input [30]. The transfer 

functions that couple the common input to each output is defined in terms of the parameters 

of an arterial tube-load model. These parameters, which represent PTT to each peripheral 

artery and other arterial properties, are then estimated from two or more peripheral BP 

waveforms via multi-channel blind system identification. Another technique defines the 

transfer function relating a peripheral BP waveform to the central BP waveform in terms of 

the arterial tube-load model parameters (see Fig. 2a) [33]. PTT and the other model 

parameters are then estimated from one peripheral BP waveform and a one-time PTT 

measurement by exploiting the fact that central BV is negligible during diastole. A third 

technique uses the same model-based transfer function and estimates its parameters from 

one peripheral BP waveform by assuming that the central BP waveform obeys certain 

smoothness constraints [31]. These techniques have reduced measurement requirements and 

are thus more convenient than the techniques here as well as the conventional techniques. 

However, for the same reason, the previous techniques should yield markedly less accurate 

PWV estimates. For example, the PTT estimates even from multiple peripheral BP 

waveforms are unable to indicate the absolute PTT value [30].

Finally, an arterial tube-load model-based technique has been proposed to estimate forward 

and backward waves from central and peripheral BP waveforms [32]. In particular, the PTT 

model parameter is first estimated via the foot-to-foot detection technique. Then, with PTT 

known, both the order and parameters of the load are estimated in closed-form. While this 

technique is similar to the techniques here, it obviously does not offer an improved PWV 

estimate.

D. Contributions

As just indicated, the unique idea here is to enhance PWV estimation accuracy by 

combining the arterial tube-load model with standard measurements that are being made in 

practice. Some other contributions of this study are: (a) defining an ECG gating approach to 

be able to apply arterial tube-load model-based PWV estimation techniques to sequential 

measurements; (b) developing ways to augment the speed of these techniques; (c) 

demonstrating that the techniques can indeed improve the accuracy of regional PWV 

estimates from BP and/or BV waveforms and simultaneous or sequential measurements; and 

(d) proposing to improve the estimation of local PWV from standard measurements via an 

arterial tube-load model-based technique.

E. Limitations

Some limitations of this study are as follows. Firstly, the arterial tube-load model employed 

here (see Figs. 2 and 7) ignores elastic and geometric tapering and, to a large extent, 

branching [46]. The model thus assumes that the main reflection sites are at the small 

arteries. While other reflection sites may also be important in actuality [47][48], the 
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arterioles may indeed often constitute the dominant wave reflection site [49]. One reason is 

that this site is where the arterial radius changes most abruptly [46]. As a result, the model is 

usually able to predict experimental BP and BV waveforms quite well [46]. Further, this 

simplicity affords a small number of parameters that can be uniquely estimated, but with 

some bias, from limited measurements. Note that the foot-to-foot detection technique may 

likewise be subject to similar assumptions. Secondly, while the arterial tube-load model-

based techniques for regional PWV estimation (see Fig. 2) may offer a means to improve the 

accuracy of PTT, they do not address the distance between the measurement sites that is also 

needed to compute PWV. Hence, the distance measurement component of regional PWV 

estimation remains problematic [50]. Note that this component is important for comparisons 

amongst patients but has little value in tracking arterial stiffness changes within a patient. 

Finally, BP is surely not an ideal reference for assessing the aortic PWV estimates in 

general. However, the acute BP changes likely sufficed as a reference in this study because 

vasomotor tone generally has little impact on the large, elastic arteries [21], especially under 

general anesthesia, and other mechanisms for arterial compliance changes occur very slowly 

over time (e.g., aging, disease). If BP were a poor reference here, it is unlikely that the new 

techniques would consistently track the BP changes better than the conventional technique.

F. Conclusions

In sum, we have proposed and evaluated arterial tube-load model-based techniques for 

estimating PWV from a pair of hemodynamic waveforms. Our results indicate that these 

techniques (a) can improve PWV estimation accuracy by mitigating waveform artifact and 

wave reflection interference and (b) are applicable to simultaneously or sequentially 

measured central and peripheral BP and/or BV waveforms.

Future efforts are needed to bring these techniques to practice. Most importantly, since 

humans may show different wave reflection patterns than animals, human testing is 

mandatory. For example, the techniques should be evaluated in patients in terms of both 

accuracy and predictive value relative to the conventional techniques. It would also be 

worthwhile to refine the new techniques, especially by exploring more accurate arterial 

models. If subsequent studies prove successful, then these techniques may be employed for 

more faithful monitoring of arterial stiffness in hypertensive, end-stage renal disease, 

diabetic, and geriatric patients. A more immediate application could be to use the techniques 

as a short-term surrogate outcome of clinical trials for determining the efficacy of therapies 

aimed at reducing arterial stiffness.
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Fig. 1. 
The conventional foot-to-foot detection technique for pulse transit time (PTT) estimation is 

prone to error due to wave reflection interference and waveform artifact. (a) Blood pressure 

and velocity (BP and BV) waveforms arise as the sum of transmitted and reflected waves. 

As a result, these waveforms vary in shape throughout the arterial tree. Hence, the premise 

of the technique is that wave reflection interference is negligible at the waveform feet. 

Adapted from [8]. (b) Measured and fitted central BP waveforms (upper) and calculated 

transmitted and reflected waves in the central aorta (lower) during tachycardia. The reflected 

wave (gray) is actually prominent near the waveform feet such that the apparent (central BP) 

foot deviates from the true (transmitted wave) foot. (c) Detection of the foot is often difficult 

due to non-invasive waveform artifact (upper) [13] and can be subjective even for invasive 

waveforms (lower) [12]. Just a 0.01 sec error in foot detection can result in a pulse wave 

velocity (PWV) error of ~15% of the entire PWV range [13][14].
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Fig. 2. 
Arterial tube-load model-based technique for estimating PWV from simultaneously 

measured central and peripheral BP and/or BV waveforms. See text for details.
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Fig. 3. 
Arterial tube-load model-based technique for estimating PWV from sequentially measured 

central and peripheral BP and/or BV waveforms. Here, x(t) and y(t) are any of the input-

output pairs in Fig. 2b.
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Fig. 4. 
Sample plots of mean BP versus PWV estimates from simultaneously and sequentially 

measured central and peripheral BP waveforms from Dog 3. A value of unity was used here 

and elsewhere for the length component of the PWV estimates, as it has no impact on the 

correlation between BP and PWV within a subject. Line and equation indicates line of best 

fit. (Note that the PWV estimates are clustered for the sequential measurements due to 

waveform sampling and that this clustering is masked for the simultaneous measurements 

due to averaging the PWV estimates.)
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Fig. 5. 
Sample plots of mean BP versus PWV estimates from simultaneously measured central BV 

and peripheral BP waveforms from Pig 2.
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Fig. 6. 
Typical noise level in central BV waveform measurement from a pig.
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Fig. 7. 
Potential arterial tube-load model-based technique for estimating local (rather than regional) 

PWV from simultaneously measured central BV and BP waveforms. This technique could 

also be extended to simultaneous measurements as indicated in Fig. 3.
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