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Abstract

Brain morphometry study plays a fundamental role in medical imaging analysis and diagnosis. 

This work proposes a novel framework for brain cortical surface classification using Wasserstein 

distance, based on uniformization theory and Riemannian optimal mass transport theory.

By Poincare uniformization theorem, all shapes can be conformally deformed to one of the three 

canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane. The uniformization 

map will distort the surface area elements. The area-distortion factor gives a probability measure 

on the canonical uniformization space. All the probability measures on a Riemannian manifold 

form the Wasserstein space. Given any 2 probability measures, there is a unique optimal mass 

transport map between them, the transportation cost defines the Wasserstein distance between 

them. Wasserstein distance gives a Riemannian metric for the Wasserstein space. It intrinsically 

measures the dissimilarities between shapes and thus has the potential for shape classification.

To the best of our knowledge, this is the first work to introduce the optimal mass transport map to 

general Riemannian manifolds. The method is based on geodesic power Voronoi diagram. 

Comparing to the conventional methods, our approach solely depends on Riemannian metrics and 

is invariant under rigid motions and scalings, thus it intrinsically measures shape distance. 

Experimental results on classifying brain cortical surfaces with different intelligence quotients 

demonstrated the efficiency and efficacy of our method.
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1 Introduction

Wasserstein distance has been widely studied and applied for shape analysis, due to its 

significant power to intrinsically compare similarities between shapes. Wang et al. [29] 
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proposed a linear optimal transportation framework for comparing images. Schmitzer et al. 

[23] proposed Wasserstein based method for joint variational object segmentation and shape 

matching. Hong et al. [11] introduced a shape feature that characterizes local shape 

geometry for shape matching based on Wasserstein distance. However, these methods for 

shape analysis only work for 2D images. With the fast development of 3D scanning 

technologies, 3D shapes become more and more popular and analyzing 3D surfaces 

becomes important in medical imaging field.

3D surface based brain morphometry analysis usually takes brain thickness morphometry 

features [25]. Recent work [31, 32] showed that surface area feature may be independent of 

cortical thickness and itself provides a unique and important morphometry feature to study 

brain structural MRI images. With the clinical questions of interest moving towards 

identifying very early signs of brain functional and diseases, the corresponding statistical 

differences at the group level become weaker and harder to identify. An efficient and 

effective framework with a rigorous theoretical guarantee to classify brain cortical surfaces 

into different categories would be highly desired for preclinical imaging study.

Due to the difficult boundary parameterization and high dimension, conventional 2D shape 

classification methods can not be easily extended to 3D shape classification problems. Many 

methods have been proposed in order to describe shapes. Statistical based method [4] [22] 

represent objects with feature vectors in a multidimensional space, but they are not 

discriminating enough to make subtle distinctions between shapes. Topology based method 

[10] computes 3D shape similarity by comparing Multiresolutional Reeb Graphs, yet they 

can not describe the geometric differences. Geometry based method [17] [20] compare 3D 

shapes by embedding them to into canonical space, but the classifications are too restrictive. 

Shape space models have been proposed to provide suitable mathematical and 

computational descriptions for both shape representation and comparisons [16] [24] [33].

Therefore, in this work we first generalized the optimal mass transport map from Euclidean 

metrics to Riemannian metrics, such that our proposed framework is applicable to any 

general Riemannian manifolds. The computation is based on geodesic power Voronoi 

diagram which is an extension of the work [30].

According to Poincare uniformization theorem [21], all shapes can be conformally mapped 

to one of three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic 

plane. The area-distortion factor by the uniformization map gives a probability measure on 

the canonical uniformization space. All the probability measures on a Riemannian manifold 

form the Wasserstein space. Given 2 probability measures, there exists a unique optimal 

mass transport map between them. The transportation cost induced by the optimal mass 

transport map defines the Wasserstein distance between the two probability measures. 

Wassertein distance gives a Riemannian metric for the Wasssertein space. Figure 1 shows 

the computation of the proposed Riemannian optimal mass transport map between two brain 

cortical surfaces.

With the tools of uniformization mapping and our Riemannian optimal mass transport map, 

we proposed a novel framework for shape classification by Wasserstein distance. We 
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applied our method for brain morphology study to classify human brain cortical surfaces 

with different intelligence quotient. The experimental results and comparisons with previous 

methods demonstrated the efficiency and efficacy of our method.

In summary, the main contributions of this work are as follows:

1. Introduced the optimal mass transport map to general Riemannian manifolds, 

which greatly improves the applicability of optimal mass transport map for shape 

analysis.

2. Presented a novel 3D shape classification framework for brain morphometry 

analysis using Wasserstein distance, based on uniformization theory and our 

Riemannian optimal mass transport map.

2 Previous Work

Brain morphometry study plays a fundamental role in medical imaging[14] [18] [19]. 

Chaplota et al [7] introduced a method using wavelets as input to neural network self-

organizing maps and support vector machine for brain MR images classification. Singh et al. 

[27] presented an approach to classify an autistic group from controls using structural image. 

Zacharaki et al. [34] proposed brain tumor classification method combining conventional 

MRI and perfusion MRI. Im et al. [12] studied the brain complexity by interpreting the 

variation of Fractal dimension in the cortical surface of normal controls through multiple 

regression analysis with cortical thickness, sulcal depth, and folding area.

Various surface based shape analysis and classification methods were also proposed to solve 

real 3D shape problems. Unnikrishnan et al. [26] presented a multi-scale operators on point 

clouds that captures variation in shapes. Mahmoudi et al. [20] represented shapes by 

computing the histogram of pairwise diffusion distances between all points. Kurtek et al. 

[16] provided a Riemannian framework for computing geodesic paths which are important 

for comparing and matching 3D shapes. Jermyn et al. [13] defined a general elastic metric 

on the space of parameter domains for shape comparisons and analysis.

Compared with the elastic shape metric methods [13] [16], our metric is intrinsic yet theirs 

is extrinsic. The elastic shape (extrinsic) metric methods need to embed the surfaces into , 

which is not necessary in our method. The elastic shape metric assumes two shapes are 

isotopic. However, the proposed intrinsic method is applicable for general Riemannian 

manifolds. Our approach solely depends on Riemannian metrics and is invariant under rigid 

motions and scalings such that it intrinsically measures shape distance, and thus more 

effective and efficient for shape classification and brain morphology analysis.

3 Theory

This section briefly introduces the theoretic foundation, for thorough treatments, we refer 

readers to [9] for conformal geometry, and [15], [6] for optimal mass transport theory.
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3.1 Conformal Mapping

Suppose S is a topological surface, a Riemannian metric g on S is a family of inner products 

on the tangent planes. Locally, a metric tensor is represented as a positive definite matrix 

(ɡij). Let φ : (S1, g1) → (S2, g2) be a diffeomorphic map between two Riemannian surfaces, 

the pull back metric on the source induced by φ is φ*g2 = JT g2J, where J is the Jacobian 

matrix of φ. The mapping is conformal or angle-preserving, if the pull back metric and the 

original metric differ by a scalar function, φ*g2 = e2λg1, where  is called the 

conformal factor.

Hamilton’s surface Ricci flow conformably deforms the Riemannian metric proprotional to 

the curvature, such that the curvature evolves according to a non-linear heat diffusion 

process, and becomes constant everywhere.

Definition 1 (Surface Ricci Flow)—The normalized surface Ricci flow is defined as

where χ(S) is the Euler characteristic number of the surface, A(0) is the total area at the 

initial time.

Theorem 1 (Uniformization)—Suppose (S, g) is a closed compact Riemannian surface 

with genus ɡ, then there is a conformal factor function , such that the conformal 

metric e2λg induces constant Gaussian curvature. Depending on the χ(S) is positive, zero or 

negative, the const is +1, 0 or −1.

In the current work, we apply surface Ricci flow to deform the human cortical surface to the 

unit sphere.

3.2 Optimal Mass Transport

The Optimal mass transportation problem was first raised by Monge[5] in the 18th century. 

Suppose (S, g) is a Riemannian manifold with a metric g. Let μ and ν be two probability 

measures on S with the same total mass ∫S dμ = ∫S dν, φ : S → S be a diffeomorphism, the 

pull back measure induced by ν is φ*ν = det(J)ν ○ φ. The mapping is called measure 

preserving, if the pull back measure equals to the initial measure, φ*ν = μ. The 

transportation cost of φ is defined as

(1)

The optimal mass transportation problem is to find the measure preserving mapping, which 

minimizes the transportation cost,
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In the 1940s, Kantorovich introduced the relaxation of Monge’s problem and solved it using 

linear programming method [15].

Theorem 2 (Kantorovich)—Suppose (M, g) is a Riemannian manifold, probability 

measures μ and ν have the same total mass, μ is absolutely continuous, ν has finite second 

moment, the cost function is the squared geodesic distance, then the optimal mass 

transportation map exists and is unique.

If  is a convex domain in the Euclidean space, then Brenier proved the following 

theorem.

Theorem 3 (Brenier)—There is a convex function , the optimal map is given by 

the gradient map p → ▽u(p).

Solving the optimal transportation problem is equivalent to solve the following Monge-

Amperé equation,

3.3 Wasserstein Metric Space

Suppose (S, g) is a Riemannian manifold with a Riemannian metric g.

Definition 2 (Wasserstein Space)—For p ≥ 1, let  denote the space of all 

probability measures μ on M with finite pth moment, for some x0 ∈ S, ∫S d(x, x0)pdμ(x) < 

+∞, where d is the geodesic distance induced by g.

Given two probability μ and ν in , the Wasserstein distance between them is defined as 

the transportation cost induced by the optimal transportation map φ : S → S,

The following theorem plays a fundamental role for the current work

Theorem 4—The Wasserstein distance Wp is a Riemannian metric of the Wasserstein 

space .

Detailed proof can be found in [28].

3.4 Discrete Optimal Mass Transport

Let P = {p1, p2, … , pk} be a discrete point set on S, h = {h1, h2, … , hk} be the weight 

vector.
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Definition 3 (Geodesic Power Voronoi Diagram)—Given the point set P and the 

weight h, the geodesic power voronoi diagram induced by (P, h) is a cell decomposition of 

the manifold (S, g), such that the cell associated with pi is given by

Theorem 5 (Discrete Optimal Mass Transportation Map)—Given a Riemannian 

manifold (S, g), two probability measures μ and ν are of the same total mass. ν is a Dirac 

measure, with discrete point set support P = {p1, p2, ⋯ , pk}, ν(pi) = νi. There exists a 

weight h = {h1, h2, ⋯ , hk}, unique up to a constant, the geodesic power Voronoi diagram 

induced by (P, h) gives the optimal mass transportation map,

furthermore

Proof: Suppose  is another partition of the manifold, such that . The 

mapping  is another measure-preserving mapping. By the definition of geodesic 

Voronoi diagram, given any point p ∈ Wi, suppose it belongs to , then

this induces

Then

This shows for any measure preserving mapping, .

The optimal weight for the geodesic power Voronoi diagram that induces the optimal 

transportation map can be found by

(2)
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4 Algorithm

4.1 Riemannian optimal mass transport map

This section gives the algorithmic implementation details for Riemannian optimal mass 

transport map (OMT-Map) generation using geodesic power Voronoi diagram.

Smooth metric surfaces can be approximated by piecewise linear triangle mesh. There are 

many ways to discretize a smooth surface, such that the piecewise linear metrics converge to 

the smooth metric, eg, the sampling is uniformand the triangulation is geodesic Delaunay. 

The geodesics on the triangle meshes can be efficiently computed using the algorithms in 

[30].

First, we repeat subdividing the triangle mesh until the size of each triangle is small enough 

to ensure the accuracy. Then from each point pi in the point set P, we compute the geodesics 

to reach every other vertex on the subdivided mesh, this gives the geodesic distance from 

every vertex to pi. Repeat this for all vertices in P.

Third, we find the optimal weight. We initialize all the weights to be zeros, then update the 

weight using the formula

Details of the algorithm can be found in Alg. 1.

Algorithm 1

Riemannian Optimal Mass Transport Map

 Input: A triangle mesh M, measure μ and Dirac measure {(p1, ν1), (p2, ν2), ⋯ , (pk, νk)},

 ∫M u(p)dp = ∑i=1
k νi; a threshold ϵ.

 Output: The unique discrete Optimal Mass Transport Map φ : (M, μ) → (P, ν).

 Subdivide M for several levels, until each triangle size is small enough.

 for all pi ∈ P do

  Compute the geodesic from pi to every other vertex on M,

 end for

 h ← (0, 0, ⋯ , 0).

 repeat

  for all vertex vj on M do

   Find the minimum weighted squared geodesic distance, decide which Voronoi cell vi
   belongs to, vi ∈ Wt(h)

t = argminkdg
2(vj, pk ) + h k

  end for

  for all pi ∈ P do

   Compute the current cell area wi = ∫Wi(h) dμ,

  end for
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  for all hi ∈ h do

   Update hi, hi = hi + δ(νi − wi)

  end for

 until ∣νi − wi∣ < ϵ, ∀i.

 return Power geodesic Voronoi diagram.

4.2 Wasserstein Distance

The OMT-Map algorithm can also be generalized to compute the Wasserstein distance 

between surfaces. Given two topological spherical surfaces (S1, g1), (S2, g2) with total area 

4π. We first compute the conformal maps by [21]  and , where  is 

the unit sphere. The conformal factors e2λ1 and e2λ2 define two probability measures on the 

sphere, which can be computed by [21].

Then we discretize  into a discrete point set with measure (P, ν), where ν is computed as 

follows: first we compute geodesic voronoi diagram induced by P, suppose the Voronoi cell 

associated with pi is Wi, then

(3)

where dA is the spherical area element. Denote the measure e2λ1 dA as μ, use  and (P, 

ν) as inputs of Algorithm 1, we compute the Optimal Mass Transport map , Wi(h) 

→ pi, where pi ∈ P, i = 1, 2, ⋯ , k. Therefore, the Wasserstein distance between S1 and S2 

can be computed by

(4)

Algorithm 2 gives the implementation details.

Algorithm 2

Computing Wasserstein Distance

 Input: Two topological spherical surfaces (S1, g1), (S2, g2).

 Output: The Wasserstein distance between S1 and S2.

 1. Scale and normalize S1 and S2 such that the total area of each surface is 4π.

 2. Compute the conformal maps by [21] ϕ1 : S1 → S2
 and ϕ2 : S2 → S2

, where S2
 is the unit

 sphere, and ϕ1 and ϕ2 are with normalization conditions: the mass center of the image points
 are at the sphere center.

 3. Compute the conformal factors λ1 and λ2 by [8]. Construct the measure μ ← e2λ1dA.

 4. Discretize S2
 into a discrete point set with measure (P, ν), where ν is computed by Eqn. 3.
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 5. With (S2, μ) and (P, ν) as inputs of Algorithm 1, we compute the Riemannian Optimal
 Mass Transport map.

 6. Wasserstein distance between S1 and S2 can be computed by Eqn. 4.

5 Brain Cortical Surface Classification

There have been much research into the relation between human intelligence and human 

brain. Earlier works have studied some significant factors such as cortical surface area, 

cortical thickness and cortical convolution [12] [18] [19]. To validate the correctness of our 

framework in real applications, we applied our method for the classification problem of 

brain cortical surfaces with different intelligence quotient (IQ), and compared with some 

existing works.

The biological properties of interest by our method are as follows: The brain cortical surface 

is conformally mapped to the unit sphere, the conformal factor represents the area distortion. 

In fact, the area distortion factor encodes the complete information of the original 

Riemannian metric of the brain: due to the conformality of the mapping, the metric on brain 

equals to the product of the conformal factor and spherical metric. Therefore, Wasserstein 

distance between the conformal factors gives the distance between the Riemannian metrics 

of the cortical surfaces. The Gaussian curvatures on the brains are induced by their metrics. 

This method is stronger than solely comparing curvatures.

Data preparation

The brain data is from the Center for Cognitive and Behavioral Brain Imaging at the Ohio 

State University. MRI recording was performed using a standard 12-channel head coil on a 

Siemens 3T Trio Magnetic Resonance Imaging System with TIM. The brain cortical 

surfaces are reconstructed from MRI images by FreeSurfer [2]. Our experimental dataset 

includes 50 males and 50 females, with ages ranging from 18 to 30 years uniformly 

distributed. Among all the brain data, we used the left hemisphere of the brain surface for 

experiments.

The intelligence quotient (IQ) was evaluated by an online version of Ravens Advanced 

Progressive Matrices (APM) [3]. The test consists of 36 questions and the IQ score is 

calculated by NcorrectAnswers/Ntotal * 100. The IQ among the data ranges from 0 to 100, 

which are uniformly distributed. Figure 1 shows the computation of Wasserstein distance 

between two brain cortical surfaces. (a) shows an example of a 20-year-old female, with IQ 

score 88.89; (b) shows an example of a 21-year-old male, with IQ score 33.33.

Instead of claiming whether one human brain is intelligent or not, in our experimental 

settings we divided the IQ into three classes: A, B, and C, ranging from A : [0, 33), B : [33, 

67) and C : [67, 100]. The data uniformly distributed in the three classes. For each gender, 

we randomly chose 12 examples from each class. Therefore, we created a training set of 72 

examples, which is uniformly distributed with respect to gender and IQ. And the remaining 

examples are used as testing data.
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For the classification experiments, we first computed the full pair-wise Wasserstein distance 

matrix based on our method. We indexed all the data of class A into i = 1, 2, …, 33, data of 

class B into i = 34, 35, …, 66 and data of class C into i = 67, 68, …100. Figure 2 (a) shows 

the visualization of the Wasserstein distance matrix encoded in a gray image. The distance is 

normalized from 0 to 1, where 0 indicates black and 1 indicates white. The entry of the 

matrix Mi,j is the Wasserstein distance between brain data i and brain data j. Then we can 

clearly see that, mostly, two surfaces in the same class induce smaller Wasserstein distance, 

yet two surfaces in different classes induce larger Wasserstein distance. The results further 

demonstrated the power of Wasserstein distance for measuring shape similarities.

With the distance matrix, we classified the testing set by k-Nearest Neighbors (k-NN) 

classifier, where k is chosen to be 11 by running 9-fold cross-validation. The cross-

validation curve is shown in Figure 2 (b). Table 1 shows the classification rate of our 

method is 78.57%.

To demonstrate the efficiency and advantages of our method, we compared our method with 

existing popular method. Previous work [14] shows that cortical surface area and cortical 

surface mean curvature have significant correlations to human intelligence, since they 

quantify the complexity of cortical foldings. Thus we computed the two cortical 

measurements and used surface area, mean curvature, and the combination of the two 

measurements as three types of features for classification, respectively. We used LIBSVM 

[1] as the classifier. Linear kernel and regularization parameter C = 4.5 were chosen by cross 

validation. Table 1 reports the classification rate of all the three comparison methods. The 

results indicated that our method outperforms previous methods.

6 Conclusion and Future Work

This work introduces a novel 3D shape classification framework for brain morphology study 

using Wasserstein distance, based on uniformization theory and Riemannian optimal mass 

transport theory. We generalized the the existing optimal mass transport map from 

Euclidean metrics to Riemannian metrics. The theoretical foundation is rigorous, and the 

computation is based on geodesic power Voronoi diagram.

Comparing to the existing methods, our algorithm solely depends on Riemannian metrics 

and is invariant under rigid motions and scalings, thus it intrinsically measures distance 

between shapes. We applied the proposed framework for classification of brain cortical 

surfaces with different intelligent quotient. The experimental results show that our method 

outperforms previous methods based on surface area and surface mean curvature. In the 

future, we will explore and validate broader applications in other medical imaging field by 

our framework.
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Fig. 1. 
The computation of Wasserstein distance between the left hemisphere brain cortical 

surfaces. (a) shows an example of a 20-year-old female, with IQ score 88.89; (b) shows an 

example of a 21-year-old male, with IQ score 33.33. (c) and (d) are the spherical conformal 

parameterization (CFP) of (a) and (b), respectively. (e) shows the Riemannian optimal mass 

transport (OMT) map result from (c) to (d), which induces the Wasserstein distance between 

(a) and (b).
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Fig. 2. 
(a) Wasserstein distance matrix encoded in a gray image. The distance is normalized from 0 

to 1, where 0 indicates black and 1 indicates white. The results show that, mostly, two 

surfaces in the same class induce smaller Wasserstein distance, yet two surfaces in different 

classes induce larger Wasserstein distance. (b) Cross-validation curve.
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Table 1

Classification rate (CR) of our method and previous methods based on cortical surface area, cortical surface 

mean curvature and combination of previous two cortical measurements. The results demonstrated the 

accuracy of our method.

Method CR

Our method 78.57%

Surface Area 53.57%

Surface Mean Curvature 57.14%

Combination of Area and Curvature 67.85%
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