Skip to main content
. Author manuscript; available in PMC: 2015 Aug 6.
Published in final edited form as: Ann Stat. 2013 Jun;41(3):1111–1141. doi: 10.1214/13-AOS1096

Algorithm 1.

WEAK–HIERNET: Generalized gradient descent to solve weak hierarchical lasso, (7), with elastic net penalty ε.

Inputs: X ∈ ℝn×p, Z ∈ ℝn×p(p−1), λ > 0. Initialize (β̂+(0), β̂−(0), Θ̂(0)).
For k = 1, 2, … until convergence:
Compute residual: (k−1)yX(β̂+(k−1)β̂− (k−1)) − ZΘ̂(k−1)/2.
For j = 1, …, p:
(β^j+(k),β^j-(k),Θ^j(k))ONEROW(δβ^j+(k-1)-tXjTr^(k-1)),δβ^-(k-1)+tXjTr^(k-1)),δΘ^j(k-1)-tZ(j,·)Tr^(k-1)),
where ONEROW is given in Algorithm 3, δ = 1 − , and Z(j, ·) ∈ ℝn×(p−1) denotes the columns of Z involving Xj.