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Abstract

We add a set of convex constraints to the lasso to produce sparse interaction models that honor the 

hierarchy restriction that an interaction only be included in a model if one or both variables are 

marginally important. We give a precise characterization of the effect of this hierarchy constraint, 

prove that hierarchy holds with probability one and derive an unbiased estimate for the degrees of 

freedom of our estimator. A bound on this estimate reveals the amount of fitting “saved” by the 

hierarchy constraint.

We distinguish between parameter sparsity—the number of nonzero coefficients—and practical 

sparsity—the number of raw variables one must measure to make a new prediction. Hierarchy 

focuses on the latter, which is more closely tied to important data collection concerns such as cost, 

time and effort. We develop an algorithm, available in the R package hierNet, and perform an 

empirical study of our method.
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1. Introduction

There are numerous situations in which additive (main effects) models are insufficient for 

predicting an outcome of interest. In medical diagnosis, the co-occurrence of two symptoms 

may lead a doctor to be confident that a patient has a certain disease whereas the presence of 

either symptom without the other would provide only a moderate indication of that disease. 

This situation corresponds to a positive (i.e., synergistic) interaction between symptom 

variables. On the other hand, suppose both symptoms convey redundant information to the 

doctor about the patient so that knowing both provides no more information about the 

disease status than either one on its own. This situation is again not additive, but this time 
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there is a negative interaction between symptoms. Fitting regression models with 

interactions is challenging when one has even a moderate number, p, of measured variables, 

since there are  interactions of order k. For this paper, we focus on the case of pairwise 

(k = 2) interaction models, although the ideas we develop generalize naturally to higher-

order interaction models.

1.1. Two-way interaction model

We consider a regression model for an outcome variable Y and predictors X1, …, Xp, with 

pairwise interactions between these predictors. In particular our model has the form

(1)

where ε ~ N(0, σ6). Regardless of whether the predictors are continuous or discrete, we will 

refer to the additive part as the “main effect” terms and the quadratic part as the 

“interaction” terms. Our goal is to estimate β ∈ ℝp and Θ ∈ ℝp×p, where Θ = ΘT and Θjj = 0. 

The factor of one half before the interaction summation is a consequence of our notational 

decision to deal with a symmetric matrix Θ of interactions rather than a vector of length p(p 

− 1)/2. We take Θjj = 0 throughout this paper because it simplifies notation, but everything 

carries over if we remove this restriction. Indeed, we provide this as an option in the hierNet 

(pronounced “hair net”) package.

We observe a training sample, (x1, y1), …, (xn, yn), and our goal is to select a subset of the p 

+ p(p − 1)/2 main effect and interaction variables that is predictive of the response, and to 

estimate the values for the nonzero parameters of the model.

1.2. Strong and weak hierarchy

It is a well-established practice among statisticians fitting (1) to only allow an interaction 

into the model if the corresponding main effects are also in the model. Such restrictions are 

known under various names, including “heredity,” “marginality,” and being “hierarchically 

well-formulated” [Hamada and Wu (1992), Chipman (1996), Nelder (1977), Peixoto 

(1987)]. There are two types of restrictions, which we will call strong and weak hierarchy:

Some statisticians argue that models violating strong hierarchy are not sensible. For 

example, according to McCullagh and Nelder (1983),

“[T]here is usually no reason to postulate a special position for the origin, so that 

the linear terms must be included with the cross-term.”

To see that violating strong hierarchy amounts to “postulating a special position for the 

origin,” consider writing an interaction model as Y = β0 + (β1 + Θ12X2)X1 + ···. First of all, 
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we would only take β0 = 0 if we have special reason to believe that the regression surface 

must go through the origin. Likewise, taking β1 = 0 but Θ12 ≠ 0 would only be appropriate if 

we actually believe that X1’s effect on Y should only be present specifically when X2 is 

nonzero. In most situations, we do not think that the variable X2 that we measured is any 

more special than aX2 + b. Yet if our model with X2 violates strong hierarchy, then our 

model with aX2 + b (for any b ≠ 0) is strongly hierarchical. This argument suggests that 

violations to hierarchy occur in special situations whereas hierarchy is the default.

Another argument in favor of hierarchy has to do with statistical power. In the words of Cox 

(1984):

“[L]arge component main effects are more likely to lead to appreciable interactions 

than small components. Also, the interactions corresponding to larger main effects 

may be in some sense of more practical importance.”

In other words, rather than looking at all possible interactions, it may be useful to focus our 

search on those interactions that have large main effects. Indeed, the method we propose in 

this paper makes direct use of this principle.

As a final argument for hierarchy, it is useful to distinguish between two notions of sparsity, 

which we will call parameter sparsity and practical sparsity. Parameter sparsity is what 

most statisticians mean by “sparsity”: the number of nonzero coefficients in the model. 

Practical sparsity is what someone actually collecting data cares about: the number of 

variables one needs to measure to make predictions at a future time. The hierarchy 

restriction favors models that “reuse” measured variables whereas a nonhierarchical model 

does not. The top left panel of Figure 1 gives a small example where this difference is 

manifest. In fact, a simple calculation shows that this difference can be quite substantial: we 

can have a hierarchical and a nonhierarchical interaction model with the same parameter 

sparsity but with the nonhierarchical method having a practical sparsity of k(k + 1) whereas 

the hierarchical method’s practical sparsity is just k.

While taking these arguments to the extreme leads to the use of strong hierarchy exclusively, 

we develop the case of weak hierarchy in parallel throughout this paper. Weak hierarchy, as 

the name suggests, can be thought of as a compromise between strong hierarchy and 

imposing no such structure and appears as a principle in certain statistical methods such as 

classification and regression trees [Breiman et al. (1984)] and multivariate additive 

regression splines [Friedman (1991)].

1.3. Sparsity, the lasso and structured sparsity

The lasso [Tibshirani (1996)] is a method that performs both model selection and estimation. 

It penalizes the squared loss of the data with an ℓ1-norm penalty on the parameter vector. 

This penalty has the property of producing estimates of the parameter vector that are sparse 

(corresponding to model selection). Given a design matrix X̃ ∈ ℝn×d and response vector y ∈ 

ℝn, the lasso is the solution to the convex optimization problem,
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where 1 ∈ ℝn is the vector of ones. The penalty parameter, λ ≥ 0, controls the relative 

importance of fitting to the training data (sum-of-squares term) and of sparsity (ℓ1 penalty 

term). A natural extension of the lasso to our interaction model (1) would be to take ϕT = 

[βT, vec(Θ)T] and X̃ = (X:Z/2), where the columns of Z ∈ ℝn×p(p−1) correspond to 

elementwise products of the columns of X. We will refer to this method as the all-pairs lasso 

since it is simply the lasso applied to a data matrix which includes all pairs of interactions 

(as well as all main effects). It is common with the lasso to standardize the predictors so that 

they are on the same scale. In this paper, we standardize X so that its columns have mean 0 

and standard deviation 1; we then form Z from these standardized predictors and, finally, 

center the resulting columns of Z. By centering y and X̃, we may take β̂
0 = 0.

The lasso’s ℓ1 penalty is neutral to the pattern of sparsity, allowing any sparsity pattern to 

emerge. The notions of strong and weak hierarchy introduced in Section 1.2 represent 

situations in which we want to exclude certain sparsity patterns. There has been a growing 

literature focusing on methods that produce structured sparsity [Yuan and Lin (2006), Zhao, 

Rocha and Yu (2009), Jenatton et al. (2010), Jenatton, Audibert and Bach (2011), Bach 

(2011), Bach et al. (2012)]. These methods make use of the group lasso penalty (and 

generalizations thereof) which, given a predetermined grouping of the parameters, induces 

entire groups of parameters to be set to zero [Yuan and Lin (2006)]. Given a set of groups of 

variables, , these methods generalize the ℓ1 penalty by

where γG > 1, ϕG is ϕ projected onto the coordinates in G, and dG is a nonnegative weight. 

Hierarchical structured sparsity is obtained by choosing  to have nested groups. For 

example, Zhao, Rocha and Yu (2009) consider the penalty

Likewise, the framework of Bach et al. (2012) if specialized to this paper’s focus would lead 

to a penalty of the form

(2)

for some q > 1 and dj > 0. In fact, Radchenko and James (2010) suggest a penalty for 

generalized additive models with interactions that reduces to (2) in the linear model case, 

with q = 2 and dj independent of j.
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1.4. This paper

Here, we propose a lasso-like procedure that produces sparse estimates of β and Θ while 

satisfying the strong or weak hierarchy constraint. In contrast to much of the structured 

sparsity literature which is based on group lasso penalties, our approach, presented in 

Section 2, involves adding a set of convex constraints to the lasso. Although we find this 

form of constraint more naturally interpretable, we show (Remark 3) that this problem can 

be equivalently expressed in a form that relates it to penalties from the structured sparsity 

literature such as (2).

A key advantage of our specific choice of penalty structure is that it admits a simple 

interpretation of the effect of the hierarchy demand. Unlike other hierarchical sparsity 

methods, which do not pay much attention to the particular choice of norms (as long as γG > 

1), our formulation is carefully tailored to allow it to be related directly back to the lasso, 

permitting one to understand specifically how hierarchy alters the solution (Section 3.1). 

This feature of our estimator gives it a transparency that exposes the effects (both positive 

and negative!) of the hierarchy constraint. Furthermore, our characterization suggests that 

the demand for hierarchy is—analogous to the demand for sparsity—a form of 

“regularization.” We develop an unbiased estimator of the degrees of freedom of our method 

(Section 3.3) and an interpretable upper bound on this quantity, which also points to 

hierarchy as regularization. In particular, we show that we do not “spend” in degrees of 

freedom for main effects that are forced into the model by the hierarchy constraint.

Another difference from much of the structured sparsity literature, which aims to develop a 

broad treatment of structured and hierarchical sparsity methods, is that our focus is narrowed 

to the problem of interaction models. Our restricted scope allows us to address specifically 

the performance of such a tool to this important problem. In Section 4, we review previous 

work on the problem of hierarchical interaction model fitting and selection. These methods 

fall into three categories: Multi-step procedures, which are defined by an algorithm [Peixoto 

(1987), Friedman (1991), Turlach (2004), Nardi and Rinaldo (2012), Bickel, Ritov and 

Tsybakov (2010), Park and Hastie (2008), Wu et al. (2010)]; Bayesian approaches, which 

specify the hierarchy requirement through a prior [Chipman (1996)]; and, most related to 

this paper’s proposal, regularized regression methods, which are defined by an optimization 

problem [Yuan, Joseph and Zou (2009), Zhao, Rocha and Yu (2009), Choi, Li and Zhu 

(2010), Jenatton et al. (2010), Radchenko and James (2010)]. In Section 5, we study via 

simulation the statistical implications of imposing hierarchy on an interactions-based 

estimator under various scenarios (in both the lasso and stepwise frameworks). In Section 6 

we present an efficient algorithm for computing our estimator. Real data examples are used 

to illustrate a distinction we draw between “parameter sparsity” and “practical sparsity” and 

to discuss hierarchy’s role in promoting the latter.

2. Our proposed method

In Section 1.3, we introduced the all-pairs lasso, which can be written as
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(3)

where ||Θ||1 = Σj≠k |Θjk| and q(β0, β, Θ) is the loss function, typically 

, but may also include a 

ridge penalty on the coefficients as discussed later or may be substituted for the binomial 

negative log-likelihood. The one-half factors in front of terms involving Θ are merely a 

consequence of the notational choice to represent Θ as a symmetric matrix (with Θjj = 0 for j 

= 1, …, p). In this paper, we propose a modification of the all-pairs lasso that produces 

models that are guaranteed to be hierarchical.

As motivation for our proposal, consider building hierarchy into the optimization problem as 

a constraint,

(4)

where Θj denotes the jth row (and column, by symmetry) of Θ. Notice that if Θ̂jk ≠ 0, then ||

Θ̂j||1 > 0 and ||Θ̂
k||1 > 0 and thus β̂

j ≠ 0 and β̂
k ≠ 0. While the added constraints enforce strong 

hierarchy, they are not convex, which makes (4) undesirable as a method. In this paper, we 

propose a straightforward convex relaxation of (4), which we call the strong hierarchical 

lasso,

(5)

where we have replaced the optimization variable β ∈ ℝp by two vectors β+, β− ∈ ℝp. After 

solving the above problem, our fitted model is of the form f̂(x) = β̂
0 + xT (β+̂ − β̂−) + xT Θ̂x/2. 

While we might informally think of β+ and β− as positive and negative parts of a vector β = 

β+ − β−, that is, that β± = max{±β, 0}, this is not actually the case since at a solution we can 

have both  and . Indeed, if we were to add the constraints  for j = 1, …, 

p to (5), then these would be positive and negative parts and so , giving us 

precisely problem (4). This observation establishes that (5) is a convex relaxation of (4).

The hierarchy constraints can be seen as an embedding into our method of David Cox’s 

“principle” that “large component main effects are more likely to lead to appreciable 

interactions than small components.” The constraint
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budgets the total amount of interactions involving variable Xj according to the relative 

importance of Xj as a main effect. One additional advantage of the convex relaxation is that 

the constraint is less restrictive. If the best fitting model would have ||Θj||1 large but |βj| only 

moderate, this can be accommodated by making  and  both large.

Remark 1—Another possibility for the hierarchy constraint that we have considered is 

; however, we have found that this can lead to an overabundance of 

interactions relative to main effects.

Remark 2—It is desirable to include in the loss function q an elastic net term, 

, to ensure uniqueness of the solution [Zou and Hastie (2005)]. 

We think of ε > 0 as a fixed tiny fraction of λ, such as ε = 10−8λ, rather than as an additional 

tuning parameter. Such a modification does not complicate the algorithm, but simplifies the 

study of the estimator. In all numerical examples and in the hierNet package, we use this 

elastic net modification.

Remark 3—We prove in Section 2 of the supplementary materials [Bien, Taylor and 

Tibshirani (2013)] that (5) may equivalently be written as

(6)

This reparameterization of the problem shows its similarities to the group lasso based 

methods. In place of the more standard penalty ||(Θj, βj)||q of (2), we use max{||Θj||1, |βj|}. In 

Section 3.1, we show that this unusual choice of penalty admits a particularly simple 

interpretation for the effect of imposing hierarchy.

In Section 1.2, we also introduced the notion of weak hierarchy. By simply removing the 

symmetry constraint on Θ, we get what we call the weak hierarchical lasso,

(7)

Even though at a solution to this problem, Θ̂ is not symmetric, we should b think of the 

interaction coefficient as (Θ̂jk + Θ̂
kj)/2 since this is what multiplies the interaction term xijxik 

when computing f̂(xi).

Remark 4—We can build further on the connection between (2) and (5) discussed in 

Remark 3. Our removal of the symmetry constraint in (7) is analogous to the technique of 

duplicating columns of the design matrix used in the overlap group lasso [Obozinski, Jacob 

and Vert (2011)].
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A favorable property that distinguishes our method from previous approaches discussed in 

Section 4 is the relative transparency of the role that the hierarchy constraint plays in our 

estimator. This aspect is developed in Section 3.1.

Although our primary focus in this paper is on the Gaussian setting of (1), our proposal 

extends straightforwardly to other situations, such as the logistic regression setting in which 

the response is binary. In this case, we simply have q(β0, β, Θ) be the appropriate negative 

log-likelihood, , where 

. In Section 3 of the supplementary materials [Bien, 

Taylor and Tibshirani (2013)], we show that solving this problem requires only a minor 

modification to our primary algorithm. It should also be noted that our estimator (and the 

algorithms developed to compute it) is designed for both the p < n and p ≥ n setting.

As a preliminary example, consider predicting whether a sample of olive oil comes from 

Southern Apulia based on measurements of the concentration of p = 8 fatty acids [Forina et 

al. (1983)]. The dataset consists of n = 572 samples, and we average our results over 100 

random equal-sized train-test splits. We compare three methods: (a) a standard lasso with 

main effects only (MEL), (b) the all-pairs lasso (APL), and (c) the strong hierarchical lasso 

(HL).

The top left panel of Figure 1 shows an interesting difference between HL and APL. We see 

that, on average, at a parameter sparsity level of five, the HL model uses four of the 

measured variables whereas APL uses six. Using the hierarchical model to classify a future 

olive oil, we only need to measure four rather than six of the fatty acids.

The top right panel of Figure 1 shows the predictive performance (versus the practical 

sparsity) of the three methods. It appears that HL enjoys the “best of both worlds,” matching 

the good performance of MEL for low practical sparsity levels (since it tends to pick out the 

main effects first) and the good performance of APL at high practical sparsity levels (since it 

can incorporate predictive interactions). Finally, the bottom panel of the figure provides a 

visual display of a sequence of HL’s solutions (by varying λ). Nonzero main effects are 

shown as filled nodes, and edges indicate nonzero interactions. Since all edges are incident 

to filled nodes, we see that strong hierarchy holds.

In the next section, we present several properties of our estimator that shed light on the 

effect of adding the convex hierarchy constraint to the lasso. Among these properties is an 

unbiased estimate of the degrees of freedom of our estimator. We view this degrees-of-

freedom result as valuable primarily for the sake of understanding the effect of hierarchy. 

While such an estimate could be used for parameter selection, we prefer cross validation to 

select λ since this is more directly tied to the goal of prediction.

3. Properties

3.1. Effect of the constraint

A key advantage of formulating an estimator as a solution to a convex problem is that it can 

be completely characterized by a set of optimality conditions, known as the Karush–Kuhn–
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Tucker (KKT) conditions. These conditions are useful for understanding the effect that the 

hierarchy constraint in (5) and (7) has on our solutions. In this section, we will study the 

simplest case, taking q(β0, β, Θ) to be the quadratic loss function with no elastic net penalty. 

We let

denote partial residuals (where * denotes elementwise multiplication, ŷ the vector of fitted 

values and xj the jth predictor), and we assume that ||xj||2 = 1. For linear regression, the KKT 

conditions are known as the normal equations and can be written as

The all-pairs lasso solution satisfies

(8)

where  denotes the soft-thresholding operator defined by (c, λ) = sign(c)(|c| − λ)+. 

Written this way, we see that the lasso is similar to linear regression, but all coefficients are 

shrunken toward 0, with some coefficients (those for which ) set to zero. It is 

instructive to examine the corresponding statements for the strong and weak hierarchical 

lasso methods.

Property 1—The coefficients of the strong and weak hierarchical lassos with λ > 0 and 

taking q(β0, β, Θ) to be the quadratic loss (with no elastic net penalty) satisfy:

• Strong:

• Weak:

for some α̂ ≥ 0, j = 1, …, p with α̂j = 0 when  (and likewise for α̃
j).
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Proof: See Section 1 of the supplementary materials [Bien, Taylor and Tibshirani (2013)].

The α̂
j, α̃j appearing in the above two properties are optimal dual variables corresponding to 

the jth hierarchy constraint for the strong and weak hierarchical lasso problems, 

respectively. When , we have α̂
j = 0 (or α̃

j = 0) by complementary slackness. 

Comparing these expressions to those of the all-pairs lasso gives insight into the effect of the 

constraint. Property 1 reveals that the overall form of the all-pairs lasso and hierarchical 

lasso methods is identical. The difference is that the hierarchy constraint leads to a reduction 

in the shrinkage of certain main effects and an increase in the shrinkage of certain 

interactions. In particular, we see that when the hierarchy constraints are loose at the 

solution, that is, , the weak hierarchical lasso’s optimality conditions become 

identical to the all-pairs lasso (since α̃
j = 0) for all coefficients involving xj. For the strong 

hierarchical lasso, when both the jth and kth constraints are loose, the optimality conditions 

match those of the all-pairs lasso for the coefficients of xj, xk and xj * xk. The methods differ 

when constraints are active, that is, when , which allows α̂
j (or α̃

j) to be 

nonzero. Intuitively, this case corresponds to the situation in which hierarchy would not 

have held “naturally” (i.e., without the constraint), and the corresponding dual variable plays 

the role of reducing Θ̂
j in ℓ1-norm and increasing  until the constraint is satisfied. 

The way in which the weak and strong hierarchical lasso methods perform this shrinkage is 

different, but both are identical to the all-pairs lasso when all constraints are loose.

3.2. Hierarchy guarantee

In Section 2, we showed that adding the constraint ||Θj||1 ≤ |βj| would guarantee that 

hierarchy holds. However, we have not yet shown that the same is true of the convex 

relaxation’s constraint, . In particular, while , we 

could still have . This would correspond to a model in which XjXk is used in the 

model, but Xj is not. Intuitively, we would expect that if , then  is analogous to 

getting an exact zero in linear regression (i.e., a zero probability event). In this section, we 

establish that this is in fact the case.

In particular, we study (5) and (7) where q(β0, β, Θ) includes an elastic net term. The 

importance of this modification is that it ensures uniqueness, simplifying the analysis. As 

noted in Remark 2, we think of ε as a small, fixed proportion of λ rather than as a separate 

tuning parameter.

Property 2—Suppose y is absolutely continuous with respect to the Lebesgue measure on 

ℝn. If (β̂+, β−̂, Θ̂) solves (5), where q(β0, β, Θ) is the quadratic loss with an ε > 0 ridge 

penalty, then strong hierarchy holds with probability 1, that is,
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Proof: See Appendix A.

To understand how dropping the symmetry constraint leads to the “or” statement required of 

weak hierarchy, note that XjXk is in the weak hierarchical lasso model if and only if Θĵk + 

Θ̂kj ≠ 0. This holds only if Θ̂
jk ≠ 0 or Θ̂kj ≠ 0.

Property 3—Suppose y is absolutely continuous with respect to the Lebesgue measure on 

ℝn. If (β̂+, β̂−, Θ̂) solves (7), where q(β0, β, Θ) is the quadratic loss with an ε > 0 ridge 

penalty, then weak hierarchy holds with probability 1, that is,

Proof: See Appendix A.

3.3. Degrees of freedom

In classical statistics, the degrees of freedom of a procedure refer to the dimension of the 

space over which its fitted values can vary. It is useful in that it provides a measure of how 

much “fitting” the procedure is doing. This notion can be generalized to adaptive procedures 

such as the lasso [Stein (1981), Efron (1986), Efron et al. (2004), Zou, Hastie and Tibshirani 

(2007)]. See (Ryan) Tibshirani and Taylor (2012) for a thorough discussion. If given data y 

∈ ℝn, a procedure h produces fitted values ŷ = h(y) ∈ ℝn, the degrees of freedom of the 

procedure h is defined to be

(9)

Property 4—Suppose y ~ N(μ, σ6In). An unbiased estimate of the degrees of freedom of 

the strong hierarchical lasso, with quadratic loss and no ridge penalty, is given by

where X̃ = (X:−X:Z/2: −Z/2) with Z containing the interactions, and P is a projection matrix 

which depends on the sign pattern of (β̂+, β̂−, Θ̂) and on the set of hierarchy constraints that 

are tight.

Proof: See Appendix B.

Figure 2 provides a numerical evaluation of how well  estimates dfλ. We fix X ∈ ℝn×p, β 

∈ ℝp and Θ ∈ ℝp×p, and we generate B = 10,000 Monte Carlo replicates y(1), …, y(B) ∈ ℝn. 

For each replicate, we fit the strong hierarchical lasso along a grid of λ values to get 
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( ) and . From these values, we compute Monte Carlo estimates of 

dfλ from the definition in (9) and of .

While  can be calculated from the data and is therefore useful as an unbiased way of 

calibrating the amount of fitting the strong hierarchical lasso is doing, this expression is 

difficult to interpret. However, it turns out that we can bound  by a quantity that does 

make more sense:

Property 5—Let  and  = 

{jk: Θĵk ≠ 0, j < k}. Then,

holds almost surely, where  Δ  = (  \ ) ∪ (  \ ).

Proof: See Appendix B.

By contrast, for the all-pairs lasso in the case that  and the design matrix is full 

rank, we have dfλ(APL) = E[|  | + | |] [Zou, Hastie and Tibshirani (2007)]. In other 

words, the strong hierarchical lasso does not “pay” (in terms of fitting) for those main 

effects, , that are forced into the model by the hierarchy constraint to accommodate a 

strong interaction. Notice that we do pay for a nonzero main effect if both  and  are 

nonzero. This makes sense since the constraint could be satisfied with just one of these 

variables nonzero, but in this case it is advantageous to the fit to make both nonzero. In 

Figure 2, we find that this bound is in expectation visually indistinguishable from .

4. Related work

There has been considerable interest in fitting interaction models in statistics and related 

fields. We focus here on an overview of methods that aim at forming predictive models that 

satisfy the hierarchical interactions restriction.

4.1. Multi-step procedures

Many statistics textbooks discuss a simple stepwise procedure in which one iteratively 

considers adding or removing the “best” variable (whether it be main effect or interaction); 

they add that one should only consider including an interaction if its main effects are in the 

model [e.g., see backward elimination in Agresti (2002), Section 6.1.3]. In doing so, they are 

enforcing the strong hierarchy restriction. Such procedures are ubiquitous [Nelder (1997), 

Peixoto (1987)] as are more recent versions [Friedman (1991), Bickel, Ritov and Tsybakov 

(2010), Park and Hastie (2008), Wu et al. (2010)]. Another approach is to perform model 

selection first without considering hierarchy and then to include any lower-order terms 
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necessary to satisfy hierarchy as a post-processing step [Nardi and Rinaldo (2012)]. Finally, 

Turlach (2004) and Yuan, Joseph and Lin (2007) consider modifying the LARS algorithm 

[Efron et al. (2004)] so that hierarchy is enforced.

4.2. Bayesian approaches

Another set of procedures for building hierarchical interaction models comes from a 

Bayesian viewpoint. Chipman (1996) adapts the stochastic search variable selection (SSVS) 

approach of George and McCulloch (1993) to produce strong or weak hierarchical 

interaction models. SSVS makes use of a hierarchical normal mixture model to perform 

variable selection in regression. Every variable has a latent binary variable indicating 

whether it is “active.” Conditional on this latent variable, each coefficient is a 0-mean 

normal with variance determined by the latent importance of the coefficient. The original 

SSVS paper chooses a prior in which the importance of each variable is an independent 

Bernoulli. Chipman (1996) introduces dependence into the prior so that Θjk is important 

only if βj and/or βk is important as well.

4.3. Optimization-based approaches

Choi, Li and Zhu (2010) formulate a nonconvex optimization problem to get sparse 

hierarchical interaction models. They write Θjk = Γjkβjβk, where β are the main effect 

coefficients and then apply ℓ1 penalties on β and Γ. Notice that Θjk ≠ 0 implies βj ≠ 0 and βk 

≠ 0. The nonconvexity arises in writing Θjk as the product of optimization variables.

Most similar to this paper’s proposal is a series of methods which formulate convex 

optimization problems to give sparse hierarchical interaction models. Yuan, Joseph and Zou 

(2009) modify the nonnegative garrote [Breiman (1995)] by adding linear inequality 

constraints to enforce hierarchy. In this sense, our method can be seen as the adaption of 

their approach to the lasso.

Finally, as discussed in Section 1.3, another set of convex methods makes use of the group 

lasso penalty [Yuan and Lin (2006)]. Zhao, Rocha and Yu (2009) [and, relatedly, Jenatton, 

Audibert and Bach (2011)] describe composite absolute penalties (CAP), a very broad class 

of penalties that can achieve group and hierarchical sparsity. To achieve “hierarchical 

selection,” they put forward the principle that a penalty of the form ||(ϕ1, ϕ2)||γ + |ϕ1|, with γ 

> 1, induces ϕ2 to be zero only when ϕ1 is zero as well. For hierarchical interaction models, 

they suggest a penalty of the form λ Σj<k[|Θjk| + ||(βj, βk, Θjk)||γj,k]. This framework has been 

developed in the structured sparsity literature [e.g., Bach et al. (2012)]. Radchenko and 

James (2010) introduce VANISH, which uses this nested-group principle to achieve 

hierarchical sparsity in the context of nonlinear interactions. Their penalty in the setting of 

(1) is Σj[λ1||(βj, Θj)||2 + λ2||Θj||1]. As noted in Remark 3, our proposal is closer to CAP and 

VANISH than it may first appear. Our problem can be rewritten to have a penalty of the 

form λ Σj[max{|βj|, ||Θj||1} + (1/2)||Θj||1]. In this sense, the penalty is in the spirit of CAP and 

related methods although it does not quite fall into the class of CAP (since ours involves a 

sum of norms of norms). It is most similar to VANISH in that it combines all of Θj into the 

term involving βj.
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5. Empirical study

5.1. Simulations

Our main interest in this section is to study the advantages and disadvantages of restricting 

one’s interaction models to those that honor hierarchy. Clearly, the effectiveness of such a 

strategy depends on the true model generating the data. We take n = 100 and p = 30 (435 

two-way interactions) and consider four scenarios:

I. Truth is hierarchical: Θjk ≠ 0 ⇒ βj ≠ 0, βk ≠ 0;

II. Truth is anti-hierarchical: Θjk ≠ 0 ⇒ βj = 0, βk = 0;

III. Truth only has interactions: βj = 0 for all j;

IV. Truth only has main effects: Θjk = 0 for all jk.

In cases (I), (II), (IV), we set 10 elements of β to be nonzero (with random sign), and, in 

cases (I), (II), (III), we set 20 elements of the submatrix of Θ = ΘT to be nonzero. The 

signal-to-noise ratio (SNR) for the main effects part of the signal is about 1.5 whereas the 

SNR for the interactions part is about 1.

We study the effectiveness of the hierarchy constraint in the context of both the lasso and 

forward stepwise regression. Forward stepwise regression refers to a greedy strategy for 

generating a sequence of linear regression models in which we start with an intercept-only 

model and then at each step add the variable that leads to the greatest decrease in the 

residual sum of squares. We choose forward stepwise as a basis of comparison since it has a 

simple modification that we think may be the hierarchical interactions approach most 

commonly used by statisticians. The modification is to restrict the set of interactions that 

could be added at a given step to only those between main effect variables currently in the 

model. A backward stepwise version of this approach is suggested in Peixoto (1987).

We compare six methods, corresponding to each cell of the following table:

Hierarchical All-pairs Main effects only

Lasso HL (our method) APL MEL

Fwd stepwise HF APF MEF

Each method has a single tuning parameter: for the lasso methods, the penalty parameter, λ, 

and for the forward stepwise methods, the number of variables, k. We fit each method along 

a grid of tuning parameter values and select the model with the smallest mean squared error, 

E||ŷ − μ||6. Note that such an operation is only possible in simulation since it requires 

knowing μ; however, doing so avoids the added variance of cross validation without being 

biased in favor of any particular method. The results presented are based on 100 simulations 

from the underlying model. Figure 3 shows the expected prediction error, σ6 + E[(ŷ − μ)6]. 

Panel (I) shows that when the truth is hierarchical, methods that assume hierarchy (HL, HF) 

do better than the rest. These methods have “concentrated” their power on the correct set of 

models and therefore receive the biggest payoff for being correct. APL does better than 
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MEL and MEF since it succeeds in incorporating some of the correct interactions (recall that 

interactions make up one quarter of the signal). In panel (II), we notice our first surprise—

that HL predicts well relative to the others even when the truth is not hierarchical! We 

would have expected APL (or APF) to be the clear winner in this situation since surely the 

hierarchy assumption can only be detrimental in this “anti-hierarchical” scenario. The reason 

APL does not outperform HL in this scenario is because APL has trouble identifying the 

main effects (it gets swamped by the 435 interaction variables). In light of Section 3.1, this 

is where the hierarchy constraint helps—main effects are penalized by less and interactions 

by more. Even though APL is better able to find the correct interactions than HL, as seen in 

panel (II) of Figure 4, APL does not predict as well as HL because it fails to find the main 

effects, which constitute three quarters of the signal. Relatedly, in a “hierarchical truth” 

scenario similar to (I) but with p > n (not presented here), we have in fact observed MEL 

doing better than APL (though not as well as HL) since APL is not able to detect 

interactions accurately enough to make up for its inferior ability to detect main effects. By 

contrast, HL does best in that scenario, aided by hierarchy to capture both the main effect 

and interaction components of the signal.

In panel (III), we see a situation where APL does dominate HL. Since there are no main 

effects in the signal, all that is relevant is a method’s ability to find the interactions. HL 

identifies fewer correct interactions than APL since any main effect “information” that HL is 

using is spurious. Finally in panel (IV), we see a situation where MEF, HF, MEL do better 

than the rest. Here again we find that the hierarchy methods beat the all-pairs methods since 

they favor main effects.

It is particularly illuminating to note the difference in performance between HL and HF. HF 

in scenarios (II), (III) and (IV) performs very similarly to the main effect only models. In 

(II) and (III), HL does much better than HF both in terms of prediction error and in ability to 

correctly identify interactions. HL appears to be far less sensitive to violations of hierarchy 

than HF. This difference is attributable to the joint nature in which HL acts: the decision to 

include a main effect is made at the same time as decisions about interactions. This allows a 

strong interaction to “pull” itself into the model. By contrast, HF selects main effects with 

no regard to the information contained in the interactions.

5.2. Data examples

Rhee et al. (2006) study six nucleoside reverse tran-scriptase inhibitors (NRTIs) that are 

used to treat HIV-1. The target of these drugs can become resistant through mutation, and 

Rhee et al. (2006) compare a collection of models for predicting these drug’s (log) 

susceptibility—a measure of drug resistance—based on the location of mutations. In the six 

cases, there are between p = 211 and p = 218 sites with mutations occurring in the n = 784 to 

n = 1073 samples. While they focus on main effect only models, we consider here the all-

pairs lasso (APL) and weak hierarchical lasso (HL) in addition to the standard main effects 

lasso (MEL). We train on half of the samples and test on the remaining samples. To reduce 

the dependence of the results on the particular random training-test split, we repeat this 

process twenty times and average the results. Figure 5 shows the average test RMSE versus 

the average practical sparsity for each of the six drugs. In all cases but ABC, we find that 
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HL achieves a better test error at most levels of practical sparsity than APL. That said, if the 

number of mutations one has to measure is not of concern (so that we can choose for each 

method the minimum RMSE model), then no method dominates in all the situations. It is 

worth conceding—since this is a paper on interactions—that in several of the cases a pure 

main effects model appears to be the best option.

6. Algorithmics

Some of the fastest lasso solvers rely on coordinate descent, which amounts to iteratively 

applying (8) until convergence [Friedman, Hastie and Tibshirani (2010)]. Tseng (2001) 

proves that blockwise coordinate descent converges to the global minimum for a convex 

problem specifically when the nondifferentiable part of the problem is blockwise separable. 

In the case of the strong hierarchical lasso, the hierarchy constraints combined with the 

symmetry constraint couple all the parameters together, meaning that coordinate descent is 

prone to getting stuck at sub-optimal points. To see this, note that Θjk = Θkj appears in two 

constraints  and . By contrast, the constraints in the weak 

hierarchical lasso problem are blockwise separable so that blockwise coordinate descent on 

blocks of the form (Θj, ) for j = 1, …, p does work. We begin by discussing our 

approach to solving the weak hierarchical lasso problem. In Section 6.2 we discuss how we 

can solve a sequence of weak hierarchical lasso problems that converges to a solution of the 

strong hierarchical lasso.

6.1. Solving the weak hierarchical lasso

While blockwise coordinate descent would work for solving the weak hierarchical lasso 

problem, we instead describe a generalized gradient descent approach. Given a problem of 

the form

(10)

in which g is convex and differentiable with a Lipschitz gradient and h is convex, 

generalized gradient descent works by solving a sequence of problems of the form 1

where t is a suitably chosen step size [Beck and Teboulle (2009)]. These subproblems are 

easier to solve than (10) since they replace g by a spherical quadratic. Under the previously 

stated conditions, generalized gradient descent is guaranteed to get within O(1/k) of the 

optimal value after k steps; in fact, with a simple modification to the algorithm, this rate 

improves to O(1/k6) [Beck and Teboulle (2009)]. Looking back at (7), we take g to be the 

differentiable part, q(β0, β+ − β−, Θ) + λ1T (β+ + β−) and h to be the ℓ1 penalty on Θ and the 

set of constraints. The subproblem is of the form
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where (β̃+, β̃−, Θ̃) depends on the previous iteration’s solution and the data, X, Z and y. The 

exact form of (β̃+, β̃−, Θ̃) is given in Algorithm for solving (7), where q(β0, β, Θ) includes an 

elastic net penalty as described in Remark 2 of Section 2. The above problem decouples into 

p separate pieces involving (Θj, ) that could be solved in parallel:

(11)

Algorithm 1

WEAK–HIERNET: Generalized gradient descent to solve weak hierarchical lasso, (7), with 

elastic net penalty ε.

Inputs: X ∈ ℝn×p, Z ∈ ℝn×p(p−1), λ > 0. Initialize (β̂+(0), β̂−(0), Θ(̂0)).

For k = 1, 2, … until convergence:

Compute residual: r̂(k−1) ← y − X(β̂+(k−1) − β̂− (k−1)) − ZΘ̂(k−1)/2.

For j = 1, …, p:

(β̂ j
+(k ), β̂ j

-(k ), Θ̂ j
(k )) ← ONEROW(δβ̂ j

+(k -1) - tX j
T r̂ (k -1)),

δβ̂-(k -1) + tX j
T r̂ (k -1)),

δΘ̂ j
(k -1) - tZ ( j,·)

T r̂ (k -1)),

where ONEROW is given in Algorithm 3, δ = 1 − tε, and Z(j, ·) ∈ ℝn×(p−1) denotes the columns of Z involving Xj.

In Appendix C, we derive an algorithm, ONEROW, that solves (11) based on the 

observation that, in terms of an optimal dual variable α̂, a solution is simply Θ̂j = [Θ̃j, t(λ/2 

+ α̂)] and .

We solve (7) along a sequence of λ values, from large to small, using the solution from the 

previous λ as a warm start for the next. The WEAK-HIERNET algorithm gets within ε of 

the optimal value of (7) in O(p6 max{n, p}/ε) time.

6.2. Solving the strong hierarchical lasso

In Section 6.1, we noted that each step of generalized gradient descent conveniently 

decouples into p single-variable optimization problems. However, for the strong hierarchical 

lasso, (5), the symmetry constraint ties all variables together. We therefore make use of 

Alternating Direction Method of Multipliers (ADMM), which is a very widely applicable 
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framework that allows convex problems to be split apart into separate easier subproblems 

[Boyd et al. (2011)].

Given a convex problem of the form Minimizeϕf(ϕ) + g(ϕ), we rewrite it equivalently as 

Minimizeϕ, φf(ϕ) + g(φ) s.t. ϕ = φ, and then the ADMM algorithm repeats the following 

three steps until convergence:

1. ϕ̂ = argminϕ[f(ϕ) + (ρ/2)||ϕ − φ̂ + û/ρ||6].

2. φ̂ = argminφ[g(φ) + (ρ/2)||φ − ϕ̂ − û/ρ||6].

3. û ← û + ρ(ϕ̂ − φ̂).

Thus the ADMM algorithm separates the two difficult parts of the problem, f and g, into 

separate optimization problems. The dual variable û serves to pull these two problems 

together, resulting in an algorithm that is guaranteed to converge to a solution as long as ρ > 

0. In practice, the value of ρ affects the speed of convergence.

In our case, we use ADMM to separate the hierarchy constraints, involving (β+, β−, Θ) from 

the symmetry constraint, which will involve a symmetric version of Θ, which we call Ω:

(12)

The resulting ADMM algorithm is given in Algorithm 2, which is explained in greater detail 

in Section 4 of the supplementary materials [Bien, Taylor and Tibshirani (2013)]. 

Conceptually, the algorithm alternately updates two matrices, Θ and Ω. Throughout the 

algorithm, we update Θ by solving a version of problem (7), and we update Ω by 

symmetrizing a version of Θ. At convergence, Θ̂ = Ω̂, and thus Θ̂ is both symmetric and 

satisfies the hierarchy constraints.

Algorithm 2

STRONG-HIERNET: Solve (5) via ADMM.

Inputs: X ∈ ℝn×p, Z ∈ ℝn×p(p−1), λ > 0, ρ > 0.

Initialize (β̂+, β̂−, Θ̂), Ω̂, Û.

Repeat until convergence:

1
WEAK-HIERNET(X, Z, λ), but in the call to ONEROW replace the argument 

with . Also, initialize with (β̂+, β̂−, Θ̂).

2
.

3 Û ← Û + ρ(Θ̂ − Ω̂)
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7. Discussion

In this paper, we have proposed a modification to the lasso for fitting strong and weak 

hierarchical interaction models. These two approaches are closely tied, and our algorithms to 

solve the two exploit their similar structure. A key advantage of our framework is that it 

admits a simple characterization of the effect of imposing hierarchy. We compare our 

hierarchical methods to the lasso and to stepwise procedures to understand the implications 

of demanding hierarchy. We introduce a distinction between models that have a small 

number of parameters and those that require measuring only a small number of variables. 

The hierarchical interaction requirement favors models with the latter type of sparsity, a 

feature that is desirable when performing measurements is costly, time consuming, or 

otherwise inconvenient. The R package hierNet provides implementations of our strong and 

weak methods, both for Gaussian and logistic losses. This work has potential applications to 

genomewide association studies. In future work, we intend to extend this framework to 

contexts in which only certain interactions should be considered such as in gene-

environment interaction models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: PROOFS OF STRONG AND WEAK HIERARCHY

We begin by proving Lemma 1, which characterizes all solutions to (5) as a relatively 

simple function of y. The structure of our proof is based on (Ryan) Tibshirani and Taylor 

(2011, 2012).

A.1. Characterizing the solution

For ease of analysis, we write (5) equivalently in terms of Θ+ and Θ−. Also, for notational 

simplicity, we write ϕ = (β+, β−, Θ+, Θ−) and X̃ = (X; −X;Z/2; −Z/2). The strong hierarchical 

lasso problem is the following:

In introducing Θ±, we are not in fact changing the problem since at a solution Θ̂± = max{±Θ̂, 

0} (for λ2 > 0). To see this, note that given any feasible point with  and , we 

can produce a feasible point with strictly lower objective by reducing  all 

by equal amounts.

We will try to make this as close as possible in form and notation to (Ryan) Tibshirani and 

Taylor’s (2012) treatment of the generalized lasso problem. Our optimization problem is of 

the form

(13)

The Lagrangian of this problem is

where μ ≥ 0 and ν are dual variables. The KKT conditions for (ϕ̂(y), (μ̂(y), ν̂(y))) to be an 

optimal primal-dual pair are the following:
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Now, define the “boundary” and “active” sets as

These are not necessarily unique since (ϕ̂, (μ̂, ν̂)) may not be unique. In terms of the active 

set (ϕ̂), the KKT conditions become

Solving for ϕ̂, we get the following characterization of a strong hierarchical lasso solution:

Lemma 1

Suppose ϕ̂ is a solution to the strong hierarchical lasso problem (5) [taking q(β0, β, Θ) to be 

the quadratic loss] with (ϕ̂) = {i : [Dϕ̂]i > 0}. Then, ϕ̂ can be written in terms of (ϕ̂) and y 

as

where b ∈ null(X̃) ∩ null(L) ∩ null( ) satisfies

for all i ∈ (ϕ̂).

Proof—Defining  and P = Pnull(D̃) = , we solve for ϕ̂ in the same 

manner as is done in (Ryan) Tibshirani and Taylor (2012). Since D̃ϕ̂ = 0 is equivalent to Pϕ̂ 

= ϕ̂, we have PX̃T (y − X̃Pϕ̂) = Pw. We see that Pw ∈ col(PX ̃T) and thus Pw = (PX ̃T)

(PX̃T)+Pw. Thus, PX̃TX̃Pϕ̂ = PX̃T(y − (PX ̃T)+Pw) from which we get
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for b ∈ null(X̃P) and such that D̃b = 0 and Diϕ̂ > 0 for i ∈ (ϕ̂). To complete the result, we 

observe that the first two conditions reduce to b ∈ null(X̃) ∩ null(L) ∩ null( ).

We will use this characterization of a solution both to prove that the hierarchy property 

holds with probability one under weak assumptions and to derive an unbiased estimate of 

the degrees of freedom.

Before we do so, we write out  more explicitly and introduce a little 

notation that will be useful later. Every row of D corresponds to an inequality constraint, and 

we can describe these rows in terms of ten subsets,

(14)

The set (ϕ̂)c is made up of , (β̂+), (β−̂), (Θ̂+) and (Θ̂−). The matrix D̃ has 2p+2p6 

columns that can be partitioned as (D̃β+
 : D̃β−

 : D̃Θ +: D̃Θ−
) and a row for every constraint. 

The rows of this matrix are the following (where ej and 1p are row vectors):

We will refer to this in the proofs that follow.

A.2. Proof of strong hierarchy (Property 2)

Including the elastic net penalty, , is equivalent to 

replacing X̃ and y in (13) by
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Suppose we solve (13) with the above design matrix. By Lemma 1,

for some b ∈ null(X̃
ε) ∩ null(L) ∩ null( ) satisfying

for all i ∈ (ϕ̂). Let Sv :ℝ2p+2p2
 → ℝ|v| be the linear operator that selects the part of a vector 

corresponding to the variable v. Now, b ∈ null(X̃
ε) implies that Sβ+ (b) = Sβ− (b) = 0 and SΘ+ 

(b) = − SΘ− (b). We showed earlier that we cannot have  and . This means that 

for any jk, there must be an i ∉ (ϕ̂) for which Diϕ̂ = 0 corresponds to  or 

. Thus, b = 0 means that  or  for each jk. This implies 

that null(X̃
ε) ∩ null( ) = {0} and thus b = 0.

We show now that . In terms of our above notation, this is

(15)

where  is the vector with all zeros except for . Let P = , 

and consider the set

In light of (14), fixing  automatically specifies , (β̂±), (Θ̂±). The outer union is 

restricted to those subsets  of 2p +2p6 elements that would have (Θ+̂) ∩ (Θ̂−) = Ø and 

(β̂+) ∩ (β̂−) ⊆ . The event in (15) is contained in {yε ∈ } since it corresponds to the 

case in which  is (ϕ̂). We begin by showing that (ϕ̂) is in this restricted union with 

probability one. We have already argued that at a solution we must have  for all 

jk. Now,  and  together imply that  since otherwise we 

could lower the objective by reducing  and  without leaving the feasible set. Therefore, 

it would be sufficient to show that P(yε ∈ ) = 0. We do so by observing that {yε ∈ } is a 

finite union of zero probability sets.
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We begin by establishing that . To do so, we write P = UUT 

for some UTU = I. Now, row(X̃P) ⊆ row(P) = col(U), so we can write U = (U1 : U2), where 

row(X̃P) = col(U1) and thus X̃PU2 = 0. Since PU2 = U2, it follows that X̃U2 = 0. Write 

 for i = 1, 2, and observe that 

 so that

Now, for each jk we must have jk ∈ (Θ+) ∪ (Θ−) since (Θ+) ∩ (Θ−) = Ø. Thus, for 

each jk, there is a R4 or R5 row in  and thus  (U1 : U2) = 0 implies that  or 

 for each jk and likewise  or . Therefore, . 

Now,

Now,  since  and ⪰ 0 and X̃U1 has full 

column rank. Thus, . This completes the first part 

of the proof.

Next, we show that  as long as . Now, 

since j ∈ ∩ (β+) ∩ (β−) ⊆ , the only row of D̃ that has  is the R1 row; but 

clearly . Thus,  and . It follows 

that
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Putting these two parts of the proof together establishes that . 

Thus, {yε ∈ } is a finite union of Lebesgue measure 0 sets. This shows that P(yε ∈ ) = 0 

as long as y is absolutely continuous with respect to the Lebesgue measure on ℝn.

A.3. Proof of weak hierarchy (Property 3)

An argument nearly identical to that of the previous section establishes that 

 with probability one. Thus, if  and , then both 

Θĵk = 0 and Θ̂
kj = 0. It follows then that (Θ̂jk + Θ̂kj)/2 = 0. This establishes weak hierarchy.

APPENDIX B: DEGREES OF FREEDOM

B.1. Proof of unbiased estimate (Property 4)

The fit in terms of the active set is given by

where P = . Of course,  = 0, and we can solve the KKT conditions to get the rest 

of the optimal dual variables in terms of the active set

where c ∈ null(D̃) satisfies D̃T+[w − X̃T (y − X̃ ϕ̂)] + c ≥ 0.

Note that ϕ̂ = ϕ̂(y) and thus (ϕ̂) and b depend on y even though we do not write this 

explicitly. We will continue writing ϕ̂ to mean specifically ϕ̂(y). For y′ in a neighborhood of 

y, we might guess that ϕ̂(y′) = f(y′) and (μ̂(y′), ν̂(y′)) = (g(y′),h(y′)), where

To verify this guess, we need to check that the pair (f(y′), (g(y′),h(y′))) satisfies the 

optimality conditions at y′,
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First of all, Lf(y′) = 0 holds since L(X̃ )+ = 0 and Lb = 0. Likewise,  f(y′) = 0. 

Now f(y) > 0, so by continuity of f, we have f(y′) > 0 for all y′ in a small enough 

neighborhood, U1, of y. This establishes that (f(y′)) = (ϕ)̂. Now  = 0, so 

complementary slackness holds. To see that the first optimality condition holds, we can 

simply plug (g(y′),h(y′)) into the left-hand side. All that remains is to show that  ≥ 0. If 

we knew that  > 0, then by continuity of g we could argue that over a small enough 

neighborhood, U2,  > 0. However, it could be the case that μ̂
i = 0 for some i ∉ (ϕ̂), that 

is, i ∈ (ϕ̂) \ (ϕ̂). Nonetheless, one can show that there is a set  of measure 0 for which y 

∉  implies that (ϕ̂(y)) = (ϕ̂(y′)) and (ϕ̂(y)) = (ϕ̂(y′)) for all y′ in a neighborhood of y. 

Lemma 9 of (Ryan) Tibshirani and Taylor (2012) proves this result for a nearly identical 

situation.

The fit X̃ϕ̂(y) is a piecewise affine function of y. Using Stein’s formula for the degrees of 

freedom [as described in Ryan, Tibshirani and Taylor (2012)], we get that

where P = .

B.2. Proof of bound on estimate (Property 5)

We bound this by an estimate that is more interpretable: 

.

Clearly, R2–R7 are linearly independent rows. Thus, the rank of D̃ is at least | (β+)| + | 

(β−)| + | (Θ+)| + | (Θ−)| + 2p. Now, an R1 row is linearly independent of R2–R8 precisely 

when j ∈  has j ∈ (β+)Δ (β−). To see this, note that if j ∈ (β+) \ (β−), then R1 is 

certainly linearly independent of R2–R8 and likewise for j ∈ (β−) \ (β+); however if j ∈ 

(β+) ∩ (β−), then jk ∈ (Θ+) ∩ (Θ−) for all k ∈ {1, …, p} \ {j}, and therefore this row 

of R1 lies in the span of R3–R7. Thus, this means there are |  \ ( (β+)Δ (β−))| additional 

linearly independent rows. Finally, we consider R8. Clearly, R8 lies in the span of R4–R5 

for jk ∈ (Θ+) ∩ (Θ−) since jk ∈ (Θ+) =⇒ kj ∈ (Θ+) at a solution. But if jk ∈ (Θ+) ∪ 

(Θ−), then it is linearly independent of R1–R8. Therefore, R8 adds | (Θ+)|/2 + | (Θ−)|/2 

to the rank where we have used that (Θ+) ∩ (Θ−) = Ø at a solution (since λ6 > 0) and 

recalling that j < k for the rows of R8. In summary, we have shown that the row-rank is
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Recalling that there are 2p +2p6 columns, we get that

APPENDIX C: SOLVING THE PROX FUNCTION

The Lagrangian of (11) is given by

where α is the dual variable corresponding to the hierarchy constraints and γ± are the dual 

variables corresponding to the nonnegativity constraints. For notational convenience, we 

have written θ for Θj, and we have dropped the subscripts on β±. The KKT conditions are

where uj is a subgradient of the absolute value function evaluated at θĵ. The three conditions 

involving γ± implies that β̂± = [β̃± + tα̂]+. The stationarity condition involving θ̂ implies that 

θ̂ = S(θ̃, t(λ/2+ α̂)). Now, define f(α) = ||S(θ̃, t(λ/2 + α))||1 − [β̃+ + tα]+ − [β̃− + tα]+. The 

remaining KKT conditions involve α̂ alone: α̂f(α̂) = 0, f(α̂) ≤ 0, α̂ ≥ 0. Observing that f is 

nonincreasing in α and piecewise linear suggests finding α̂ as done in Algorithm 3.

Algorithm 3

ONEROW: Solve (11) via dual.

Inputs: , Θj̃ ∈ ℝp−1, λ ≥ 0.

1
Find α̂. Define .

a. If f(0) ≤ 0, take α̂ = 0 and go to step 2.

b.
Form knot the set , and let  =  ∩ [0, ∞).

c. Evaluate f(p) for p ∈ .

d. If f(p) = 0 for some p ∈ , take α̂ = p and go to step 2.

e. Find adjacent knots, p1, p2 ∈ , such that f(p1) > 0 > f(p2). Take
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α̂ = - f (p1) f (p2) - f (p1) / (p2 - p1).

2
Return Θĵ = [Θ̃

j, t(λ/2+ α̂)] and .

Bien et al. Page 29

Ann Stat. Author manuscript; available in PMC 2015 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Olive oil data: (Top left) Parameter sparsity is the number of nonzero coefficients while 

practical sparsity is the number of measured variables in the model. Results from all 100 

random train-test splits are shown as points; lines show the average performance over all 

100 runs. (Top right) Misclassification error on test set versus practical sparsity. (Bottom) 

Wheel plots showing the sparsity pattern at 6 values of λ for the strong hierarchical lasso. 

Filled nodes correspond to nonzero main effects, and edges correspond to nonzero 

interactions.
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Fig. 2. 

Numerical evaluation of how well  estimates dfλ. Monte Carlo estimates of  (y-

axis) versus Monte Carlo estimates of dfλ (x-axis) for a sequence of λ values (circular) are 

shown. One-standard-error bars are drawn and are hardly visible. Our bound on the unbiased 

estimate is plotted with diamonds.
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Fig. 3. 
Prediction error: Dashed line shows Bayes error (i.e., σ2), and the base rate refers to the 

prediction error of ȳtrain. Green, red and blue colors indicate hierarchy, all-pairs, and main 

effect only, respectively; solid and striped indicate lasso and forward stepwise, respectively.
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Fig. 4. 
Plots show the ability of various methods to correctly recover the nonzero interactions. This 

is the sensitivity (i.e., proportion of Θjk ≠ 0 for which Θ●jk ≠ 0) and specificity (i.e., 

proportion of Θjk ≠ 0 for which Θ●jk ≠ 0) corresponding to the lowest prediction error 

model of each method.
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Fig. 5. 
HIV drug data: Test-set RMSE versus practical sparsity (i.e., number of measured variables 

required for prediction) for six different drugs. For each method, the data from all 20 runs 

are displayed in faint colors; the thick lines are averages over these runs.
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