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Vaccines have revolutionized modern public health. The effectiveness of some

vaccines is limited by the variation in response observed between individuals

and across populations. There is compelling evidence that a significant pro-

portion of this variability can be attributed to human genetic variation,

especially for those vaccines administered in early life. Identifying and under-

standing the determinants of this variation could have a far-reaching influence

upon future methods of vaccine design and deployment. In this review, we

summarize the genetic studies that have been undertaken attempting to ident-

ify the genetic determinants of response heterogeneity for the vaccines against

hepatitis B, measles and rubella. We offer a critical appraisal of these studies

and make a series of suggestions about how modern genetic techniques,

including genome-wide association studies, could be used to characterize

the genetic architecture of vaccine response heterogeneity. We conclude by

suggesting how the findings from such studies could be translated to improve

vaccine effectiveness and target vaccination in a more cost-effective manner.

1. Host genetics contributes to variability in response
to all vaccines

Vaccination has been one of the most successful public health interventions in

modern history and continues to save millions of lives every year [1,2]. The aim

of any vaccination strategy is to achieve universal protection either directly or

indirectly against any vaccine-targeted pathogen in all susceptible individuals

in the population [3]. There is, however, a marked variation in how individuals

respond and maintain immunity to every existing vaccine that can in turn

contribute directly to the risk of primary vaccine failure [4].

The theme of this issue aims to explore the factors contributing to biological

variation in vaccine responses and how identifying these factors may contribute

to improvements in vaccination strategies. This observed variation in vaccine

response is a complex trait [5] resulting from a combination of environmental

and genetic factors. Large epidemiological studies and clinical trials have ident-

ified a range of environmental factors which are contributors to this variation

including: age [6], sex [7], ethnicity [8], size (body-mass index) [9] and health,

including smoking status [10], of individuals as well as the dose [11], route of

administration and quality of storage of the vaccine [12]. Twin studies have pro-

posed that genetic variation contributes as much as 70% to the total observed

variability for the hepatitis B [9,13] and measles vaccines [14], which are also

the vaccines with comparatively high rates of primary failure. It is now becoming

increasingly possible to characterize the genetic variants contributing to complex

traits in the new era of ‘-omics’ technologies. Characterizing and understanding

the genetic determinants of vaccine response heterogeneity is, therefore, theoreti-

cally possible and could offer a cost-effective and feasible method to significantly

reduce the incidence of vaccine failure [9,15].

In this review, we discuss the principles and practicalities of using these geno-

mic technologies to identify the genetic factors contributing to vaccine response
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Table 1. Terms used in defining response to vaccines [16,17].

term definition

vaccine efficacy the reduction of incidence of vaccine-targeted disease in a vaccinated group compared with a non-vaccinated group

under ‘ideal’ conditions—usually measured using double blind randomized controlled trials

vaccine effectiveness the reduction of incidence of disease at the population level—usually determined following introduction of a vaccine

on a national scale with subsequent analysis of disease reporting alongside adverse incidence data

protection against infection successful stimulation of a long-lived immune response that interferes with colonization or replication of the targeted

pathogen in the vaccinated individual

protection against disease successful stimulation of a long-lived immune response that prevents the development of disease from the targeted

pathogen when colonization or replication of the pathogen may still occur

primary vaccine failure development of disease in a vaccinated individual due to failure to mount an appropriate immune response against

the vaccine-targeted pathogen

secondary vaccine failure development of disease in a vaccinated individual despite a documented appropriate immune response against the

vaccine-targeted pathogen

correlate of protection an immunological measurement that is responsible for and statistically interrelated with protection; can be against

either infection or disease

surrogate of protection an immunological measurement that substitutes for the true immunologic correlate of protection which may be

unknown or not easily measurable
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variability with specific reference to work that has already

been published focusing on hepatitis B (HBV), measles (MV)

and rubella (RV) vaccines. We conclude by discussing how

we anticipate the field to develop based on advances in geno-

mics and how findings from such studies may be used to

benefit vaccine development and deployment at a practical

level. Throughout this review, we use antibody response as

an immunological measure of vaccine response but it is impor-

tant to note that although this is one of the most commonly

used measures, there are alternatives, particularly measures

of cellular immunity, that may be more appropriate dependent

upon the particular vaccine in question.
2. The practical considerations of undertaking
genetic studies of vaccine response

(a) What is a ‘vaccine response’
In order to identify and understand the factors responsible

for the variability in vaccine response, it is first necessary to

define the vaccine response itself. Terminologies can be con-

fusing and so definitions of terms used in this review can be

found in table 1. Ultimately, a vaccine can only be defined as

‘effective’ if it is observed to reduce the prevalence of the

infection it is targeting in populations [18]. Given the costs

and risks associated with a large-scale introduction of a vac-

cine, especially if the prevalence of the targeted disease is

low, it is necessary to first undertake randomized clinical

trials of vaccines that can produce a measure of ‘efficacy’.

However, vaccine developers will try to predict whether or

not a vaccine will be efficacious based on immunogenicity

data before embarking on expensive clinical trials. This

requires a detailed appreciation of the biological mecha-

nisms involved in protection of an individual against the

vaccine-targeted pathogen and ultimately knowing which

immunological measurements constitute suitable correlates

or surrogates of protection. It is important to distinguish
between protection against disease and infection which

may have consequences in terms of chronic carriage and

infectivity. Formally correlating immune markers with pro-

tection against either infection or disease is challenging

although suitable correlates do exist for hepatitis B, measles

and rubella [16]. A serum antibody concentration of more

than 10 mIU ml21 measured against the hepatitis B surface

antigen correlates well with protection against both disease

and infection. An antibody titre of more than 120 mIU ml21

against measles measured by the microneutralization assay

correlates with protection against disease, whereas levels

more than 1000 mIU ml21 are required to protect against

infection. Similarly, a titre of more than 10 IU ml21 of

antibody against rubella determined using the microneutrali-

zation assay can be considered to be protective against

disease. It is important to note that studies investigating

measles will often report levels of total antibody measured

using an enzyme-linked immuno assay rather than measur-

ing the more functional antibody levels using the

microneutralization assay. Similar thresholds are defined for

other diseases caused by toxin producing bacteria (diphtheria

and tetanus) and encapsulated bacteria (Haemophilus influen-
zae, pneumococcal and meningococcal species), but

equivalent correlates of protection are not so well character-

ized for other important infections, including HIV, malaria

and tuberculosis. The absence of simple correlates partly

explains why the development of vaccines against these

pathogens is particularly challenging [19,20].

Tables 2 and 3 list the studies that have attempted to

identify the genetic factors responsible for vaccine response

heterogeneity. The majority of these studies have already

been reviewed comprehensively by various groups

[5,49–51], but new studies continue to emerge every year.

The lists are by no means exhaustive and some studies

have been specifically excluded, such as those including indi-

viduals with recognized immunodeficiency states (including

patients receiving dialysis for example [52]) and those studies

reporting haplotype associations which are inherently
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complex to interpret, albeit relevant [24,53,54]. All of the

studies listed in tables 2 and 3 tested for association between

genetic polymorphisms and antibody correlates of protection.

Most of the studies defined participants either as dichoto-

mous ‘responders’ (those likely to be protected against

disease in the case of HBV) and ‘non-responders’ using the

cut-offs defined above. Other studies, particularly those look-

ing at MV and RV, investigated the antibody response as a

continuous quantitative variable. Analysing vaccine

responses as a quantitative variable makes no assumptions

about defined cut-offs. The approach may also provide sig-

nificant benefits in terms of study design, because it allows

study investigators to include every individual with a

measured outcome rather than having to select a number of

defined ‘non-responders’ and it avoids any potential selection

bias that may result from the more familiar case–control

approach. Defining a trait as continuous may also provide

increased statistical power to find novel associations

[55–57], and there are a range of methodologies available

to analyse such traits in genetic studies that have proved to

be very successful in looking at other traits, including

height [58] and lipid levels [59].
(b) Defining vaccine failure
Defining individuals who have failed vaccination (table 1)

rather than depending upon immune correlates of protection

may be useful because vaccine failure has more clinical rel-

evance and provides the opportunity to consider the immune

system as a whole rather than focusing on one or two elements

of humoral or cellular immunity. However, the numbers of

individuals who experience vaccine failure are often small in

number, difficult to trace and may have other clinically undiag-

nosed causes for their immunodeficiency which are obviously

important to define prior to their inclusion in the study. One

HBV candidate gene study listed in table 2 attempted to look

at hepatitis B core antibody levels in vaccinated individuals

as a marker of failure of the vaccine to prevent hepatitis B infec-

tion, but final numbers were too small to make any definitive

conclusions [13]. A more recent study that is not highlighted

in table 3 suggested that variants in the measles receptor

CD46 and the pathogen nucleic acid sensing receptor TLR8

were associated with failure of MV [60]. The results from this

study should be interpreted with caution because the study par-

ticipants defined as vaccine failures did not always have a

laboratory confirmed diagnosis of measles. The selection of con-

trol individuals deemed ‘vaccine responders’ in such analyses is

also of fundamental importance. Any controls should have been

exposed to the pathogen of interest. This could be made more

reliable by using family or other household members as controls

or limiting analyses to diseases where near ubiquitous expo-

sure in the population is likely. One study that demonstrates

such careful control selection looked at Haemophilus influenzae
vaccine failures compared with adult population controls and

found that mutations in the MAL/TIRAP gene, which is critical

in pathogen sensing, and the anti-inflammatory IL-10 cytokine

gene were associated with substantially increased risks of

non-meningitis and epiglottitis disease, respectively [61].

These are, unfortunately, the only published examples of studies

that have, to the best of our knowledge, aimed to identify genetic

variants associated with vaccine failure, highlighting the need

for studies investigating these issues in the future.
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(c) Selecting the study design
As can be appreciated from the studies listed in tables 2

and 3, several study designs have been used to investigate

the contribution of host genetics to vaccine response, consist-

ent with efforts employed to dissect the contribution of

genetics to other complex traits. The approaches used can

be categorized into twin, family association, candidate gene

and genome-wide association (GWAS) studies. The practi-

calities, benefits and challenges associated with each of

these different study types have been extensively reviewed

elsewhere [50,62,63]. Twin studies have traditionally been

used to estimate the differential contribution of genetic and

environmental effects to biological complex traits, whereas

candidate gene and family association studies are used to

test for the association of plausible genes or loci with such

traits. Candidate gene studies are commonly plagued by a

failure to include sufficient numbers of cases and controls

which limits the statistical power of the study. They are also

susceptible to bias attributable to cryptic population stratifi-

cation and there is an inherent risk of false-positive

association especially in the absence of formal replication

using other cohorts analysed independently by, preferably,

separate investigators.

GWAS has recently become a hugely popular and

successful study design dependent upon the nascent under-

standing of common genetic variation within the human

genome and the ability to ‘tag’ this variation by typing a

large number (commonly 500 000 to 2 million) of single-

nucleotide polymorphisms (SNPs) across every chromosome

using high-throughput technology. This concept replies upon

a comprehensive understanding of the extent of linkage dis-

equilibrium between the typed SNPs, and other variation

which is starkly population-dependent [64]. GWAS are

expensive to undertake because of the requirement for large

numbers (thousands if not tens of thousands) of individuals

and they do come with a risk of missed true associations

owing to their stringent thresholds for significance (currently

statistical test p-values of less than 5 � 1028). These chal-

lenges can be overcome with careful study design, and the

approach provides significant benefits over other methods

such as candidate gene studies in terms of providing a

reliable and accurate picture of population structure in the

studied cohorts. The comprehensive genotyping employed

in GWAS also enables the fine mapping of associated variants

to be undertaken using advanced statistical approaches such

as imputation, which can help increase our understanding of

associations in a biological context [65].

The majority of the studies listed in tables 2 and 3 follow

the candidate gene format with the exception of two GWAS

which have been published for HBV and the one for RV.

This apparent bias towards candidate studies is not entirely

surprising given the relatively recent introduction of GWAS

and the popularity of candidate gene studies owing to the

costs and availability of the technology over the past 20

years. Some of the published candidate gene studies included

large numbers of individuals, attempted replication and cor-

rected for multiple testing [9,13], but the vast majority of

published studies were not so carefully designed. Likewise,

the majority of the associations reported in the candidate

studies have not yet been replicated in the GWAS. This

absence of replication may either suggest that the original

candidate gene findings were false-positives, or that the
stringent threshold required for the GWAS resulted in the

associations being missed. These inconsistencies are not

unique to vaccine response as a phenotype and can, indeed,

be observed for any complex trait which has undergone

genetic analysis over the past few decades.
(d) Origins of study heterogeneity
When comparing the findings of the studies listed in tables 2

and 3 and attempting to rectify the inconsistencies such as

those highlighted between the candidate gene and GWAS

findings above, it is important to identify any potential

sources of differences between the studies. Nearly all of the

studies listed in table 2 were superimposed upon clinical

trials testing immunogenicity or efficacy of HBV or popu-

lation studies investigating baseline seropositivity and

response to booster vaccination. It can be appreciated that

the time points between receipt of the vaccine and measure-

ment of response varied quite substantially between the

studies. This was also a particular problem in the studies

listed in table 3 where the median time between the final

vaccine and immunological measurement could vary

substantially (often more than 5 years). Choosing the appro-

priate time to measure the vaccine response requires an

appreciation of the kinetics of antibody generation. Antibody

concentrations rise in the days to months following vaccine

administration (with the rate of rise dependent upon a

number of key non-genetic factors, including the number of

prior doses of vaccine received and age of the individual)

with a subsequent peak and decay of antibody levels which

are again dependent on a variety of factors. Unfortunately,

the decay is not always predictably linear, and indeed, the

different elements of the response are dependent on different

cellular mechanisms [6]. It would therefore be preferable to

measure the response at the peak, but because the time of

peak response can vary substantially, it is often necessary

to try to model these responses mathematically [13,66].

There are other factors that are important when comparing

existing or planning future studies. Careful note should be

made of any other drugs delivered at the same time as the

studied vaccines, because some vaccines are well recognized

to interact with the immunogenicity of others [67]. Further-

more, population differences may be important to consider.

The proportion of non-responders following the routine

number of doses of HBV, for example, is noted to vary signifi-

cantly between different ethnic groups [8,68,69]. This may

relate to differing environmental surroundings or their differ-

ing genetic background, most notably at key polymorphic loci

such as the human leucocyte antigen (HLA) region. Fortu-

nately, there are now several ways to account for this

diversity in GWAS approaches, including random effect

mixed models [70,71] or inclusion of summaries of the genetic

variance between individuals using principal component

analysis [72]. Differences in sex composition between studies

may also play an important role in differential study findings,

because sex is recognized to be an important predictor of

immune response to some vaccines [7]. Sex is of course depen-

dent upon genetics, and many immunological genes are

present on the X chromosome, so accounting for gender differ-

ences may help identify important contributors to vaccine

response heterogeneity.
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(e) The genetic determinants of vaccine response
heterogeneity identified to date

Despite the multiple limitations highlighted for the studies in

tables 1 and 2, there are some clear reproducible associations.

Various HLA-DRB1 alleles are differentially associated with

both increased and reduced or non-response to the HBV.

DRB1*01, 13 and 15 are relatively consistently associated

with an increased response, whereas 03 and 07 are consist-

ently associated with lower antibody responses. These

differences have been explored experimentally in detail. Mul-

tiple groups have found that antigen-presenting cells (APCs)

from peripheral blood mononuclear cells of non-responders

are able to stimulate DR-matched helper T cells from respon-

ders as effectively as APCs from high responding individuals

making a deficit in antigen processing and presentation less

likely [25,73–75]. Conversely, these studies found that the

T-cells from non-responders could not be activated by

either their non-responding APC counterpart or DR-matched

APCs from responders. The currently favoured theory is,

therefore, that there is a ‘hole’ in the T-cell repertoire associ-

ated with these particular HLA alleles resulting in reduced

antibody levels. The mechanism for increased responses

observed with some HLA alleles is proposed to be a conse-

quence of improved antigenic epitope binding [54]. These

theories are yet to be proven correct.

Other interesting consistent observations from the HBV

studies are the findings of associations between vaccine

response variation and HLA-DP alleles and complement

factor C4A gene which resides in the so-called class III

region of the HLA complex. These associations appear to

be independent of the other class II associations in the HLA

region. Identifying the precise variant associated with the

HBV response variation in the HLA locus is inherently diffi-

cult because of the complex and often long-range linkage

disequilibrium that exists across the region. The HLA-DP

findings are particularly interesting given the concurrent

associations of SNPs in the gene with viral clearance in

chronic hepatitis B infection in Asian populations [76], and

the replicated C4A findings may go some way towards

explaining the recently reported class III tagging SNP found

associated with HBV response in the largest GWAS performed

to date [30]. This complement association may have signifi-

cant biological relevance given the reported importance of

complement to enhancing B-cell activation, survival and

class-switching in the presence of T-cell-dependent antigens

such as hepatitis B surface antigen [28,77].

MV and RV are often compared concurrently because they

are commonly administered simultaneously and are both of

the same class of live, attenuated virus vaccine. The majority

of the studies that have been published looking at these vac-

cines have been undertaken by a single group and have

been reviewed extensively elsewhere [78,79], but there has

been a series of more recent studies looking at these vaccines

which have resulted in some interesting new observations. A

large discovery GWAS has been completed looking at RV

demonstrating again that the HLA-DPB1 locus is likely to

be associated with rubella neutralization antibody response

[38]. The top SNP ( p ¼ 8.62 � 1028) did not surpass the clas-

sical level of GWAS significance and will, therefore, require

independent replication especially because another associ-

ation with HLA-DPB1*04:01 allele reported by the same

group in an independently recruited cohort was in the
opposite direction [36]. This latter candidate gene study also

proposed an association between the class I HLA-B*27:05

allele and rubella antibody levels, although no independent

class I associations were observed in the GWAS. No GWAS

studies have yet been published involving MV, but a series

of candidate gene studies provide some evidence of HLA

associations. Most recently, using two cohorts consisting of

over 300 adolescents and adults each, an association was

observed between the class II DQA1*0201 allele and increased

antibody response to the attenuated vaccine [46]. Other class I

(B*3503) and class II (DRB1*0701) associations were reported

although these did not pass the conservative significance

threshold ( p ¼ 0.05) in either cohort. The class II associations

for both MV and RV are highly relevant given the discussion

relating to HBV response above, and it is tempting to specu-

late that similar biological mechanisms may be responsible

for the observed variation, although this has yet to be formally

tested. The role of the relatively less studied DP alleles rather

than DR is certainly interesting. The class I associations are

novel, but because the measles and rubella vaccines are live

attenuated viruses, class I HLA alleles are very likely to be rel-

evant in mounting an effective CD8T cell immune response

and the associations merit further investigation.

HLA is estimated to contribute only to a minor proportion

of the variation in HBV, MV and RV post-vaccination antibody

titres with variants in other non-HLA genes estimated to con-

tribute to the majority of the observed variation [37,80].

Notably, and consistent with the HBV GWAS, the RV GWAS

did not identify any such variants. Although there have been

various plausible extra-HLA variants that have been proposed

to be associated with variation in response to all of the vaccines

discussed herein, none of these findings have been inde-

pendently replicated and should therefore be considered

with caution.

The associations reported above for HBV, MV and RV are

both interesting and potentially informative. However, when

considered altogether, the studies highlight the fact that there

are still substantial gaps in our knowledge and understand-

ing of vaccine response. It is therefore essential to perform

more studies to independently replicate existing putative

associations, exclude false-positive associations, and identify

variants that explain the remainder of the variation in vaccine

response and appreciate how other non-genetic factors inter-

relate with such observations. Large-scale GWAS offer an

attractive method to help dissect the variable contributions

of genetic and environmental factors but it will be vital to

learn from existing studies to maximize the chances of

making novel discoveries.
3. Making the most of genetic association
findings

The findings of large-scale GWAS looking at multiple vac-

cines will be available in the near future. These studies

should focus on multiple populations, using large numbers

of individuals, paying careful attention to the measured phe-

notype and analytical strategy employed aiming to maximize

the changes of both validating putative associations from

existing studies and uncovering novel associations. Combin-

ing the findings of such studies, including work from our

laboratories involving various initiatives such as the VaccGene
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consortium (the meta-analyses of vaccine response GWAS

measured in 10 000 infants from the developing world) and

the FP7 EUCLIDS study (http://www.euclids-project.eu),

should provide the power to identify a range of genetic var-

iants associated with variable response to several vaccines.

The ideal outcome from a combination of such studies with

other advances in transcriptomic [81], and cell-state and vari-

ation-dependent-specific gene expression [82,83] would be

the discovery of a series of genetic signals that provide an

insight into the molecular mechanisms driving immunologi-

cal response to vaccination. A comparison of these studies

with others including individuals with vaccine failure could

allow a direct comparison of the mechanisms underlying

immunogenicity and protection against disease. A deeper

understanding of the nature and implications of the genetic

architecture of vaccine response heterogeneity arguably

offers some of the greatest opportunities for translational

benefit of any of the complex diseases studied to date.

For example, if a gene regulating an innate immunity

pathway was discovered to be strongly associated with

level of response to a vaccine antigen, the addition of an adju-

vant known to enhance signalling through that specific

pathway might be expected to enhance immunogenicity

and thereby efficacy of the vaccine, overriding the effects of

any variants occurring in the gene or pathway in particu-

lar individuals [84,85]. Furthermore, despite the on-going

controversy associated with the molecular mechanisms

involved in the HLA associations observed with some vac-

cine responses, it is clear and intuitive that HLA is involved

at a key biological level. It is therefore important that individ-

uals who have experienced primary vaccine failure should be

tested to determine whether they also possess increased allele

frequencies of so-called risk HLA alleles or lower frequencies

of protective alleles. If such genetic differences are confirmed

it would become necessary to develop and trial methods that

may increase response in these individuals perhaps through

increased dosing, frequency of vaccine administration, use

of a stronger adjuvant or ultimately through immunogen

redesign, for example, in the case of HBV. Implementing

these changes on a national level may or may not be practi-

cal or economical, but it may certainly become ethically

compelling to target at-risk groups.

Finally, the future may bring the prospect of ‘personal-

ized vaccines’ [51]. The universal genotyping of new-borns

on a national scale may become a reality in the future in

an effort to predict disease risk and initiate preventative

healthcare strategies. Such a strategy could be particularly

relevant for vaccine delivery if it becomes possible to predict

the probability of vaccine effectiveness and, perhaps equally

importantly, reactogenicity [86,87]. This may be a cost-

effective way to risk-stratify individuals in the population

to enable targeted vaccination, rather than depending upon

the national mass administration programmes.

Novel adjuvantation methods or personalized vaccination

based on any genetic association findings may be useful strat-

egies in a number of settings where vaccine responses are

suboptimal resulting in an excess incidence of vaccine failures.

For example, the increase in incidence of pertussis in countries

that replaced the whole-cell pertussis vaccine with an acellular

formulation has been attributed, in part, to immunity waning

more rapidly following the latter vaccine [88]. Improved adju-

vantation may help prolong the duration of protective

immunity following acellular pertussis vaccine and may
consequentially help reduce worldwide outbreaks of pertussis.

Similarly, although MV generates a protective immune

response in over 90% of vaccinated individuals, failure to

elicit a protective immune response in 10% of vaccinated indi-

viduals may have contributed to the outbreaks of measles

observed in the USA in the 1990s [1]. Consequently, a two-

dose vaccination schedule has been introduced in many

developed countries that reportedly increases the proportion

of vaccinated individuals mounting a protective immune

response to 98% [89,90] while also boosting immunity to

measles in older children. If it does become possible to charac-

terize the genetic factors contributing to both primary

vaccination failure and immunogenicity, it may become cost-

effective to identify and offer a second dose of vaccine only

to those individuals who are identified, based on their gen-

etics, to be at high risk of failure and/or poor maintenance

of immunity to measles following a single dose of MV.
4. Future perspectives and conclusions
Our understanding of common genetic variation in humans

is now at a point where we are becoming intent on studying

other elements of variation including analysing rare (less

than 1% minor allele frequency in the population) variants

and epistatic modifications [91]. The field of rare variants is

a particularly exciting field because it is suspected that indi-

viduals at the extremes of vaccine response may harbour

large-effect low-frequency variants giving rise to the so-called

extreme phenotypes that may represent forms of ‘primary

immunodeficiencies’ when at the lower end of the response

spectrum [92]. Identifying these variants requires new strat-

egies to look at the human genome largely centred upon

exome or whole-genome sequencing. Although such technol-

ogies are at an early stage of development they are also

beginning to shed light on areas of the genome that have

been under natural selection pressure throughout our evol-

ution [93,94]. Techniques are now available that can begin

to integrate the findings of GWAS studies with these discov-

eries to help verify plausible associations [95] and, because

vaccine responses are signatures of how our immune

system has been shaped by pathogen-driven selection, these

studies may help shed light on this area which has long

fascinated scientists and the general public alike [96].

This review summarizes some of the discussions at a

meeting where it was made clear that the new ‘-omics’ era

may hold substantial promise in terms of understanding

the various elements contributing to biological variation in

response to vaccination. Human genetics undoubtedly plays

a major role in this variation but it is essential that any studies

investigating the contribution of genetics to vaccine response

are carefully planned and should account for known environ-

mental variables. The results of these studies should help us

to understand how we can either design better vaccines that

protect nearly 100% of those vaccinated and how we can

deploy vaccines in a more cost-effective way.
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