Skip to main content
. Author manuscript; available in PMC: 2015 Aug 6.
Published in final edited form as: Ann Stat. 2013 Jun;41(3):1111–1141. doi: 10.1214/13-AOS1096

Algorithm 3.

ONEROW: Solve (11) via dual.

Inputs: βj+,βj-, Θ̃j ∈ ℝp−1, λ ≥ 0.
  1. Find α̂. Define f(α)=S(Θj,t(λ/2+α))1-[βj++tα]+-[βj-+tα]+.

    1. If f(0) ≤ 0, take α̂ = 0 and go to step 2.

    2. Form knot the set P={Θjk/t-λ/2}k=1p{-β±/t}, and let Inline graphic = Inline graphic ∩ [0, ∞).

    3. Evaluate f(p) for pInline graphic.

    4. If f(p) = 0 for some pInline graphic, take α̂ = p and go to step 2.

    5. Find adjacent knots, p1, p2Inline graphic, such that f(p1) > 0 > f(p2). Take
      α^=-f(p1)[f(p2)-f(p1)]/(p2-p1).
  2. Return Θ̂j = Inline graphic[Θ̃j, t(λ/2+ α̂)] and β^j±=[βj±+tα^]+.