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Vaccines have revolutionized modern public health. The effectiveness of some
vaccines is limited by the variation in response observed between individuals
and across populations. There is compelling evidence that a significant pro-
portion of this variability can be attributed to human genetic variation,
especially for those vaccines administered in early life. Identifying and under-
standing the determinants of this variation could have a far-reaching influence
upon future methods of vaccine design and deployment. In this review, we
summarize the genetic studies that have been undertaken attempting to ident-
ify the genetic determinants of response heterogeneity for the vaccines against
hepatitis B, measles and rubella. We offer a critical appraisal of these studies
and make a series of suggestions about how modern genetic techniques,
including genome-wide association studies, could be used to characterize
the genetic architecture of vaccine response heterogeneity. We conclude by
suggesting how the findings from such studies could be translated to improve
vaccine effectiveness and target vaccination in a more cost-effective manner.

1. Host genetics contributes to variability in response
to all vaccines

Vaccination has been one of the most successful public health interventions in
modern history and continues to save millions of lives every year [1,2]. The aim
of any vaccination strategy is to achieve universal protection either directly or
indirectly against any vaccine-targeted pathogen in all susceptible individuals
in the population [3]. There is, however, a marked variation in how individuals
respond and maintain immunity to every existing vaccine that can in turn
contribute directly to the risk of primary vaccine failure [4].

The theme of this issue aims to explore the factors contributing to biological
variation in vaccine responses and how identifying these factors may contribute
to improvements in vaccination strategies. This observed variation in vaccine
response is a complex trait [5] resulting from a combination of environmental
and genetic factors. Large epidemiological studies and clinical trials have ident-
ified a range of environmental factors which are contributors to this variation
including: age [6], sex [7], ethnicity [8], size (body-mass index) [9] and health,
including smoking status [10], of individuals as well as the dose [11], route of
administration and quality of storage of the vaccine [12]. Twin studies have pro-
posed that genetic variation contributes as much as 70% to the total observed
variability for the hepatitis B [9,13] and measles vaccines [14], which are also
the vaccines with comparatively high rates of primary failure. It is now becoming
increasingly possible to characterize the genetic variants contributing to complex
traits in the new era of “-omics’ technologies. Characterizing and understanding
the genetic determinants of vaccine response heterogeneity is, therefore, theoreti-
cally possible and could offer a cost-effective and feasible method to significantly
reduce the incidence of vaccine failure [9,15].

In this review, we discuss the principles and practicalities of using these geno-
mic technologies to identify the genetic factors contributing to vaccine response
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Table 1. Terms used in defining response to vaccines [16,17].

term definition

vaccine efficacy

vaccine effectiveness

protection against infection

protection against disease

primary vaccine failure

the reduction of incidence of vaccine-targeted disease in a vaccinated group compared with a non-vaccinated group
under ‘ideal’ conditions—usually measured using double blind randomized controlled trials

the reduction of incidence of disease at the population level—usually determined following introduction of a vaccine
on a national scale with subsequent analysis of disease reporting alongside adverse incidence data

successful stimulation of a long-lived immune response that interferes with colonization or replication of the targeted
pathogen in the vaccinated individual

successful stimulation of a long-lived immune response that prevents the development of disease from the targeted
pathogen when colonization or replication of the pathogen may still occur

development of disease in a vaccinated individual due to failure to mount an appropriate immune response against

the vaccine-targeted pathogen
secondary vaccine failure
vaccine-targeted pathogen
correlate of protection
either infection or disease
surrogate of protection

unknown or not easily measurable

variability with specific reference to work that has already
been published focusing on hepatitis B (HBV), measles (MV)
and rubella (RV) vaccines. We conclude by discussing how
we anticipate the field to develop based on advances in geno-
mics and how findings from such studies may be used to
benefit vaccine development and deployment at a practical
level. Throughout this review, we use antibody response as
an immunological measure of vaccine response but it is impor-
tant to note that although this is one of the most commonly
used measures, there are alternatives, particularly measures
of cellular immunity, that may be more appropriate dependent
upon the particular vaccine in question.

2. The practical considerations of undertaking
genetic studies of vaccine response

(a) What is a ‘vaccine response’

In order to identify and understand the factors responsible
for the variability in vaccine response, it is first necessary to
define the vaccine response itself. Terminologies can be con-
fusing and so definitions of terms used in this review can be
found in table 1. Ultimately, a vaccine can only be defined as
‘effective’ if it is observed to reduce the prevalence of the
infection it is targeting in populations [18]. Given the costs
and risks associated with a large-scale introduction of a vac-
cine, especially if the prevalence of the targeted disease is
low, it is necessary to first undertake randomized clinical
trials of vaccines that can produce a measure of ‘efficacy’.
However, vaccine developers will try to predict whether or
not a vaccine will be efficacious based on immunogenicity
data before embarking on expensive clinical trials. This
requires a detailed appreciation of the biological mecha-
nisms involved in protection of an individual against the
vaccine-targeted pathogen and ultimately knowing which
immunological measurements constitute suitable correlates
or surrogates of protection. It is important to distinguish

development of disease in a vaccinated individual despite a documented appropriate immune response against the

an immunological measurement that is responsible for and statistically interrelated with protection; can be against

an immunological measurement that substitutes for the true immunologic correlate of protection which may be

between protection against disease and infection which
may have consequences in terms of chronic carriage and
infectivity. Formally correlating immune markers with pro-
tection against either infection or disease is challenging
although suitable correlates do exist for hepatitis B, measles
and rubella [16]. A serum antibody concentration of more
than 10 mIU ml~! measured against the hepatitis B surface
antigen correlates well with protection against both disease
and infection. An antibody titre of more than 120 mIU ml "
against measles measured by the microneutralization assay
correlates with protection against disease, whereas levels
more than 1000 mIUml ' are required to protect against
infection. Similarly, a titre of more than 10IU ml™! of
antibody against rubella determined using the microneutrali-
zation assay can be considered to be protective against
disease. It is important to note that studies investigating
measles will often report levels of total antibody measured
using an enzyme-linked immuno assay rather than measur-
ing the more functional antibody levels using the
microneutralization assay. Similar thresholds are defined for
other diseases caused by toxin producing bacteria (diphtheria
and tetanus) and encapsulated bacteria (Haemophilus influen-
zae, pneumococcal and meningococcal species), but
equivalent correlates of protection are not so well character-
ized for other important infections, including HIV, malaria
and tuberculosis. The absence of simple correlates partly
explains why the development of vaccines against these
pathogens is particularly challenging [19,20].

Tables 2 and 3 list the studies that have attempted to
identify the genetic factors responsible for vaccine response
heterogeneity. The majority of these studies have already
been reviewed groups
[5,49-51], but new studies continue to emerge every year.
The lists are by no means exhaustive and some studies

comprehensively by various

have been specifically excluded, such as those including indi-
viduals with recognized immunodeficiency states (including
patients receiving dialysis for example [52]) and those studies
reporting haplotype associations which are inherently
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Table 2. (Continued.)

top associations

=
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method used

phenotype

vaccination schedule

(321

SNPs in DRB1 (p = 2.63 x 10~ ") and BINL2

113 high responders (>>1000 miU ml~" after first

dichotomous responder case genome-wide association

HBsAg at 0, 1 and 6

(p =742 x 1077) were significantly associated

course) and 78 non-responders (<10 miU ml ™"

study using logistic

versus non-responder

months and further
7, 8 and 13 month

with risk of non-response

after six doses) in discovery GWAS with 1122 high

responders and 374 primary non-responders

regression

comparison 1 month after

direct HLA typing also demonstrated an association

final dose

boosters if necessary

between DRB1*0701 (p = 1.5 x 10~°) and non-

(<10 mlU ml~" after three doses) as replication

response with strong linkage disequilibrium between

top SNP and DRB1*0701

from Chinese cohort of 3985 with further replication

of 214 high responders and 46 primary non-

responders from a separate cohort of 599

complex to interpret, albeit relevant [24,53,54]. All of the n

studies listed in tables 2 and 3 tested for association between
genetic polymorphisms and antibody correlates of protection.
Most of the studies defined participants either as dichoto-
mous ‘responders’ (those likely to be protected against
disease in the case of HBV) and ‘non-responders’ using the
cut-offs defined above. Other studies, particularly those look-
ing at MV and RV, investigated the antibody response as a
continuous  quantitative variable. Analysing vaccine
responses as a quantitative variable makes no assumptions
about defined cut-offs. The approach may also provide sig-
nificant benefits in terms of study design, because it allows
study investigators to include every individual with a
measured outcome rather than having to select a number of
defined ‘non-responders’ and it avoids any potential selection
bias that may result from the more familiar case—control
approach. Defining a trait as continuous may also provide
increased statistical power to find novel associations
[55—-57], and there are a range of methodologies available
to analyse such traits in genetic studies that have proved to
be very successful in looking at other traits, including
height [58] and lipid levels [59].

(b) Defining vaccine failure

Defining individuals who have failed vaccination (table 1)
rather than depending upon immune correlates of protection
may be useful because vaccine failure has more clinical rel-
evance and provides the opportunity to consider the immune
system as a whole rather than focusing on one or two elements
of humoral or cellular immunity. However, the numbers of
individuals who experience vaccine failure are often small in
number, difficult to trace and may have other clinically undiag-
nosed causes for their immunodeficiency which are obviously
important to define prior to their inclusion in the study. One
HBV candidate gene study listed in table 2 attempted to look
at hepatitis B core antibody levels in vaccinated individuals
as a marker of failure of the vaccine to prevent hepatitis B infec-
tion, but final numbers were too small to make any definitive
conclusions [13]. A more recent study that is not highlighted
in table 3 suggested that variants in the measles receptor
CD46 and the pathogen nucleic acid sensing receptor TLRS
were associated with failure of MV [60]. The results from this
study should be interpreted with caution because the study par-
ticipants defined as vaccine failures did not always have a
laboratory confirmed diagnosis of measles. The selection of con-
trol individuals deemed ‘vaccine responders” in such analyses is
also of fundamental importance. Any controls should have been
exposed to the pathogen of interest. This could be made more
reliable by using family or other household members as controls
or limiting analyses to diseases where near ubiquitous expo-
sure in the population is likely. One study that demonstrates
such careful control selection looked at Haemophilus influenzae
vaccine failures compared with adult population controls and
found that mutations in the MAL/TIRAP gene, which is critical
in pathogen sensing, and the anti-inflammatory IL-10 cytokine
gene were associated with substantially increased risks of
non-meningitis and epiglottitis disease, respectively [61].
These are, unfortunately, the only published examples of studies
that have, to the best of our knowledge, aimed to identify genetic
variants associated with vaccine failure, highlighting the need
for studies investigating these issues in the future.
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As can be appreciated from the studies listed in tables 2
and 3, several study designs have been used to investigate
the contribution of host genetics to vaccine response, consist-
ent with efforts employed to dissect the contribution of
genetics to other complex traits. The approaches used can
be categorized into twin, family association, candidate gene
and genome-wide association (GWAS) studies. The practi-
calities, benefits and challenges associated with each of
these different study types have been extensively reviewed
elsewhere [50,62,63]. Twin studies have traditionally been
used to estimate the differential contribution of genetic and
environmental effects to biological complex traits, whereas
candidate gene and family association studies are used to
test for the association of plausible genes or loci with such
traits. Candidate gene studies are commonly plagued by a
failure to include sufficient numbers of cases and controls
which limits the statistical power of the study. They are also
susceptible to bias attributable to cryptic population stratifi-
cation and there is an inherent risk of false-positive
association especially in the absence of formal replication
using other cohorts analysed independently by, preferably,
separate investigators.

GWAS has recently become a hugely popular and
successful study design dependent upon the nascent under-
standing of common genetic variation within the human
genome and the ability to ‘tag’ this variation by typing a
large number (commonly 500000 to 2 million) of single-
nucleotide polymorphisms (SNPs) across every chromosome
using high-throughput technology. This concept replies upon
a comprehensive understanding of the extent of linkage dis-
equilibrium between the typed SNPs, and other variation
which is starkly population-dependent [64]. GWAS are
expensive to undertake because of the requirement for large
numbers (thousands if not tens of thousands) of individuals
and they do come with a risk of missed true associations
owing to their stringent thresholds for significance (currently
statistical test p-values of less than 5 x 10~®). These chal-
lenges can be overcome with careful study design, and the
approach provides significant benefits over other methods
such as candidate gene studies in terms of providing a
reliable and accurate picture of population structure in the
studied cohorts. The comprehensive genotyping employed
in GWAS also enables the fine mapping of associated variants
to be undertaken using advanced statistical approaches such
as imputation, which can help increase our understanding of
associations in a biological context [65].

The majority of the studies listed in tables 2 and 3 follow
the candidate gene format with the exception of two GWAS
which have been published for HBV and the one for RV.
This apparent bias towards candidate studies is not entirely
surprising given the relatively recent introduction of GWAS
and the popularity of candidate gene studies owing to the
costs and availability of the technology over the past 20
years. Some of the published candidate gene studies included
large numbers of individuals, attempted replication and cor-
rected for multiple testing [9,13], but the vast majority of
published studies were not so carefully designed. Likewise,
the majority of the associations reported in the candidate
studies have not yet been replicated in the GWAS. This
absence of replication may either suggest that the original
candidate gene findings were false-positives, or that the

stringent threshold required for the GWAS resulted in the

associations being missed. These inconsistencies are not
unique to vaccine response as a phenotype and can, indeed,
be observed for any complex trait which has undergone
genetic analysis over the past few decades.

When comparing the findings of the studies listed in tables 2
and 3 and attempting to rectify the inconsistencies such as
those highlighted between the candidate gene and GWAS
findings above, it is important to identify any potential
sources of differences between the studies. Nearly all of the
studies listed in table 2 were superimposed upon clinical
trials testing immunogenicity or efficacy of HBV or popu-
lation studies investigating baseline seropositivity and
response to booster vaccination. It can be appreciated that
the time points between receipt of the vaccine and measure-
ment of response varied quite substantially between the
studies. This was also a particular problem in the studies
listed in table 3 where the median time between the final
vaccine and immunological measurement could vary
substantially (often more than 5 years). Choosing the appro-
priate time to measure the vaccine response requires an
appreciation of the kinetics of antibody generation. Antibody
concentrations rise in the days to months following vaccine
administration (with the rate of rise dependent upon a
number of key non-genetic factors, including the number of
prior doses of vaccine received and age of the individual)
with a subsequent peak and decay of antibody levels which
are again dependent on a variety of factors. Unfortunately,
the decay is not always predictably linear, and indeed, the
different elements of the response are dependent on different
cellular mechanisms [6]. It would therefore be preferable to
measure the response at the peak, but because the time of
peak response can vary substantially, it is often necessary
to try to model these responses mathematically [13,66].

There are other factors that are important when comparing
existing or planning future studies. Careful note should be
made of any other drugs delivered at the same time as the
studied vaccines, because some vaccines are well recognized
to interact with the immunogenicity of others [67]. Further-
more, population differences may be important to consider.
The proportion of non-responders following the routine
number of doses of HBV, for example, is noted to vary signifi-
cantly between different ethnic groups [8,68,69]. This may
relate to differing environmental surroundings or their differ-
ing genetic background, most notably at key polymorphic loci
such as the human leucocyte antigen (HLA) region. Fortu-
nately, there are now several ways to account for this
diversity in GWAS approaches, including random effect
mixed models [70,71] or inclusion of summaries of the genetic
variance between individuals using principal component
analysis [72]. Differences in sex composition between studies
may also play an important role in differential study findings,
because sex is recognized to be an important predictor of
immune response to some vaccines [7]. Sex is of course depen-
dent upon genetics, and many immunological genes are
present on the X chromosome, so accounting for gender differ-
ences may help identify important contributors to vaccine
response heterogeneity.



Despite the multiple limitations highlighted for the studies in
tables 1 and 2, there are some clear reproducible associations.
Various HLA-DRBI alleles are differentially associated with
both increased and reduced or non-response to the HBV.
DRB1*01, 13 and 15 are relatively consistently associated
with an increased response, whereas 03 and 07 are consist-
ently associated with lower antibody responses. These
differences have been explored experimentally in detail. Mul-
tiple groups have found that antigen-presenting cells (APCs)
from peripheral blood mononuclear cells of non-responders
are able to stimulate DR-matched helper T cells from respon-
ders as effectively as APCs from high responding individuals
making a deficit in antigen processing and presentation less
likely [25,73-75]. Conversely, these studies found that the
T-cells from non-responders could not be activated by
either their non-responding APC counterpart or DR-matched
APCs from responders. The currently favoured theory is,
therefore, that there is a ‘hole” in the T-cell repertoire associ-
ated with these particular HLA alleles resulting in reduced
antibody levels. The mechanism for increased responses
observed with some HLA alleles is proposed to be a conse-
quence of improved antigenic epitope binding [54]. These
theories are yet to be proven correct.

Other interesting consistent observations from the HBV
studies are the findings of associations between vaccine
response variation and HLA-DP alleles and complement
factor C4A gene which resides in the so-called class III
region of the HLA complex. These associations appear to
be independent of the other class II associations in the HLA
region. Identifying the precise variant associated with the
HBV response variation in the HLA locus is inherently diffi-
cult because of the complex and often long-range linkage
disequilibrium that exists across the region. The HLA-DP
findings are particularly interesting given the concurrent
associations of SNPs in the gene with viral clearance in
chronic hepatitis B infection in Asian populations [76], and
the replicated C4A findings may go some way towards
explaining the recently reported class III tagging SNP found
associated with HBV response in the largest GWAS performed
to date [30]. This complement association may have signifi-
cant biological relevance given the reported importance of
complement to enhancing B-cell activation, survival and
class-switching in the presence of T-cell-dependent antigens
such as hepatitis B surface antigen [28,77].

MYV and RV are often compared concurrently because they
are commonly administered simultaneously and are both of
the same class of live, attenuated virus vaccine. The majority
of the studies that have been published looking at these vac-
cines have been undertaken by a single group and have
been reviewed extensively elsewhere [78,79], but there has
been a series of more recent studies looking at these vaccines
which have resulted in some interesting new observations. A
large discovery GWAS has been completed looking at RV
demonstrating again that the HLA-DPBI1 locus is likely to
be associated with rubella neutralization antibody response
[38]. The top SNP (p = 8.62 x 10™®) did not surpass the clas-
sical level of GWAS significance and will, therefore, require
independent replication especially because another associ-
ation with HLA-DPB1*04:01 allele reported by the same
group in an independently recruited cohort was in the

opposite direction [36]. This latter candidate gene study also
proposed an association between the class I HLA-B*27:05
allele and rubella antibody levels, although no independent
class I associations were observed in the GWAS. No GWAS
studies have yet been published involving MV, but a series
of candidate gene studies provide some evidence of HLA
associations. Most recently, using two cohorts consisting of
over 300 adolescents and adults each, an association was
observed between the class Il DQA1*0201 allele and increased
antibody response to the attenuated vaccine [46]. Other class I
(B*3503) and class II (DRB1*0701) associations were reported
although these did not pass the conservative significance
threshold (p = 0.05) in either cohort. The class II associations
for both MV and RV are highly relevant given the discussion
relating to HBV response above, and it is tempting to specu-
late that similar biological mechanisms may be responsible
for the observed variation, although this has yet to be formally
tested. The role of the relatively less studied DP alleles rather
than DR is certainly interesting. The class I associations are
novel, but because the measles and rubella vaccines are live
attenuated viruses, class I HLA alleles are very likely to be rel-
evant in mounting an effective CD8T cell immune response
and the associations merit further investigation.

HLA is estimated to contribute only to a minor proportion
of the variation in HBV, MV and RV post-vaccination antibody
titres with variants in other non-HLA genes estimated to con-
tribute to the majority of the observed variation [37,80].
Notably, and consistent with the HBV GWAS, the RV GWAS
did not identify any such variants. Although there have been
various plausible extra-HLA variants that have been proposed
to be associated with variation in response to all of the vaccines
discussed herein, none of these findings have been inde-
pendently replicated and should therefore be considered
with caution.

The associations reported above for HBV, MV and RV are
both interesting and potentially informative. However, when
considered altogether, the studies highlight the fact that there
are still substantial gaps in our knowledge and understand-
ing of vaccine response. It is therefore essential to perform
more studies to independently replicate existing putative
associations, exclude false-positive associations, and identify
variants that explain the remainder of the variation in vaccine
response and appreciate how other non-genetic factors inter-
relate with such observations. Large-scale GWAS offer an
attractive method to help dissect the variable contributions
of genetic and environmental factors but it will be vital to
learn from existing studies to maximize the chances of
making novel discoveries.

The findings of large-scale GWAS looking at multiple vac-
cines will be available in the near future. These studies
should focus on multiple populations, using large numbers
of individuals, paying careful attention to the measured phe-
notype and analytical strategy employed aiming to maximize
the changes of both validating putative associations from
existing studies and uncovering novel associations. Combin-
ing the findings of such studies, including work from our
laboratories involving various initiatives such as the VaccGene



consortium (the meta-analyses of vaccine response GWAS
measured in 10 000 infants from the developing world) and
the FP7 EUCLIDS study (http://www.euclids-project.eu),
should provide the power to identify a range of genetic var-
iants associated with variable response to several vaccines.
The ideal outcome from a combination of such studies with
other advances in transcriptomic [81], and cell-state and vari-
ation-dependent-specific gene expression [82,83] would be
the discovery of a series of genetic signals that provide an
insight into the molecular mechanisms driving immunologi-
cal response to vaccination. A comparison of these studies
with others including individuals with vaccine failure could
allow a direct comparison of the mechanisms underlying
immunogenicity and protection against disease. A deeper
understanding of the nature and implications of the genetic
architecture of vaccine response heterogeneity arguably
offers some of the greatest opportunities for translational
benefit of any of the complex diseases studied to date.

For example, if a gene regulating an innate immunity
pathway was discovered to be strongly associated with
level of response to a vaccine antigen, the addition of an adju-
vant known to enhance signalling through that specific
pathway might be expected to enhance immunogenicity
and thereby efficacy of the vaccine, overriding the effects of
any variants occurring in the gene or pathway in particu-
lar individuals [84,85]. Furthermore, despite the on-going
controversy associated with the molecular mechanisms
involved in the HLA associations observed with some vac-
cine responses, it is clear and intuitive that HLA is involved
at a key biological level. It is therefore important that individ-
uals who have experienced primary vaccine failure should be
tested to determine whether they also possess increased allele
frequencies of so-called risk HLA alleles or lower frequencies
of protective alleles. If such genetic differences are confirmed
it would become necessary to develop and trial methods that
may increase response in these individuals perhaps through
increased dosing, frequency of vaccine administration, use
of a stronger adjuvant or ultimately through immunogen
redesign, for example, in the case of HBV. Implementing
these changes on a national level may or may not be practi-
cal or economical, but it may certainly become ethically
compelling to target at-risk groups.

Finally, the future may bring the prospect of ‘personal-
ized vaccines’ [51]. The universal genotyping of new-borns
on a national scale may become a reality in the future in
an effort to predict disease risk and initiate preventative
healthcare strategies. Such a strategy could be particularly
relevant for vaccine delivery if it becomes possible to predict
the probability of vaccine effectiveness and, perhaps equally
importantly, reactogenicity [86,87]. This may be a cost-
effective way to risk-stratify individuals in the population
to enable targeted vaccination, rather than depending upon
the national mass administration programmes.

Novel adjuvantation methods or personalized vaccination
based on any genetic association findings may be useful strat-
egies in a number of settings where vaccine responses are
suboptimal resulting in an excess incidence of vaccine failures.
For example, the increase in incidence of pertussis in countries
that replaced the whole-cell pertussis vaccine with an acellular
formulation has been attributed, in part, to immunity waning
more rapidly following the latter vaccine [88]. Improved adju-
vantation may help prolong the duration of protective
immunity following acellular pertussis vaccine and may

consequentially help reduce worldwide outbreaks of pertussis. [ 9 |

Similarly, although MV generates a protective immune
response in over 90% of vaccinated individuals, failure to
elicit a protective immune response in 10% of vaccinated indi-
viduals may have contributed to the outbreaks of measles
observed in the USA in the 1990s [1]. Consequently, a two-
dose vaccination schedule has been introduced in many
developed countries that reportedly increases the proportion
of vaccinated individuals mounting a protective immune
response to 98% [89,90] while also boosting immunity to
measles in older children. If it does become possible to charac-
terize the genetic factors contributing to both primary
vaccination failure and immunogenicity, it may become cost-
effective to identify and offer a second dose of vaccine only
to those individuals who are identified, based on their gen-
etics, to be at high risk of failure and/or poor maintenance
of immunity to measles following a single dose of MV.

4. Future perspectives and conclusions

Our understanding of common genetic variation in humans
is now at a point where we are becoming intent on studying
other elements of variation including analysing rare (less
than 1% minor allele frequency in the population) variants
and epistatic modifications [91]. The field of rare variants is
a particularly exciting field because it is suspected that indi-
viduals at the extremes of vaccine response may harbour
large-effect low-frequency variants giving rise to the so-called
extreme phenotypes that may represent forms of ‘primary
immunodeficiencies” when at the lower end of the response
spectrum [92]. Identifying these variants requires new strat-
egies to look at the human genome largely centred upon
exome or whole-genome sequencing. Although such technol-
ogies are at an early stage of development they are also
beginning to shed light on areas of the genome that have
been under natural selection pressure throughout our evol-
ution [93,94]. Techniques are now available that can begin
to integrate the findings of GWAS studies with these discov-
eries to help verify plausible associations [95] and, because
vaccine responses are signatures of how our immune
system has been shaped by pathogen-driven selection, these
studies may help shed light on this area which has long
fascinated scientists and the general public alike [96].

This review summarizes some of the discussions at a
meeting where it was made clear that the new ‘-omics’ era
may hold substantial promise in terms of understanding
the various elements contributing to biological variation in
response to vaccination. Human genetics undoubtedly plays
a major role in this variation but it is essential that any studies
investigating the contribution of genetics to vaccine response
are carefully planned and should account for known environ-
mental variables. The results of these studies should help us
to understand how we can either design better vaccines that
protect nearly 100% of those vaccinated and how we can
deploy vaccines in a more cost-effective way.
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