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Abstract

Agglomerative hierarchical clustering is a popular class of methods for understanding the structure 

of a dataset. The nature of the clustering depends on the choice of linkage—that is, on how one 

measures the distance between clusters. In this article we investigate minimax linkage, a recently 

introduced but little-studied linkage. Minimax linkage is unique in naturally associating a 

prototype chosen from the original dataset with every interior node of the dendrogram. These 

prototypes can be used to greatly enhance the interpretability of a hierarchical clustering. 

Furthermore, we prove that minimax linkage has a number of desirable theoretical properties; for 

example, minimax-linkage dendrograms cannot have inversions (unlike centroid linkage) and is 

robust against certain perturbations of a dataset. We provide an efficient implementation and 

illustrate minimax linkage’s strengths as a data analysis and visualization tool on a study of words 

from encyclopedia articles and on a dataset of images of human faces.
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1. INTRODUCTION

Suppose that we are given the pairwise dissimilarities between n objects x1, …, xn. Our 

focus is on a clustering method that can make the relationships among objects in the dataset 

readily apparent, so that an individual with little statistical knowledge can understand the 

structure of the data. In many applications, these objects may be vectors in ℝp, but for our 

purposes we require only a matrix of dissimilarities d(xi, xj) between objects, not the objects 

themselves.

Hierarchical clustering methods organize data in the form of trees. Each leaf corresponds to 

one of the original data points, xi, and each interior node represents a subset or cluster of 

points. Agglomerative hierarchical clustering algorithms build trees in a bottom-up 

approach, beginning with n singleton clusters of the form {xi}, and then merging the two 

closest clusters at each stage. This merging is repeated until only one cluster remains. 

Because at each step two clusters are merged into one cluster, the algorithm terminates after 

n − 1 steps. The resulting binary tree formed by this process is commonly displayed as a 
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dendrogram by placing each leaf at height 0 and every interior node (corresponding to a 

merge) at a height equal to the distance between the clusters merged, that is, h(G ∪ H) = 

d(G, H) (see Figure 1).

An important choice required in agglomerative hierarchical clustering is how to measure the 

distance between clusters. Common, extensively studied distances between clusters (referred 

to as “linkages”) include complete, single, average, and centroid (e.g. Everitt, Landau, and 

Leese 2001; Hastie, Tibshirani, and Friedman 2009). Given two clusters G and H, these are 

defined as follows:

• Complete: dC(G, H) = maxg∈G,h∈H d(g, h)

• Single: dS(G, H) = ming∈G,h∈H d(g, h)

•
Average: 

• Centroid: dcen(G, H) = d(x̄G, x̄H).

In words, complete linkage uses the largest intercluster distance, single linkage the 

minimum intercluster distance, average linkage the average intercluster distance, and, 

finally, centroid linkage uses the distance between the centroids of the two clusters.

From a tree, we can recover n possible clusterings, corresponding to each step of the 

algorithm. To cut the tree at a given height h means to return the last clustering before a 

merging occurs of two clusters more than h apart. Given a complete linkage tree, cutting at 

height h gives a clustering in which all points of a cluster are within h of one another; given 

a single linkage tree, it gives a clustering for which no two clusters have points closer than h 

from each other.

In a two-page “applications note,” Ao et al. (2005) proposed a new measure of cluster 

distance, called minimax linkage, for the problem of selecting tag single nucleotide 

polymorphisms (SNPs). However, beyond a brief empirical study in the context of tag SNP 

selection, the authors offered little analysis of the measure’s properties and performance. We 

believe that their proposed linkage has great potential as a tool for data analysis and thus 

merits closer attention. In this article we show that minimax linkage shares many of the 

desirable theoretical properties of the standard linkages while adding interpretative value. In 

Section 2, we define minimax linkage and explain its connection to the set cover problem. 

We also show how this method naturally produces “prototype-enhanced” dendrograms, 

thereby increasing the ease of interpretation. In Section 3, we present several theoretical 

properties of the linkage. In Section 4 we review some related work, and in Section 5 we use 

two real datasets to demonstrate the appeal of using minimax linkage compared with other 

linkages. In Section 6 we present an empirical study on both real and simulated datasets. 

Finally, in Section 7, we discuss algorithmics, presenting an efficient algorithm that we have 

implemented for this problem and time comparisons to a standard implementation of 

complete linkage.
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2. MINIMAX LINKAGE

We begin with a few definitions that are used throughout the rest of the article. For any point 

x and cluster C, define

as the distance to the farthest point in C from x. Define the minimax radius of the cluster C 

as

(1)

that is, find the point x ∈ C from which all points in C are as close as possible (i.e., the point 

whose farthest point is closest). We call this minimizing point the prototype for C. Note that 

a (closed) ball of radius r(C) centered at the prototype covers all of C. Finally, define the 

minimax linkage between two clusters G and H as

(2)

that is, we measure the distance between clusters G and H by the minimax radius of the 

resulting merged cluster (see Figure 2). By (2), the height of the interior node corresponding 

to cluster C is simply r(C). With each node of the tree, we have an associated prototype, 

namely the most central (in the sense of minimizing dmax) data point of the newly formed 

cluster. We mentioned earlier that the cutting of complete and single linkage trees admits a 

simple interpretation. The motivation for minimax linkage is that it also has an appealing 

interpretation for cuts.

Property 1—Cutting a minimax linkage tree at height h yields a clustering, C1, …, Ck, and 

a set of prototypes, p1, …, pk, in which for every cluster Ci there is a prototype pi ∈ Ci such 

that all points in Ci are within h of pi.

Proof: Let C1, …, Ck be the clustering when we cut at height h. Then r(Ci) ≤ h. That is, 

minx∈Cidmax(x, Ci) ≤ h or, equivalently, there exists a point pi ∈ Ci such that dmax(pi, Ci) ≤ 

h. This implies that every x′ ∈ Ci is within h of pi.

The foregoing property is the motivation for using this linkage. When performing minimax 

hierarchical clustering, we can easily retain the prototype index associated with each interior 

node (n − 1 of them in total). Thus, for each merge we have a single representative data 

point for the resulting cluster.

For microarray data, it is common to define d(gene1, gene2) = 1 − correlation(gene1, gene2). 

Cutting a minimax clustering of the genes at height 1 − ρ0 yields a dataset of “prototypical” 

genes in which every gene has correlation of at least ρ0 with one of the prototype genes. In 
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this sense, every gene in the dataset is guaranteed to be represented in the prototype set. The 

prototypes of minimax linkage have a close relationship to the set cover problem, which we 

review next. Consider a set of n balls centered at each xi and of a fixed radius h. The set 

cover problem asks for the smallest number of such balls required to cover all of the data 

points x1, …, xn. This is a well-studied NP-hard problem that has been widely applied to 

clustering. Tipping and Schölkopf (2001) emphasized the fact that the set cover prototypes 

come with a desirable maximum distortion guarantee (i.e., no point will be farther than h 

from its prototype). Based on the foregoing property, it is easy to see that for each possible 

cut, we get a set of prototypes with a maximum distortion guarantee.

Figure 3 shows how we can enhance the information conveyed by a dendrogram by 

indicating the prototypes associated with each interior node. For example, we see that at the 

step when there are only two clusters, the points “7” and “9” are chosen as prototypes (a 

reasonable choice looking at the configuration of points). Of course, for larger n, fitting all n 

− 1 prototypes onto the dendrogram becomes difficult. In such a case, we propose displaying 

only the prototypes of a given cut. Figure 4 displays an example that also visually 

demonstrates the set cover connection of property 1 (the radius of the balls equals the height 

of the cut).

3. INVERSIONS AND ADMISSIBILITY PROPERTIES

Implicit in the above discussion of dendrograms and cuts is the assumption that there are no 

inversions—that is, that parent nodes are always higher than their children. A well-known 

difficulty with centroid linkage is that it can in fact have such inversions (e.g., Everitt, 

Landau, and Leese 2001). Inversions lead to clumsy rules for visualization and a less 

obvious interpretation of what it means to cut at a certain height. To be precise, suppose that 

we are in the middle of forming an agglomerative tree and are considering merging the 

clusters G and H. Then a linkage does not allow inversions if d(G, H) ≥ max{h(G), h(H)}.

Property 2—Minimax linkage trees do not have inversions.

Proof: Without loss of generality, suppose that h(G) ≥ h(H). We want to show d(G, H) ≥ 

h(G). This holds trivially if h(G) = 0 (i.e., G is a singleton cluster), so we assume that G = 

G1 ∪ G2 was formed by merging the clusters G1 and G2. Let

be the prototype of G ∪ H. Suppose that x* ∈ Gi ∪ H. Then we have
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where the first inequality holds because the algorithm chose to merge G1 with G2 rather than 

either Gi with H. That H was a candidate when G1 and G2 were merged follows from our 

initial assumption that h(G) ≥ h(H).

Fisher and Van Ness (1971) proposed a number of admissibility conditions for hierarchical 

clustering procedures with the goal of “eliminat[ing] obviously bad clustering algorithms.” 

Minimax linkage holds up well against the well-known linkages according to these 

admissibility standards, as we show in what follows.

A linkage is said to be “well-structured k-group admissible,” if whenever there exists a 

clustering C1, …, Ck, in which all within-cluster distances are smaller than all between-

cluster distances, the hierarchical clustering will produce this clustering after n − k merges.

Property 3—Minimax linkage is “well-structured k-group admissible.”

Proof: Suppose that there exists a partition of the data, C1, …, Ck, such that d(x, x′) ≤ a if x, 

x′ ∈ Ci and d(x, x′) > a if x ∈ Ci, x′ ∈ Cj with i ≠ j. It follows that for any x ∈ Ci, dmax(x, Ci) 

≤ a and dmax(x, Cj) > a. Now, if G, H ⊂ Ci, then

Moreover, if G ⊂ Ci and H ⊂{x1, …, xn} \ Ci, then

since dmax(x, G ∪ H) ≥ dmax(x, H) > a for all x ∈ G and dmax(x, G ∪ H) ≥ dmax(x, G) > a for 

all x ∈ H. Thus minimax linkage will always merge clusters within a group Ci before 

merging a cluster G ⊂ Ci with a subset not contained in Ci. This establishes that at some 

merge in the algorithm, Ci is formed. Now d(Ci, Cj) > a and h(Ci) ≤ a, so cutting at height a 

gives precisely the clustering C1, …, Ck. Because this is a k cluster solution, this state is 

reached after n − k merges.

We list the following two properties without proofs, because they follow immediately from 

the properties of max and min.

Property 4—Minimax linkage is

• “Monotone admissible”: Monotone transformation of the distances leaves the 

clustering unchanged.

• “Point proportion admissible”: Duplicating any of the xi’s has no effect on the 

clusters formed.

Single and complete linkages are admissible in these senses as well. The latter two 

properties, which are not shared by centroid or average, imply that minimax linkage is 
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robust to certain perturbations. In proposing point proportion admissibility, Fisher and Van 

Ness (1971) had in mind “applications [in which] the geometrical aspects of the clusters are 

more important than the density of points in the clusters.”

Another desirable theoretical property for a linkage is reducibility (Gordon 1987), which 

states that for any clusters G1, G2, H,

(3)

Reducibility implies that a newly formed cluster G1 ∪ G2 will be at least as far from H than 

either G1 or G2 had been. This knowledge is useful for algorithmic efficiency; for example, 

it implies that if J and H are mutual nearest neighbors before the merge of G1 and G2, then 

they will remain so (Murtagh 1983). Indeed, in Section 7, we exploit this property to make 

great gains in algorithmic efficiency.

Property 5—Minimax linkage satisfies the reducibility property.

Proof: Let x* ∈ G1 ∪ G2 ∪ H be the point at which d(G1 ∪ G2, H) = dmax(x*, G1 ∪ G2 ∪ H). 

Now suppose that x* ∈ Gi ∪ H. We then have

Thus, depending on whether x* ∈ G1 ∪ H or x* ∈ G2 ∪ H, we have d(G1 ∪ G2, H) ≥ d(G1, 

H) or d(G1 ∪ G2, H) ≥ d(G2, H), from which it follows that d(G1 ∪ G2, H) ≥ min{d(G1, H), 

d(G2, H)}.

In this section we have shown that minimax linkage has many desirable theoretical 

properties. In Section 5 we demonstrate its practical appeal. Before doing so, however, we 

discuss several related methods, with the goal of drawing connections to other linkages and 

understanding alternatives to minimax clustering.

4. RELATED WORK

4.1 Centroid Linkage

Minimax linkage is similar to centroid linkage (Sokal and Mitchener 1958) in that both 

methods associate a central point with each cluster. However, it is important to note the 

difference between a centroid, which is the average of all the points in a cluster, and a 

prototype, which is a single element from the original dataset. This distinction has crucial 

practical implications. We have seen (in Figures 3 and 4) how each interior node of a 

dendrogram can be “labeled” with its own prototype. In many cases, it is not practical or 

even possible to use a centroid as a label; for example, a linear combination of English 

words does not provide any meaningful reduction of the cluster (see Section 5.2).
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Furthermore, centroid linkage dendrograms can have inversions (Property 2), which greatly 

undermines the interpretative potential of the tree and does not satisfy Properties 4 and 5 

(Fisher and Van Ness 1971).

Despite its theoretical and practical shortcomings, centroid linkage is still often used in 

certain fields, including biology (Eisen et al. 1998). In Section 6.2 we consider the relative 

merits of using a centroid rather than a prototype when the dimension of the space is high.

4.2 Hausdorff Linkage

Basalto et al. (2008) proposed a “maximin” linkage based on the Hausdorff metric,

(where dmin is analogous to dmax). Unlike the standard linkages (and minimax linkage), 

which do not satisfy the property that dH (G, H) = 0 if and only if G = H, Hausdorff linkage 

defines a metric on clusters. Now dH (G, H) ≤ h if and only if every element of G is within h 

of some element of H (and vice versa). Thus cutting a Hausdorff linkage dendrogram at 

height h results in a clustering C1, …, Ck such that for any i ≠ j, there exists an element of Ci 

that is more than h from all elements of Cj (or vice versa). We see that this “maximin” 

linkage, although similar in appearance to minimax linkage, is quite different and does not 

lead naturally to prototypes. Furthermore, Basalto et al. (2008) observed that inversions can 

occur in Hausdorff linkage dendrograms, an unfavorable occurrence ruled out for minimax 

linkage by Property 2.

4.3 Standard Linkages With Prototypes Added

A simple alternative to minimax clustering would be to proceed with a standard linkage, 

such as complete, and then compute minimax points [i.e., the minimizer of eq. (1)] based on 

the clusters formed. Because minimax linkage clustering specifically attempts to find 

clusters that have small minimax radius, it might be supposed that minimax clustering will 

consistently give clusters with smaller minimax radius than other hierarchical clustering 

algorithms. In Section 6, we show that this is indeed the case.

4.4 Nonagglomerative Minimax Clustering

The K-center problem is a well-known combinatorial optimization problem (Hochbaum and 

Shmoys 1985). It seeks a clustering C1, …, CK that, in our terminology, minimizes the 

largest minimax radius of any cluster. Analogous to the famous K-means algorithm, it is NP-

hard even when the distances satisfy the triangle inequality; however, polynomial algorithms 

exist with an approximation factor of 2 (Vazirani 2001).

Tree-structured vector quantization (TSVQ) is a divisive hierarchical clustering algorithm 

(Gersho and Gray 1992) that repeatedly (recursively) applies two-means clustering to divide 

the dataset, thus creating a tree in a top-down fashion. A simple proposal that to our 
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knowledge has not yet been suggested would be to use two-center rather than two-means 

clustering. The result would be a top-down version of minimax clustering.

5. REAL DATA EXAMPLES

In this section we demonstrate how minimax linkage creates a visual display of a dataset 

with much interpretative potential for domain specialists.

5.1 Olivetti Faces Dataset

We perform minimax linkage hierarchical clustering on the Olivetti Faces dataset, which 

consists of 400 gray-scale, 64 × 64 pixel images of human faces (made available by Sam 

Roweis at http://cs.nyu.edu/~roweis/data.html). The dataset contains 10 images each of 40 

distinct people. As a measure of dissimilarity between images, we simply take the Euclidean 

distance between the images stretched out as vectors (in ℝ642
). Certainly, a problem-specific 

dissimilarity would give better results; however, we find that even this crude measure 

reveals much of the dataset’s structure.

The upper panel of Figure 5 shows a branch of the minimax linkage dendrogram. We can 

see that the tree successfully clusters images of the same person together. Because 

prototypes are actual single images from the dataset, they are clearly “human-readable,” 

whereas a centroid would be a blurry combination of many images. We show a few of these 

prototypes corresponding to the upper interior nodes of this branch. The lower panel shows a 

subbranch consisting of the 10 images of a single person. We see that the clustering has 

grouped photos according to head tilt: In the leftmost branch, the images have the nose 

pointing right, in the center images, the nose points forward, and in the right-most branch, 

the nose points left. This feature of the clustering is readily seen by looking at the prototypes 

alone. The ordering of leaves in a dendrogram is a separate issue, unrelated to the choice of 

linkage; here we have used the R function reorder.hclust from the library gclus.

5.2 Grolier Encyclopedia Dataset

Consider a data matrix X with Xij recording the number of times word i appears in article j 

of the Grolier Encyclopedia. This dataset, created by Sam Roweis and available at http://

cs.nyu.edu/~roweis/data.html, comprises the n ≈ 15,000 most common English words and p 

≈ 31,000 articles. Our goal is to understand the underlying organization of English words 

based on the information in X. We calculate the pairwise dissimilarity between words xi and 

xj as , so that words that tend to co-occur in articles are 

considered similar.

The upper panel of Figure 6 shows the full tree from the hierarchical clustering. It is 

immediately clear that with n so large, the dendrogram becomes too large to be of much use 

as a visualization aid. Traditional approaches to interpreting the tree involve looking at 

individual branches of the tree that are small enough to allow us to easily read the leaf 

labels. After examining all leaves of a branch, we might be able to label this branch with 

some compact characterization of what it contains (e.g. “animal words”). Because minimax 

linkage trees associate each interior node with a corresponding prototype, each branch 
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comes automatically labeled. Having each branch labeled allows us to examine the tree in a 

top-down manner as follows. We begin by cutting the dendrogram to give a clustering of 

size 20 (an arbitrary choice). Consider the portion of the dendrogram that lies above this cut 

height. It now has 20 leaves, corresponding to the 20 branches that have been cut. Because 

each branch has an associated prototype, we have a label for each leaf of this “upper cut” 

dendrogram. The lower left panel of Figure 6 shows the result. It is gratifying to see that 

several of the words chosen refer to general categories (e.g., “shape,” “food,” “species,” 

“art”). With this visual summary of the hierarchical clustering, we may choose a branch of 

the tree to explore further. The branch labeled “music” contains 155 words. We can continue 

this process of drilling down the tree by looking at the portion of the music branch that is 

above a certain cut. The lower right panel of Figure 6 displays the result. This image also 

shows the prototypes associated with each node of the dendrogram.

6. EMPIRICAL EVALUATIONS

A natural question is whether anything is actually gained by using a linkage that is 

specifically tailored to finding prototypes. Would it not be simpler to use a standard linkage 

and then simply select a prototype for each cluster after the fact? We investigate this 

question empirically in the next section. In Section 6.2, we study the effect of the curse of 

dimensionality on the ability of a single point to represent a cluster. Finally, in Section 6.3, 

we compare minimax linkage and the standard linkages in terms of ability to recover the 

correct clusters under various settings.

6.1 Measuring the Minimax Radius of Other Methods

Given a particular clustering, C1, …, Ck (from any method), we can calculate the largest 

minimax radius, maxCi r(Ci). That is, we identify the minimax prototype of each cluster and 

then report the greatest distance of any point to its cluster’s prototype.

Figure 7 compares minimax hierarchical clustering with various standard linkages on the 

Olivetti Faces and Grolier Encyclopedia datasets described above. Each method yields a 

sequence of clusterings (of size 1, …, n − 1), so we plot the maximum minimax radius as a 

function of number of clusters. We see that minimax linkage indeed does consistently better 

than the other methods in producing clusterings in which every point is close to a prototype.

6.2 Distance to Prototype versus Distance to Centroid in High Dimensions

It is well known that in high dimensions, all points of a dataset tend to lie far from all others, 

with none in the “center” (Bellman 1961; Hastie, Tibshirani, and Friedman 2009). In 

contrast, the centroid of the cluster should lie closer to most of the points. With this in mind, 

one would suspect that a cluster cannot be as “tightly” represented around a single element 

of the dataset when p ≫ n. That is, requiring each point to be within a certain distance of its 

cluster’s prototype likely will require a large number of clusters in this setting. We examine 

this phenomenon empirically using two microarray datasets, the Colon Cancer dataset, with 

n = 62 samples and p = 2000 genes (Alon et al. 1999), and the Prostate Cancer dataset, with 

n = 102 samples and p = 6033 genes (Singh et al. 2002). Because biologists in this domain 
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use correlation as a measure of similarity between samples, we present our results in terms 

of correlation rather than dissimilarity as in the rest of the article.

Figure 8 compares the smallest correlation of a sample to its cluster’s prototype (using 

minimax linkage hierarchical clustering) to the smallest correlation of a sample to its 

cluster’s centroid (using complete linkage hierarchical clustering). The most relevant factor 

in this comparison is the prototype/centroid distinction rather than the choice of method. We 

find that points are less closely correlated with their prototypes than with their centroids. 

This can be viewed as the price to pay for the benefits in interpretability gained by using 

prototypes rather than centroids to describe a dataset. Surprisingly, by using prototypes 

instead of centroids, we do not lose very much in terms of this measure. In this situation, the 

curse of dimensionality is manifested as the fact that for a given minimum correlation 

threshold, a relatively large number of prototypes are required.

6.3 Simulations

In this section we simulate data in which we know the underlying group structure and 

evaluate minimax linkage’s ability to correctly recover clusters. Given the true clustering, , 

of a dataset [where (x) denotes the cluster label assigned to point x], we measure the 

misclassification rate of a clustering  by the fraction of pairs of points for which  and 

disagree about whether they should be in the same cluster,

[This measure was used in, for example, Chipman and Tibshirani (2005), Witten and 

Tibshirani (2010).] In our simulations, we take  to consist of three clusters, each with 100 

points (i.e., n = 300) in ℝ10, sampling from N10(μ1, Σ), N10(μ2, Σ), and N10(μ3, Σ) 

distributions, respectively. We consider three situations:

• Spherical: μ1 = 0, μ2 = 2e1 + 2e2, μ3 = 2e2 + 2e3, and Σ = I10 (where ei is the ith 

standard basis vector).

• Elliptical: μ1 = 0, μ2 = 2e1 + 2e2, μ3 = 2e2 + 2e3, and Σ = diag(1, 1, 1, 2, 2, 1, 1, 1, 

1, 1). (Note that these clusters are elongated in noise directions.)

• Outliers: Same as Spherical, but two points in cluster 2 are sampled with μ2 = 5e1 

+ 5e2, and two points in cluster 3 are sampled with μ3 = 5e2 + 5e3. By design, the 

outliers differ in such a way that there is little ambiguity about their proper class.

For each situation, we apply minimax, complete, average, single, and centroid linkages, with 

dissimilarities between the points given by both ℓ2 and ℓ1 distances. We let Mk denote the 

misclassification rate for a hierarchical clustering that has been cut to have k clusters. Thus 

each linkage has a corresponding sequence of values M1, …, Mn. Table 1 reports M3 (the 

misclassification rate if we were told the correct number of clusters) and Mk̂, where k̂ = arg 

mink Mk. This is the best misclassification rate (over all possible cuts) that a given 
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hierarchical clustering can possibly attain. Estimating the correct number of clusters is a 

difficult problem for any clustering method; thus Mk̂ is informative in that it provides a 

lower bound on the misclassification rate independent of the choice of where to cut. For 

each method and scenario, we average over 50 simulations and report standard errors in 

parentheses.

The first section of the table shows that complete and minimax linkages perform much 

better than the other methods in all of the simulated scenarios when the true number of 

clusters is known (with complete linkage performing somewhat better than minimax 

linkage). In most cases, average, single, and centroid linkages have M3 ≈ 0.66. Given our 

setting of three equalsized clusters, it is straightforward to verify that this poor 

misclassification rate arises when a method has two singleton clusters and one cluster with 

the remaining n − 2 points. Indeed, this occurs consistently for single linkage, which is 

known to be prone to chaining (in which many successive merges involve the addition of 

singletons to a large cluster). We find that in terms of Mk̂, the disparity among methods is 

less great (which may be expected, noting that Mk̂ ≤ Mn ≈ 0.33). In particular, we observe 

that average linkage attains the lowest Mk̂ values without requiring that k̂ be too large. In 

contrast, single linkage attains the lowest Mk̂ of any method for the elliptical-ℓ2 case but 

requires more than twice the number of clusters. In summary, we find that minimax linkage 

performs similarly to complete linkage, which appears to be the best-performing method in 

our simulations.

7. ALGORITHMICS

The definition of agglomerative hierachical clustering (as described in words in Section 1) is 

based on the following algorithm:

• Start with  = {{x1}, …, {xn}} and d({xi}, {xj}) = d(xi, xj) for all i ≠ j.

• For l = 1, …, n − 1:

1. Let (G1, G2) = arg  d(H, K).

2. Update  =  ∪ {G1 ∪ G2} \ {G1, G2}.

3. Calculate d(G1 ∪ G2, H) for all H ∈ .

Here  denotes the clustering after l steps. A straightforward implementation of the 

foregoing algorithm has a computational complexity of O(n3). Step 1 on iteration l requires 

taking the minimum over  elements. Step 3 requires | | − 1 = n − l − 1 distance 

updates, so in total we do
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operations, where T denotes the time for one distance update. The classical linkages have T 

= O(1), because they can all be written in terms of a Lance–Williams update (Lance and 

Williams 1967) as

(4)

for some choice of α(·), β, γ. Minimax linkage does not fall into this class of linkages, 

however.

Property 6—Minimax linkage cannot be written using Lance–Williams updates.

Proof: Figure 9 shows a simple one-dimensional example that could not arise if minimax 

linkage followed Lance–Williams updates. The upper and lower panels show two 

configurations of points for which the right side of (4) is identical but the left side differs; in 

particular, d(G1 ∪ G2, H) = 9 for the upper panel, whereas d(G1 ∪ G2, H) = 8 for the lower 

panel.

Indeed, computing d(G1 ∪ G2, H) requires minimizing dmax(·, G1 ∪ G2 ∪ H) over |G1 ∪ G2| 

+ |H| points. Thus, for iteration l, the required work for step 3 is  (|G1 ∪ G2| + |H|) = |G1 

∪ G2| · | | + (n − |G1 ∪ G2|). If chaining occurs, we have |G1 ∪ G2| = l + 1, which means 

that in total, O(n3) work is done on step 3 as well.

Substantial improvements over this naive implementation have been made to reduce the 

computational complexity of the algorithms for the classical linkages (Murtagh 1983, 1984). 

In particular, when a linkage satisfies the reducibility property (3) and has T = O(1), the 

computational complexity is reduced to O(n2). We apply this technique to minimax linkage 

with great gains in time performance. We describe the approach in brief here; it has been 

presented in greater depth by Murtagh (1983).

Two points are referred to as a reciprocal nearest-neighbor (RNN) pair if each is the other’s 

nearest neighbor. The method exploits the property of reducible linkages in that RNN pairs 

are preserved when merges occur. In particular, suppose that H and K are RNNs and that G1 

and G2 are any two other clusters. Then, by (3), if we create the merged cluster G1 ∪ G2, 

then H and K still must be RNNs. Starting with a particular point (or cluster), we may form 

an NN chain by repeatedly finding the next nearest neighbor. The chain cannot loop back on 

itself (assuming that ties do not occur); rather, a chain always ends with an RNN pair. The 

algorithm grows such a nearest-neighbor chain from an arbitrary point until an RNN pair is 

encountered, which is then removed from the chain and merged into a new cluster. We then 

continue extending the chain from where we left off until the next RNN pair is found. The 

chain continues to grow and contract in this fashion until either n − 1 merges have occurred 

or the chain contracts to zero length (in which case a new chain is started, again from an 

arbitrary object). Thus, the algorithm is as follows:

• Start with  = {{x1}, …, {xn}} and d({xi}, {xj}) = d(xi, xj) for all i ≠ j.
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• The chain is empty.

• For l = 1, …, n − 1:

1. If chain is empty, choose an arbitrary G ∈ ; otherwise, let G be the current end of the chain.

2. Grow a nearest-neighbor chain from G until an RNN pair (G1, G2) is found.

3. Update  =  ∪ {G1 ∪ G2} \ {G1, G2}.

4. Calculate d(G1 ∪ G2, H) for all H ∈ .

5. Remove G1 and G2 from the chain.

Murtagh (1984) showed that this requires O(n) nearest-neighbor searches, each of which is 

O(nT). Thus, in our case the algorithm is still worst case, O(n3), considering the chaining 

case in which T = O(n). However, we find empirically that chaining does not occur, and thus 

this approach is generally dramatically faster than a straightforward implementation. Figure 

10 compares the time performance of our implementation of minimax hierarchical clustering 

with the standard Rfunction hclust. [Surprisingly, hclustdoes not appear to make use of the 

O(n2) nearest-neighbor chain method.] Our algorithm takes just a little more than 45 seconds 

to cluster n = 10,000 objects (on an Intel Xeon processor @ 3 GHz using less than 2.5 GB of 

RAM).

8. DISCUSSION

We have shown that minimax linkage is an appealing alternative to the standard linkages. It 

has much in common with complete linkage in theoretical properties and does not have the 

shortcomings of centroid linkage. We have provided an efficient implementation for 

minimax linkage and have demonstrated in Section 5 how the minimax prototypes might be 

used to facilitate the interpretation of hierarchical clustering.

A common application would be to cluster genes based on a microarray dataset, in which 

case each label would be a gene name. A geneticist could find such a tool very useful. 

Although centroid linkage does associate a centroid with each node, this point is a linear 

combination of all objects below it, which adds little interpretative value that is not already 

present in the leaves. Furthermore, in situations where the data are inherently discrete (e.g., 

single nucleotide polymorphism data), the fractional values of the centroids would not be 

appropriate to the application. In Section 6.2, we investigated clustering samples (arrays), 

which corresponds to the task of choosing a set of prototypical samples from a set of arrays 

in the dataset. We found that because p ≫ n in this context, a larger number of prototypes is 

required here than in lower-dimensional settings. This reflects the fact that describing a 

dataset with only a few prototypical points from the original dataset becomes more difficult 

when p is large.

Inspired by minimax linkage, we can consider a more general class of prototype linkages of 

the form d(G, H) = r̃(G ∪ H), where r̃ is some measure of prototype-centered radius. In 

place of the minimax radius given in (1), we could consider replacing dmax with other 

measures of spread, for example, the average distance,
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In this case, we would take the minimizing x to be the prototype for the cluster C. 

Unfortunately, it can be shown that the foregoing linkage has undesirable properties, such as 

allowing inversions.

We have implemented the nearest-neighbor chain method for minimax linkage hierarchical 

clustering in C, and will be releasing an R package protoclust that produces an object of 

class hclust compatible with standard R hierarchical clustering functions. In addition to the 

usual merge and height objects, the output contains an n − 1 vector of prototype indices.
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Figure 1. 
Agglomerative hierarchical clustering produces a sequence of clusterings that can be 

represented as a dendrogram. Each interior node of the dendrogram corresponds to a 

merging of two clusters (or points).

Bien and Tibshirani Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2015 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Complete, centroid, and minimax linkages. The solid black line represents the distance 

between the two clusters according to each linkage. The circle is of radius r(G ∪ H), where 

G and H denote the two clusters.
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Figure 3. 
A “prototype-enhanced” minimax linkage dendrogram corresponding to the two-

dimensional toy dataset shown in the right panel. Every interior node of the dendrogram has 

an associated prototype that we display. The height of each interior node is the maximum 

distance of any element in its branch to the prototype.
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Figure 4. 
Successive cuts of a dendrogram with prototypes displayed: Cutting at height h yields a set 

of prototypes (shown in gray) such that every element of the dataset is covered by the set of 

balls of radius h centered at the prototypes. As h decreases, more prototypes are required.
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Figure 5. 
Top: A branch of the minimax linkage tree for the Olivetti Faces dataset. The leaf images 

have been staggered vertically to prevent overlapping; the heights of the leaves do not have 

meaning. Prototype images are shown for the five highest nodes, summarizing the images 

below. Bottom: A subbranch of the above shows that the clustering has uncovered three 

angles of head position. This can be seen from the prototypes and is confirmed by looking at 

the leaves.
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Figure 6. 
Top: The entire dendrogram of the Grolier’s Encyclopedia dataset offers little help as a 

visual tool because it is too dense and leaf labels do not fit. Lower: (Left) An “upper cut” 

view of the dendrogram above. A leaf with an asterisk indicates that it is the prototype 

representing a branch that has been cut away. (Note that what appear to be three-way splits 

are actually two consecutive splits that happen to be at the same height.) (Right) An 

exploded view of the music* node on Left. This node represents a branch of 155 words; the 

upper cut of this branch is shown. The prototypes of each interior node are shown in italic 

type.
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Figure 7. 
The maximum minimax radius is the farthest that any point lies from its cluster’s prototype. 

We see that minimax linkage hierarchical clustering does indeed do a better job of making 

this quantity small compared with the standard linkages. (Left) Olivetti Faces dataset. 

(Right) Grolier Encyclopedia dataset. The online version of this figure is in color.
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Figure 8. 
Comparison of the smallest correlation of a sample to its cluster’s prototype (using minimax 

linkage hierarchical clustering) to the smallest correlation of a sample to its cluster’s 

centroid (using complete linkage hierarchical clustering). The online version of this figure is 

in color.
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Figure 9. 
One-dimensional counterexample showing that minimax linkage cannot be written in terms 

of the Lance–Williams update formula.
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Figure 10. 
Time comparison of the Rfunction hclust(complete linkage) with our implementation of 

minimax linkage. We find that hclust scales like n3, whereas our implementation of 

minimax linkage scales like n2.4. The online version of this figure is in color.
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