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Abstract

Posttraumatic stress disorder (PTSD) manifests after exposure to a traumatic event and is 

characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive 

disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the 

fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or 

enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal 

subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology 

of normative and pathological fear. Pre-clinical studies reveal a number of neurotransmitter 

systems and circuits critical for aversive learning and memory, which have informed the 

development of therapies used in human clinical trials. In this review, we discuss the evidence for 

a number of established and emerging pharmacotherapies and device-based treatments for PTSD 

that have been developed via a bench to bedside translational model.
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Introduction

Posttraumatic stress disorder (PTSD) manifests after exposure to a traumatic event and is 

characterized by four core clusters of symptoms: avoidance/numbing, intrusive symptoms 
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and flashbacks, mood and cognitive disruptions and hyperarousal/reactivity symptoms (1). 

An event is considered traumatic if it involves exposure to death, threatened death, actual or 

threatened serious injury, or actual or threatened sexual violence. The estimated lifetime 

prevalence of PTSD in the United States is between 7–9% (2).

Data suggests that 94% of individuals who experience trauma develop acute PTSD-like 

symptoms (2, 3). For most, these symptoms will abate over time. Some hypothesize that 

increased generalization and deficits in extinction underlie symptomatology of PTSD. 

Enhanced acquisition and consolidation of trauma-related fear may also precipitate the 

development of PTSD, additionally. Animal studies using Pavlovian fear conditioning and 

extinction paradigms offer insight on the neurobiology of these fear-related dimensions, 

allowing identification of functional circuitry and molecular signaling pathways critical for 

normative and pathological fear, (see Supplementary for Fig S1 and detailed review of 

Neurobiological Approaches to Fear).

Through these pre-clinical studies, researchers have identified the amygdala, interacting 

critically with the hippocampus and medial prefrontal cortex (mPFC), as the primary 

anatomical loci of fear learning and extinction (4–6). Furthermore, manipulations of various 

transmitter systems during different phases of aversive learning point to a number of 

potential pharmacotherapies and specific treatment windows. Based on pre-clinical 

indications, pilot and large-scale clinical studies have now been conducted on a number of 

treatments with a variety of administration protocols, e.g. chronically, administered in the 

immediate aftermath of trauma, in conjunction with exposure therapy, or during 

reconsolidation. Additionally, researchers are exploring the efficacy of device-based 

treatments for PTSD and PTSD-like symptoms in humans and rodents, given the success of 

deep-brain stimulation (DBS) for the treatment of depression (7).

In this review, we explore established and emerging treatment strategies for PTSD that are 

supported by pre-clinical and clinical data. Although the number of approved treatments is 

small, with SSRIs as the only class of drug approved for treatment of PTSD, exciting new 

evidence points to a number of promising pharmacotherapies and device-based treatments 

with a variety of treatment protocols.

Pharmacotherapy approaches to Fear- and Anxiety-related disorders

The following sections review pre-clinical and clinical evidence for a variety of established 

and emerging pharmacotherapies, especially focusing on underlying transmitter and receptor 

systems, as well targeted brain regions. In discussing the pre-clinical data, we focus on 

outlining evidence from studies of cued and contextual fear conditioning, but include 

discussion of evidence from alternative fear and anxiety paradigms where relevant.

Serotonin (5-HT)/selective serotonin reuptake inhibitors (SSRIs)

Use of SSRIs in PTSD stems from the observed efficacy of SSRIs for depression and the 

high incidence of depression co-morbid with anxiety and PTSD (8). SSRI efficacy in the 

treatment of depression contributed to the previously accepted biogenic amine hypothesis, 
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which postulates that disturbances in serotonin, dopamine, and norepinephrine underlie the 

pathology of depression (9–13).

Similarly, evidence from rodent and human studies implicates brain serotonin systems in the 

neurobiology of PTSD (14–16). The amygdala, hippocampus, and frontal cortex areas with a 

demonstrated role in PTSD - receive serotonergic input via projections from the dorsal and 

median raphe nucleus (17–19). A recent meta-analysis supports an association between the 

lesser expressing, short allele of 5-HTTLPR (serotonin transporter gene) and PTSD in high-

trauma exposed individuals (20). Conclusions from PET analysis are consistent with this 

model, where individuals with PTSD exhibit reduced amygdala 5-HTT (serotonin 

transporter protein) binding (14). Additional PET studies observe an association between 

early trauma exposure and serotonin type 1B receptor binding, as well as higher serotonin 

1A binding in PTSD, however these findings have not been uniformly replicated (21–23).

Several studies find increased cued fear acquisition and expression in rodents and humans 

with acute SSRI administration (24–26). An effect on cued fear acquisition and expression 

may be mediated by the serotonin 2A receptor, as administration of a serotonin 2A receptor 

agonist after fear conditioning increases cued fear expression (27), and administration prior 

to extinction enhances within-session extinction (27). Similarly, serotonin 2A receptor 

antagonist administration blocks cued fear acquisition (28).

Conversely, chronic SSRI administration impairs fear learning, in particular cued fear 

acquisition and extinction (29). However, chronic fluoxetine may also prevent return of 

extinguished fear and facilitate extinction in female rats (30–32). Ultimately, an effect of 

chronic SSRI administration on extinction, as well as SSRI efficacy for treatment of 

depression and PTSD, may be driven by a change in glutamatergic transmission, as 

supported by recent DCS and ketamine findings.

Somewhat consistent with rodent pre-clinical data, several studies indicate that outcomes for 

individuals treated with SSRIs and CBT outcomes may be worse compared to CBT alone 

(33–35). Other studies report comparable or modest benefits with combinatorial treatment 

(36–42). While a 2008 report from the Institute of Medicine (IOM) concludes that SSRIs, 

among other all other classes of drugs, do not demonstrate efficacy in the treatment of 

PTSD, a recent meta-analysis supports the efficacy of long-term treatment of PTSD with 

SSRIs (43). While some suggest that SSRIs are as effective as psychotherapy as a first-line 

treatment, others recommend SSRIs as a second-line treatment after CBT (41), clearly 

further investigation of SSRIs is needed (44).

N-methyl-D-aspartic acid (NMDA)/D-cycloserine (DCS)

In combination with cognitive behavioral therapy, D-cycloserine (DCS) - a compound that 

acts as a partial agonist at the strychnine-insensitive glycine-recognition site of the NMDA 

receptor has helped the field consider targeted pharmacological augmentation of 

psychotherapy. In rodents, systemic or intra-amygdala administration of DCS has repeatedly 

been shown to facilitate extinction of fear-potentiated startle and cued freezing in rats (FPS) 

(45–48). Furthermore, DCS blocks increases in freezing caused by reinstatement, but has no 

effect on renewal processes (49, 50). DCS is thought to act on consolidation of emotional 
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learning, as post-training administration of DCS similarly facilitates extinction (45). 

Importantly, DCS reverses deficits in fear extinction caused by the single prolonged stress 

model that is hypothesized to more thoroughly instantiate PTSD-like symptoms and the 

accompanying underlying pathology (51, 52). Similarly, DCS enhances extinction in 129S1/

SvImJ (S1), an alternative genetic mouse model of PTSD that exhibits persistent impairment 

of fear extinction (53).

In humans, DCS shows promise for the treatment of social anxiety, obsessive compulsive 

disorder (OCD), panic disorder, acrophobia, and nicotine dependence (54–59). Data on 

efficacy of DCS in the modulation of associative fear learning and treatment of PTSD, 

however, is mixed. In healthy human volunteers, DCS facilitates consolidation of fear 

acquisition of previously neutral cues and cued fear extinction (60, 61). Other studies, have 

also not observe a reduction in conditioned fear with administration of DCS (62–64). For 

individuals with PTSD, DCS seems particularly effective when administered with virtual 

reality exposure (VRE) (65, 66). Some studies have not reported increased remission with 

DCS compared to placebo (when administered in combination with cognitive behavioral 

therapy) (67, 68). Despite inconsistencies in the literature, meta-analyses suggest that DCS 

enhances fear extinction/exposure therapy in both animal subjects and humans (69, 70).

The current consensus is that its effects are modulated by a number of factors. DCS yields 

greater reductions in PTSD-symptoms in subjects with more severe pre-treatment PTSD 

(71). Furthermore, participants with high conscientiousness and low extraversion exhibit 

better outcomes with DCS and exposure therapy, compared to placebo (72). DCS also 

appears to selectively enhance exposure therapy when administered with successful sessions 

(73). This effect is reflected in rodent models, where subjects who exhibit successful within-

session extinction show better long-term extinction with DCS (47, 74). These data suggest 

that DCS may be an efficacious adjunctive therapy, but only for a subset of the clinical 

population and with specifically tailored CBT sessions, among other factors (75, 76). 

Despite its limitations, DCS has been an important molecule in moving the field forward to 

directly addressing mechanisms of emotional learning from a translational perspective based 

on a behavioral neuroscience understanding of rodent emotion processing.

Glucocorticoids/Hydrocortisone

Under normative conditions, stress-induced activation of the (HPA)-axis causes an increase 

in the release of the adrenal hormone cortisol (corticosterone in rodents). Increased cortisol 

mobilizes biological resources needed to engage the flight or fight response to promote 

survival. These stress-related increases in cortisol eventually inhibit HPA-axis activity to 

terminate the stress response. Chronic or extreme stress, however, can contribute to HPA-

axis dysregulation and a host of other adverse effects (77, 78).

HPA-axis dysregulation is observed in individuals with PTSD, where low baseline levels of 

cortisol (although higher levels or no differences have been observed as well (79–82)) and 

enhanced negative feedback in response to dexamethasone are reported (83–88). Prospective 

studies suggest that low cortisol in the face of trauma is a predisposing factor for the 

development of PTSD (87, 89–92). One hypothesis is that reduced cortisol signaling alters 

normal adaptive responses of the autonomic nervous system, including negative feedback to 
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the pituitary and hypothalamus to terminate the stress response (93). Specifically, low 

cortisol could impede cortisol homeostasis, contributing to an inability to contain the stress 

response and resulting in runaway fear characteristic of PTSD.

A number of investigators have developed animal models that more thoroughly instantiate 

PTSD-like symptoms and replicate HPA-axis alteration. These approaches suggest that 

glucocorticoid system manipulations in healthy models, where the corticosterone response is 

adaptive, might be different from PTSD-like models, where corticosterone responses may be 

maladaptive. Importantly, these studies report that animals exposed to extreme stress exhibit 

poor fear extinction, greater acoustic startle, more anxiety-like behavior, and heightened fear 

expression, as in humans with PTSD (94–102).

For example, Lewis rats, which are more susceptible to PTSD-like behavior, do not exhibit 

an increase in circulating corticosterone several days after stressor exposure compared to 

other strains that are less vulnerable (95). Mice and rats exposed to extreme stress exhibit 

enhanced negative feedback in response to acute stress or cortisol (103–106). In other 

studies, however, subjects that exhibit PTSD-like behavior in response to extreme stress 

have increased circulating levels of corticosterone several days after stressor exposure 

compared to well adapted and non-exposed rats (96, 107, 108). Furthermore, other studies 

find that baseline corticosterone prior to stressor exposure does not predict subsequent 

behavioral responses to extreme stress (95, 109). Conflicting HPA-axis activity findings in 

PTSD-like models may reflect a problem of whether these models recapitulate PTSD and/or 

depression, similar to the problem seen in clinical studies where PTSD is often comorbid 

with depression.

PTSD-like models have also allowed researchers to test the hypothesis that glucocorticoid 

administration in the face of extreme stress might contain the stress response and prevent the 

development of PTSD-like effects. Indeed, acute pharmacological intervention with 

corticosterone after stress is able to rescue PTSD-like behavioral effects (95, 102, 110, 111). 

This is now being tested in humans. As in rodent models, administration of hydrocortisone 

during a critical window after trauma has been shown to reduce the risk of PTSD 

development (112–114). In humans, administration of hydrocortisone in combination with 

traumatic memory reactivation reduces PTSD symptoms (115); and greater patient retention 

was observed in the treatment group with hydrocortisone administered in combination with 

prolonged exposure therapy (116). Glucocorticoid modulation may also enhance extinction 

for other fear-related disorders besides PTSD, as seen in successful reduction of fear in 

combination with exposure therapy for social phobia, spider phobia, and phobia of heights 

(117, 118). These studies suggest that glucocorticoid modulation enhances extinction 

memory, in line with pre-clinical evidence implicating the glucocorticoids in memory 

consolidation (119, 120). It may also acutely reduce fear (118), as seen with daily 

hydrocortisone reducing re-experiencing and avoidance symptoms of PTSD (121).

Though promising, there remain some inconsistences in the HPA modulation field, 

consistent with the human literature, where the development of an extreme behavioral 

response to “trauma” is associated with an increase or decrease in circulating levels of 

Bowers and Ressler Page 5

Biol Psychiatry. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glucocorticoids. Prospective studies evaluating glucocorticoid levels at baseline and in 

response to a stressor before and after trauma across species would be the most informative.

Opioids/Morphine

Along with marijuana and alcohol, opiates are one of the most commonly abused substances 

among individuals with PTSD, indicating that aberrant endogenous opioid signaling may 

underlie PTSD (122). In rodents, administration of opioid antagonists increase conditioned 

fear by enhancing fear acquisition or blocking fear extinction (123–125). Conversely, 

morphine (opioid receptor agonist) administration blocks conditioned fear acquisition in 

normal and prior-stress models (126, 127). Opioid signaling in ventrolateral periaqueductal 

gray matter (vlPAG) regulates conditioned fear extinction, potentially via activation of 

mPFC and the BLA (128, 129).

Research addressing specificity of opioid regulation of conditioned fear implicates the mu 

(μ) and kappa (κ) opioid and nociceptin (NOP)/orphanin FQ receptors. Antagonism of the μ 

opioid receptor facilitates contextual fear conditioning (130) and blocks extinction of cued 

fear (131). Similarly, antagonism of the κ opioid receptor blocks conditioned fear on a fear-

potentiated startle paradigm (132, 133). In PTSD-like rodent models, differential levels of 

CSF nociceptin (NOP)/orphanin FQ and nociceptin (NOP)/orphanin FQ receptor mRNA are 

observed (134, 135). Furthermore, nociceptin (NOP)/orphanin FQ receptor agonist 

administration blocks contextual and cued fear consolidation in normal and PTSD-like 

rodent models (135–137).

In humans, genetic analysis revealed a significant interaction between the OPRL1 (opioid 

receptor-like 1) gene and childhood trauma that is associated with PTSD and neural 

correlates of PTSD (135). Similarly, other studies suggest that a polymorphism in the 

OPRM1 gene (opioid receptor μ–1) is associated with less severe PTSD symptoms (138). 

Regarding specific PTSD-related symptoms, κ opioid receptor availability in the amygdala-

anterior cingulate cortex-ventral striatal circuit mediates the expression of dysphoria where 

lower κ opioid receptor is associated with greater severity of trauma-related loss symptoms 

(139).

Interestingly, some evidence suggests that morphine may be effective for secondary 

prevention of PTSD. Children administered morphine after acute burns exhibit decreased 

PTSD symptoms months to years after treatment in a dose-dependent fashion (140–142). 

Studies of traumatized adults administered morphine mirror results found in pediatric data 

sets (143). Prospective studies find that patients who meet criteria for PTSD at 3 months 

post-trauma received significantly less morphine acutely after injury (144). Data from 

healthy volunteers, where opioid agonists inhibit and antagonists promote fear acquisition, 

support the hypothesis that morphine administration in the immediate aftermath of trauma 

may prevent the development of PTSD by inhibiting the acquisition of fear in response to 

trauma (145, 146), consistent with above data in rodents (126, 127).

A critical alternative explanation may be that a reduction in pain caused by morphine 

administration is able to mitigate the development of PTSD. This hypothesis is supported by 

several reports that pain after trauma is significantly associated with later development of 
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PTSD (144, 147, 148). Nonetheless, previous and ongoing studies suggest that the effects on 

PTSD buffering may be independent of pain. Further prospective studies are needed to more 

safely establish morphine’s efficacy as a secondary preventative therapy. Concomitant pain 

monitoring, or comparison with non-opioid analgesics, will help determine the mechanism 

by which morphine may prevent the development of PTSD.

Cannabinoids/Nabilone/Delta-9-tetrahydrocannabinoil

Overwhelming evidence from rodent models suggest that the endocannabinoids are critically 

involved in stress, fear, and anxiety (149, 150). Knockout or antagonism of Cnr1 increases 

anxiety-like behavior on a number of different paradigms across a variety of species (149, 

151, 152). Increased synthesis of the endocannabinoids and subsequent activation of Cnr1 in 

the amygdala is thought to mediate fear extinction in mice and rats, potentially via inhibition 

of the anxiogenic neuropeptide cholecystokinin (CCK) and/or modulation of the 

GABAergic system (151, 153, 154). Additionally, Cnr1 is critical for acquisition, retrieval, 

and extinction of both cue and context fear, as well as reconsolidation of cued fear memory 

(153, 155–157). Cnr1 involvement in cued fear is thought to be mediated primarily by the 

amygdala and mPFC (154, 156, 157). Furthermore, the endocannabinoid system is 

implicated in stress and stress-sensitization of fear behavior, where Cnr1 is thought to 

modulate glutamatergic and GABAergic signaling primarily in the bed nucleus of the stria 

terminalis, the basolateral amygdala, and the central amygdala (158–164). Administration of 

a Cnr1 agonist acutely after shock prevents PTSD-like symptoms in rats, suggesting that 

cannabinoid drugs might be administered acutely after trauma to prevent development of 

PTSD (163).

Evidence implicating Cnr1 involvement in stress, fear, and anxiety in rodent models has 

stimulated investigation of Cnr1 involvement in PTSD and fear processes in humans. 

Studies suggest delta-9-tetrahydrocannabinoil (Δ9-THC) facilitates extinction of conditioned 

fear in healthy human volunteers (64, 165). As mentioned, PTSD diagnosis is significantly 

associated with greater marijuana use, indicating that Δ9-THC is used as a form of self-

medication to compensate for cannabinoid system dysregulation (166). In fact, several 

genetic association studies reveal specific Cnr1 and FAAH (fatty acid amide hydrolase, an 

anandamide degradative enzyme) allelic risk factors for threat processing, anxiety, 

extinction, stress-coping, and PTSD (167–170). Furthermore, PET studies suggest that 

individuals with PTSD have increased brain Cnr1 availability, possibly due to changes in 

peripheral levels of the endocannabinoids (171–173). Although the data is preliminary, 

several studies show that cannabinoid receptor agonists, including nabilone and Δ9-THC, 

improve insomnia, subjective chronic pain, nightmares, and other symptoms related to 

PTSD (174–177). While these studies suggest that chronic administration of Cnr1 agonists 

can improve general mood and symptoms related to PTSD, more studies are needed to 

address the role of the cannabinoid system in memory processes, as they relate to PTSD and 

traumatic memory consolidation. As the cannabinoids have been implicated in primary 

consolidation, extinction, and reconsolidation across rodents and humans, it is of great 

interest to determine an effect, if any, of drugs targeting the cannabinoid system on PTSD 

development and treatment when administered during trauma consolidation, in combination 

with exposure therapy, and/or traumatic memory reactivation.
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Norepinephrine/Propranolol/Yohimbine

Researchers and clinicians hypothesize that hyper-consolidation of trauma and/or poor 

extinction might contribute to development of PTSD. Given the vast amount of data 

implicating the noradrenergic/norepinephrine (NE) system in memory consolidation, some 

suggest that noradrenergic dysfunction might underlie pathology of PTSD, in particular, 

deficits in fear acquisition and extinction, as well as symptoms of hyperarousal (119, 178–

180). Indeed, multiple studies find evidence of abnormal noradrenergic function in PTSD 

(181–185).

In rodents, stress-induced release of norepinephrine (NE) into the amygdala, specifically the 

BLA, is critical for emotional memory consolidation (186). Although numerous studies 

implicate NE, via β-adrenergic receptors, in consolidation of aversive memory (inhibitory 

avoidance learning, in particular), the role of NE in associative fear learning is less clear 

(179, 187). Studies find evidence of noradrenergic activity in consolidation of associative 

fear learning and extinction (188–194). Others, however, report that treatment with NE or 

propranolol, a β-adrenergic receptor antagonist, has no effect on consolidation of auditory 

fear learning. Furthermore, propranolol administration significantly impairs auditory fear 

acquisition (whereas, treatment with an α1-adrenergic receptor antagonist facilitates fear 

acquisition) (195–197).

Interestingly, noradrenergic signaling is critical for reconsolidation of fear learning across 

multiple paradigms (197–199). Reconsolidation involves transiently rendering memories 

labile through memory reactivation (200). Through this reactivation (and as in the primary 

consolidation phase), memories undergo a stabilization process that is sensitive to protein-

synthesis inhibitors. Propranolol administered systemically or intra-amygdala blocks 

reconsolidation of cue and context fear conditioning (197, 198). Intra-LA infusion of 

isoproterenol, a β-adrenergic receptor agonist, enhances reconsolidation, blocking extinction 

of cued fear (201). Similarly, yohimbine, an α2-adrenoceptor antagonist that increases 

release of norepinephrine from the locus coeruleus, enhances reconsolidation, whereas 

clonidine, an α2-adrenoceptor agonist, blocks reconsolidation of conditioned fear (194, 202, 

203).

Studies in healthy human subjects support a role for norepinephrine in memory 

consolidation, additionally. Propranolol attenuates responses to aversively conditioned 

stimuli and memory for emotionally arousing stories when administered during the 

consolidation window (204–206). Memory retrieval, however, is not impaired by 

propranolol (207, 208).

As the noradrenergic system is implicated in PTSD and, more generally, in memory 

consolidation processes, drugs that target the noradrenergic system are being tested for their 

efficacy in blocking primary consolidation or reconsolidation of traumatic memory, or 

alternatively, strengthening extinction of traumatic memory, in individuals with PTSD and 

other anxiety disorders. Studies show that propranolol administration in the immediate 

aftermath of trauma might be effective at secondary prevention of PTSD, as rates and 

symptoms of PTSD are lower over a period of weeks to months post-trauma in individuals 

who receive propranolol (209–211). However, a recent double-blind pilot study in children 
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finds weak evidence for a decrease in PTSD symptoms in boys acutely administered 

propranolol, but an increase in symptoms in similarly-treated girls (212).

Increasingly, research is examining the effect of propranolol on reconsolidation to weaken 

the strength of emotional salience of traumatic memory. Propranolol administration with 

trauma reactivation decreases physiological responses, such as heart rate and skin 

conductance, during subsequent mental imagery of the event (213). In separate studies, 

propranolol administered in combination with six brief trauma reactivation sessions 

significantly improves PTSD symptoms compared to placebo (214). Several other studies 

report improvement of PTSD symptoms with propranolol treatment, however, dosage and 

administration is either unknown or not reported (215, 216). Notably, there are a number of 

negative trials across rodents and humans examining an effect of propranolol on 

reconsolidation (198, 208, 217). While a meta-analysis suggests that propranolol blocks 

primary consolidation and reconsolidation of long-term emotional memory in healthy 

humans, inconsistencies in the propranolol literature will benefit from a similar analysis 

examining individuals with PTSD (218).

New evidence indicates that modulation of the noradrenergic system may be able to 

facilitate exposure therapy, additionally. Individuals with Social Anxiety Disorder and 

claustrophobia exhibit better outcomes when administered yohimbine in conjunction with 

exposure sessions, compared to outcomes in individuals administered placebo plus exposure 

(219, 220). An additional study, however, finds no effect of yohimbine on extinction of fear 

of flying using virtual reality (221). Further study, specifically examining an effect on 

extinction in individuals with PTSD, is needed to more confidently assess therapeutic 

efficacy of yohimbine.

Device-based treatments

Increasingly, researchers are investigating device-based treatments to alter pathological 

brain activity and connectivity in psychiatric disease. A number of different stimulation 

tools - including deep-brain stimulation (DBS), vagus nerve stimulation (VNS), transcranial 

direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS) - are under 

investigation and each are at various stages of development and testing at the pre-clinical 

and clinical level (222, 223). Similar to traditional pharmaceutical drugs, device-based 

treatments are being tested in combination with Pavlovian fear conditioning to determine 

efficacy in the treatment of PTSD.

Relative to other device-based treatments, DBS is the most extensively studied therapy with 

a comparatively large amount of evidence accumulated supporting efficacy in the treatment 

of psychiatric disorders. DBS is demonstrably efficacious for the treatment of Parkinson’s 

Disease, its original indication, and is now being investigated for the treatment of and 

depression, obsessive compulsive disorder (OCD), and PTSD (7, 222, 224–226). At the pre-

clinical level, several studies find enhanced cued fear extinction with DBS of the ventral 

striatum that may be mediated by enhanced BDNF expression (53, 227, 228). Others find 

decreased PTSD-like symptoms and cued fear expression in rats with DBS of the amygdala 

(229–231). Based on these studies, participants are now being recruited to evaluate the 
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efficacy of DBS targeting the amygdala for the treatment of PTSD (224). Because the 

mechanism of action is still relatively unclear (i.e. whether DBS activates or inhibits 

targeted brain regions), future pre-clinical studies are important for the interpretation, and 

thus refinement, of DBS and DBS treatment protocols.

Additionally, transcranial magnetic stimulation shows promise for the treatment of 

psychiatric disorders, where non-invasive electrical current is delivered via magnetic coil 

placed on the scalp (232). In combination with a brief trauma re-exposure with script driven 

imagery, and in combination with exposure therapy, TMS of mPFC ameliorates PTSD 

symptoms when administered repetitively over two weeks (233–235). These studies, along 

with evidence that transcranial direct current stimulation (tDCS) of dorsolateral prefrontal 

cortex modulates consolidation of cued fear, underline the importance of mPFC in fear 

learning, which has been extensively studied in rodents (6, 236, 237).

While the efficacy of device-based treatments for PTSD is still being evaluated in pre-

clinical and clinical studies, largely in combination with classical Pavlovian fear extinction/

exposure therapy, DBS, VNS, tDCS, and TMS may be viable treatment options, particularly 

for individuals with treatment-resistant PTSD.

Discussion

We have examined the evidence regarding efficacy of some specific treatment strategies for 

PTSD informed by rodent pre-clinical studies. We have focused on Pavlovian fear 

conditioning and extinction experiments in animals, which allow researchers to model 

aversive learning processes that may underlie development of PTSD in response to trauma, 

as well as extinction of pathological fear via exposure therapy. Even in prior stress models, 

which are thought to more thoroughly model PTSD, fear acquisition and extinction using 

fear conditioning is often assessed to determine the extent to which prior stress instantiates a 

PTSD-like phenotype. In this way, fear conditioning and extinction have initiated the 

discovery of promising therapies for the treatment of PTSD.

PTSD can be conceptualized as involving a number of transitional steps, from pre-existing 

vulnerability prior to trauma to expression of pathological fear after traumatic memory 

consolidation. Each of these steps can be targeted by various drugs or device-based therapies 

(Fig. 1). Individuals who experience trauma may be rendered more vulnerable to the 

development of PTSD by pre-existing sensitivities, including genetic makeup and prior 

environmental context (e.g. abuse during childhood). Fear memory is consolidated in the 

hours and days following traumatic experience, and those with PTSD are thought to over-

consolidate traumatic fear memory. Morphine has been shown to block fear acquisition in 

animals and is now being evaluated for secondary prevention of PTSD (126, 127, 143, 144). 

Hydrocortisone has also been shown to ameliorate PTSD symptoms when administered after 

extreme stress; however a mechanism is still being determined (113). According to one 

hypothesis, hydrocortisone normalizes low cortisol, thought to be a risk factor for PTSD, in 

order to contain the stress response and maintain homeostasis (93). In line with evidence 

from pre-clinical models, hydrocortisone, D-cycloserine, yohimbine, and deep brain 

stimulation, in combination with exposure therapy, appear to enhance extinction (53, 69, 70, 
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115–118, 219, 220, 227, 228). Alternatively, traumatic fear memory may be rendered labile 

through brief reactivation via reconsolidation. Propranolol shows some promise in 

improving PTSD symptoms by blocking reconsolidation processes (218), although these 

studies require replication.

In surveying the literature, we make several tentative conclusions about the current status 

and future of treatment strategies for PTSD. First, the time surrounding exposure therapy 

may be the best target window for administering treatment, for several reasons. However, 

not all people who experience trauma will develop PTSD, there is the question of whether 

resilient individuals should receive treatment. Clinical trials investigating the efficacy of 

secondary preventatives, such as opiates or hydrocortisone in the aftermath of trauma, may 

benefit from a better understanding of pre-trauma risk factors that predispose individuals to 

PTSD. At this stage, the use of secondary preventatives might be best for administration 

after trauma in known high risk populations.

Additionally, the window surrounding exposure therapy may be the best time for 

administering adjunctive therapies, as exposure therapy is the gold standard treatment for 

PTSD. Drug or device-based treatment in combination with exposure therapy may allow 

real-time assessment of its success. This is critical, as short exposure therapy sessions or 

sessions where individuals insufficiently inhibit fear can limit the effectiveness of adjunctive 

treatment, or, worse, strengthen traumatic fear memory (73). Thus a better approach may 

focus on therapies administered after individual exposure therapy sessions, allowing 

clinicians to assess the potential success of the therapy session before administering the 

adjunctive treatment.

Although it is clear that rodent models inform clinical studies, the traditional bench to 

bedside translational paradigm has shifted. Pharmacotherapies currently being tested in 

humans, stemming from rodent studies using Pavlovian fear conditioning paradigms, are 

being further developed in their original model systems to safely refine 1) dosages, 2) 

targeted molecular epitopes, and 3) treatment windows. In the case of SSRIs or DBS, for 

instance, rodent models are now being developed based on indications from human studies. 

In another shift away from the traditional pre-clinical to clinical translation model, more 

studies are now focusing on the effects of specific treatments on intermediate phenotypes - 

such as amygdala activation using fMRI or fear inhibition - rather than overall symptoms of 

PTSD. These types of studies will increase with the establishment of Research Domain 

Critieria (RDoc) by NIMH, a move that emphasizes the classification of psychiatric 

disorders based on behavioral dimensions and neurobiological measures.

While the number of approved treatments for PTSD is minimal, and research appears to be 

moving away from the traditional translational model, fear conditioning and extinction may 

still offer hope for the development of new therapies, as this model is among the best-

validated in psychiatric research. Through these models, researchers and clinicians have 

established efficacious treatment strategies and are beginning to develop a number of 

promising pharmacotherapies and device-based treatments for PTSD.
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Figure 1. Overview of translationally informed treatments for PTSD and mechanism of action
The development of PTSD can be organized into a framework of pre- and post-trauma risk 

factors and pathological learning, each of which can be uniquely targeted by therapeutics. 

Hydrocortisone and morphine have been shown to interrupt primary consolidation of 

conditioned fear and trauma across species. While evidence is inconsistent, propranolol has 

been suggested to block reconsolidation, a process which renders previously consolidated 

memories labile, and thus vulnerable to interference. Exposure therapy, the recommended 

first line treatment for PTSD, is facilitated by D-cycloserine, yohimbine, hydrocortisone, 

and deep brain stimulation. Furthermore, nabilone and THC (Cnr1 agonists) and SSRIs have 

been shown to reduce expression of fear with chronic administration. The color red indicates 

that a specific drug blocks the indicated process, while green indicates a facilitating effect.
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