Algorithm 1.
Inputs: X ∈ ℝn×p, Z ∈ ℝn×p(p−1), λ > 0. Initialize (β̂+(0), β̂−(0), Θ̂(0)). | |
For k = 1, 2, … until convergence: | |
Compute residual: r̂(k−1) ← y − X(β̂+(k−1) − β̂− (k−1)) − ZΘ̂(k−1)/2. | |
For j = 1, …, p:
| |
where ONEROW is given in Algorithm 3, δ = 1 − tε, and Z(j, ·) ∈ ℝn×(p−1) denotes the columns of Z involving Xj. |