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Abstract

Suppose that we need to classify a population of subjects into several well-defined ordered risk 

categories for disease prevention or management with their “baseline” risk factors/markers. In this 

article, we present a systematic approach to identify subjects using their conventional risk factors/

markers who would benefit from a new set of risk markers for more accurate classification. 

Specifically for each subgroup of individuals with the same conventional risk estimate, we present 

inference procedures for the reclassification and the corresponding correct re-categorization rates 

with the new markers. We then apply these new tools to analyze the data from the Cardiovascular 

Health Study sponsored by the US National Heart, Lung, and Blood Institute (NHLBI). We used 

Framingham risk factors plus the information of baseline anti-hypertensive drug usage to identify 

adult American women who may benefit from the measurement of a new blood biomarker, CRP, 

for better risk classification in order to intensify prevention of coronary heart disease for the 

subsequent ten years.
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1 Introduction

An integral part of evidence-based guidelines for disease prevention or management is a 

well-defined risk classification rule, which assigns each subject from a population of interest 

to one of several ordered risk groups. The assignment is based on the individual risk: the 

chance that the subject will experience a specific type of event during a given time period. 

Appropriate interventions will then be offered to subjects in each risk category. The risk is 
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estimated using a scoring system with the subject’s “conventional” baseline risk factors/

markers. For example, in the United States more than a half million women die of 

cardiovascular diseases (CVD) each year and the majority of such deaths are due to 

coronary heart disease (CHD). Recently, the American Heart Association (AHA) issued 

guidelines for the prevention of CHD in adult women (Mosca et al., 2004, 2007). 

Specifically, risk categories are defined by the individual’s predicted risk of having a CHD 

event in the next ten years. Adult American women are classified as being low risk (< 10%), 

intermediate risk (between 10% and 20%), or high risk (≥ 20%). Such risk threshold values 

have also been employed by the Adult Treatment Panel III (ATP III) of the National 

Cholesterol Education Program to develop an evidence-based set of guidelines on 

cholesterol management (Grundy et al., 2004). For subjects with intermediate or high risk, 

certain life style and pharmacologic interventions are recommended. The risk is estimated 

using a modified version of the Framingham Risk Score (FRS), which is a multivariate risk 

equation based on traditional risk factors such as age, blood cholesterol, HDL cholesterol, 

blood pressure, smoking status and diabetes mellitus (Wilson et al., 1998).

Now, suppose that new risk markers for such future events are available, and they may 

potentially improve the conventional risk estimation. Measuring these markers, however, 

may be invasive or costly. Under various settings, novel procedures have been proposed to 

quantify the overall incremental benefit from the new markers for the entire population of 

interest (Pepe et al., 2004; Cook, 2007; Tian et al., 2007; Uno et al., 2007; Pepe et al., 2008; 

Pencina et al., 2008; Chi and Zhou, 2008; Cook, 2008; Greenland, 2008). In a recent paper, 

Wang et al. (2006) concluded that almost all new contemporary biomarkers for prevention 

of CHD added rather moderate overall predictive value to FRS.

In general, for subjects whose conventional risk estimates are either extremely low or high, 

clinical practitioners are less likely to request additional marker measurements for their 

decision making. Unfortunately, rather little research has been done for developing a 

systematic procedure to identify a subset of individuals who would benefit significantly 

from new risk markers (D’Agostino, 2006). With respect to the aforementioned risk 

classification rule recommended by the AHA and ATP III, recently Cook et al. (2006) and 

Ridker et al. (2007) examined the incremental value of a new blood biomarker – the C-

Reactive protein (CRP) measured by a highly sensitive assay – with a cohort of subjects 

from the Women’s Health Study (Buring and Hennekens, 1992). They concluded that 

subjects whose traditional risk scores are between 5% and 20% would benefit from this 

marker. Their claims were based on the reclassification rates with CRP among four 

discretized subgroups of the entire cohort determined by conventional risk estimates. 

However, large observed reclassification rates, which include both “good” and “bad” 

reclassification rates, does not equal to the benefit of a new marker. More recently, Prentice 

and his colleagues performed a comprehensive analysis on five pooled cohorts to examine 

the additive value of genetic variants to breast cancer risk models and conclude that 

“Inclusion of newly discovered genetic factors modestly improved the performance of risk 

models for breast cancer. The level of predicted breast-cancer risk among most women 

changed little after the addition of currently available genetic information.”(Waholder et al., 

2010). One of their main analytic strategies employed to quantify the improvement of 
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genetic markers is to examine how the addition of genetic data actually affected the risk 

stratification, i.e., the reclassification rate, for the case subjects with breast cancer and 

control subjects without breast cancer, separately. This can be viewed as a great 

improvement of the crude re-classification rate in the direction of detailed quantification of 

the “good” and “bad” reclassification. On the other hand, the incremental benefit of the 

“genetic markers” for risk stratification is evaluated for the entire population. It is useful to 

generalize the approach for identifying subgroup of patients, whose risk stratification may 

still be substantially improved by using new genetic markers in the risk prediction model 

(Mealiffe et al., 2010). Moreover, all the existing summary measures related to 

reclassification rate are simply point estimators lacking rigorous statistical inference 

procedure to provide appropriate precision measures.

In this article, we propose a systematic approach for evaluating the incremental value of a 

novel marker in risk stratification across subgroups of subjects and identify subjects who 

may benefit the most from the information of the new marker. To this end, for each subject 

in the study we construct two individual risk estimates, one based on the conventional risk 

markers and the other based on both the conventional and new markers. A subject may be 

reclassified into a different risk category with the new risk estimate. For the subset D of 

subjects with the same conventional risk estimate, we obtain consistent nonparametric 

functional estimates for the reclassification rates and their corresponding standard error 

estimates. Note the limitation that the large observed reclassification rates do not 

automatically imply that the new markers are important for given subsets of subjects. 

Consistent estimates for the proportions of subjects who are reclassified correctly are also 

needed for cost-benefit decision making. In this paper, we develop point and interval 

estimation procedures for making inference about such proportions.

As an illustration, consider the set D consisting of individuals who have the same 

conventional FRS estimate of 9% for experiencing CHD events within ten years. Based on 

the aforementioned prevention guidelines, individuals with this predicted risk would not be 

recommended for lipid-lowering drug therapy at present. Now, suppose that with the new 

markers, the estimate for the proportion of subjects in D reclassified to the next higher risk 

category is 25%. Furthermore, suppose that among those who are reclassified to the next 

higher risk category, the CHD events rate is 12%. The potential benefit with the new 

markers would be preventing 12% × 25% = 3% of subjects in D from having future CHD 

events. However, the costs consist of measuring new marker values for every subject in this 

subset, and giving possibly long-term, potentially toxic interventions to 25% of the 

individuals. Even if we decide that for this scenario the benefit outweighs the cost, we still 

need to know whether this reclassification scheme is better than a “random allocation” 

process. If we randomly move 25% of subjects in D to the next higher risk class, on average, 

9% of these subjects would have CHD events. The question is whether the difference 

between the observed 12% and the null value of 9% represents a real gain or is simply due 

to sampling variation.

The new proposal is illustrated with a data set from the Cardiovascular Health Study (CHS) 

sponsored by the US National Heart, Lung and Blood Institute (Fried et al., 1991). This 

study is a prospective, population-based, long term follow-up cohort study to determine risk 
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factors for predicting future coronary heart disease and stroke in adults 65 years or older. 

There were 5888 study subjects recruited between 1988 and 1993. For our analysis, we only 

considered data from the 3393 female participants. For each subject, we utilized the risk 

factors/markers values at her entry time to the study and her CHD event time by year 2003. 

The binary response variable is whether the subject experienced a CHD event (non-fatal MI, 

angina or CHD-related death) during ten year follow-up. For this data set, the median age at 

the baseline is 72.5 and there is no loss of follow-up for these endpoints. During the first 10 

year follow-up, 19.5% of female participants experienced non-fatal MI, angina or CHD-

related death. On the other hand, 37% of them died from non-CHD-related diseases. Among 

3393 subjects, 52% of them were surviving in year 2003. In our analysis, the conventional 

risk factors consist of the Framingham risk factors and the anti-hypertensive drug usage. The 

new marker considered here is CRP. For the risk classification rule recommended by the 

ATP III, the CRP provides pointwise significant incremental values for subjects whose 

conventional risk estimates are around 10% and 20%. On the other hand, we cannot find any 

subgroup of individuals who would benefit from the new marker under the simultaneous 

inference setting when controlling the overall family-wise type I error rate of 0.05.

In the next section, we describe our proposed procedures for quantifying the incremental 

value of new markers. Procedures for making inference about the incremental values were 

proposed in Section 3. In section 4, we provide details of the analysis of the CHS data and of 

a simulation study for examining the performance of our procedures. Concluding remarks 

are given in Section 5.

2 Quantifying Incremental Values from New Markers

Consider a subject randomly drawn from the study population. Let Y be its binary response 

variable with Y = 1 denoting “cases” and Y = 0 denoting “controls”, U be the set of 

conventional markers and V be the set of new markers. Let p(U) = pr(Y = 1| U) and p(U, V) 

= pr(Y = 1| U, V), the risks of this subject conditional on U and {U, V}, respectively. 

Assume that the classification rule assigns each subject to one of L ordered risk categories 

{C1, · · · , CL}. A subject is classified to C1 if its risk for Y = 1 is in the interval [νl−1, νl), 

where l = 1, · · · , L, and 0 = ν0 < · · · < νL = 1. Based on p(U, V), the subject may be 

reclassified into a higher or lower risk category.

Now, suppose that the data {(Yi, Ui, Vi), i = 1, · · ·, n} consist of n independent copies of (Y, 

U, V). For any given (u, v), the probabilities p(u) and p(u, v) cannot be consistently 

estimated well with fully non-parametric procedures unless the dimension of U or V is very 

low. A practical alternative is to consider a working model for approximating p(U) by a 

parametric model

(2.1)
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where X, a p×1 vector, is a function of U, β is an unknown vector of parameters and g1(·) is a 

known, smooth, increasing function. Now, suppose that β is estimated by  via an estimating 

function S1(β). The risk for a subject with U = u, whose X = x, is estimated by .

With the additional marker set V, consider the working model for approximating p(U, V ) by

(2.2)

where W, a r × 1 vector, is a function of U and V, g2(·) is a known, smooth, increasing 

function, and γ is a vector of unknown parameters. Let γ be estimated by  via an estimating 

function S2(γ). For a subject with (U, V ) = (u, v) whose W = w; the estimated risk is 

. Note that when Models (2.1) and (2.2) are correctly specified, with 

reasonable estimating functions S1(·) and S2(·),  and  are consistent estimators for 

p(u) and p(u, v), respectively.

Now, consider a random future subject with (Y, U, V ) = (Y 0, U 0, V 0). For a given 0 < s < 

1, let Ds be the group of future subjects whose  and  be the 

corresponding risk category. For subjects in Ds with additional new marker information, the 

probability of a subject’s being classified to Cl with Y 0 = q, is

(2.3)

Here, the conditional probabilities are with respect to the data {(Yi, Ui, Vi)}, Y 0, U 0 and V 0. 

The probability of a subject being classified to Cl is . For the 

subgroup with , the probability of crossing risk boundaries or being reclassified into 

other risk categories is . However, it is important to note that a large 

value of the reclassification rate P(s) does not automatically imply that the new markers are 

valuable for Ds. The quantity in (2.3) also plays an important role in cost-benefit decision 

making. For subjects who are re-assigned to a higher risk category,  provides 

us with the proportion of subjects in Ds who would benefit from the new markers. On the 

other hand, for subjects who are moved down to a lower risk group, {η(0)(s), l < ls} would 

reflect the incremental gain. They are the generalizations of the net reclassification 

improvement (NRI) of the subpopulation Ds :
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and provide detailed information on the improvements by including the new biomarker, 

where .

Moreover, it is important to know whether the above reclassification is more than a purely 

random allocation process. Specifically, if the new markers contribute nothing to the 

classification rule, one would expect that conditional on  0 is independent of 

Y 0. That is,

(2.4)

The differences

(2.5)

also play important roles for quantifying the incremental value of the new markers for future 

subjects in Ds. If V 0 improves the risk stratification for subjects in Ds, we expect Dl(s) > 0 

for l > ls and Dl(s) < 0 for l < ls. To summarize the overall gain of V 0 in reclassification for 

Ds, a simple measure would be

which represents the extent to which V0 results in correct reclassifications over and above 

random reallocations.

3 Estimating  with Possibly Censored Event Time Observations

Oftentimes the binary response Y indicates that either the event time of interest is greater or 

less than a specific time point via a long term follow-up study. To this end, let T0 be the 

random event time and t0 be a prespecified time point. Here, the binary variable Y = 1, if T0 

< t0, 0, otherwise. The “response” Y may not be observed directly due to censoring. That is, 

T0 may be censored by a random variable C. Let G(·) be the survival function of C. In this 

article, we assume that G(·) is independent of T0, U and V. For T0, one can only observe T = 

min(T0, C) and Δ = I(T0 ≤ C), where I(·) is the indicator function. Our data {(Ti, Δi, Ui, Vi), i 

= 1, · · · , n} consist of n independent copies of (T, Δ, U, V ). Note that if there is no 

censoring involved, G(·) = 1 and {Yi, i = 1, · · · , n} can be observed completely.

To obtain the estimates  and , one may assume proportional hazards working 

models for T0 with U, and then for T0 with U and V. With the maximum partial likelihood 

estimates for the regression coefficients and the estimates for the underlying cumulative 

hazard functions, we can estimate p(u) and p(u, v). However, if a working proportional 

model is not correctly specified, the regression coefficient estimator converges to a constant 
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vector, as n → ∞, which may depend on the censoring distribution. Moreover, a good 

prediction model for short term survivors may not work well for predicting long term 

survivors. In this article, instead of modeling the entire hazard function of T0, we use the 

approach taken by Uno et al. (2007) to model the conditional risks of experiencing an event 

by t0 directly via (2.1) and (2.2).

To estimate β in (2.1), we let the estimating function S1(β) be

(3.1)

where the weighting , and  is the Kaplan-

Meier estimator of G(·). Here, the weighting takes care of the problem due to censoring and 

I(Ti < t0) = Yi when . It is shown in Uno et al. (2007) that as n → ∞, the resulting 

estimator  converges to a constant which is free of G(·) even when the model (2.1) is 

misspecified. Similarly, with additional V and Model (2.2), one can use the estimating 

function

(3.2)

to estimate γ.

Now, since  is between 0 and 1, we use a non-parametric local logistic likelihood 

estimation procedure to obtain consistent estimator η(q)(s). Specifically, first consider a 

kernel-type nonparametric functional estimator based on the local likelihood “score” 

function for the standard logistic regression which relates the binary response 

 to the regressor . Here, we choose a 

proper transformation  of  to implement the smoothing, where ψ(·) is a known, 

non-decreasing function (Wand et al., 1991; Park et al., 1997). For any given s, l and q, this 

results in a score function of the intercept parameter a and slope parameter b:

(3.3)

where g0(x) = exp(x)/{1 + exp(x)}, Kh(x) = K(x/h)/h, K(·) is a known smooth symmetric 

kernel density function with a bounded support, and the bandwidth h > 0 is assumed to be 

. Let  where  is the resulting estimator of the intercept 

by solving the equations: (3.3)=0, for q = 0, 1 and l = 1, · · · , L. Then ηl(s) and ξ(s) can be 

estimated by  respectively.
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In Appendix A, we show that  in probability, uniformly in 

, where [ρl, ρr] is a subset of the support of  and β0 is 

the limit of . Furthermore, we show in Appendix B that for large n, the joint distribution of 

 can be approximated by the distribution 

of

(3.4)

given the data, where V = {Vi, i = 1, · · · , n} is a random sample from a given distribution 

with unit mean and unit variance and is independent of the data, 

 is the perturbed version of  and  are 

given in (A·1), (A·2) and (A·3) of Appendix B, respectively. It is important to note that 

although asymptotically one only needs the first term of (3.4) since  is of order root-n, the 

inclusion of the second term improves the approximation to the distribution of  in 

finite sample. The independent realizations of (3.4) can easily be obtained by generating 

realizations from independent random samples of V. With a large number of realizations 

from (3.4), confidence interval estimates for  can be constructed 

via this large sample approximation. This perturbation-resampling method, which is 

conceptually similar to a wild bootstrapping (Davison and Hinkley, 1997), has been utilized 

successfully in solving many complicated problems in survival analysis.

As for any nonparametric functional estimation problem, the choice of the smooth parameter 

h is crucial for making inferences about η(q)(s), ηl(s) and Dl(s). Here, we propose to use the 

standard K-fold cross validation procedure to obtain an “optimal” h. Specifically, we 

randomly split the data into K disjoint subsets of about equal sizes denoted by {Jk , k = 1, · · 

·, K}. For each k, we use all observations which are not in Jk to estimate p(u) and p(u, v) by 

fitting the working models (2.1) and (2.2) and then with a given h, to estimate . Let 

the resulting estimators be denoted by ,  and . We then use the 

observations from Jk to calculate the prediction error

(3.7)

Lastly we sum (3.7) over k = 1, · · ·, K, and then choose h by minimizing this sum of K 

prediction errors. Note that the optimal smooth parameter value may only work for this 

specific (l, q) of . Alternatively, one may obtain a uniform bandwidth, which 

minimizes the sum of (3.7) over k, q and l. The order of such a bandwidth estimator is 

expected to be n−1/5 (Wand and Jones, 1995; Fan and Gijbels, 1996) and thus the final 
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bandwidth for estimation can be obtained by multiplying the estimated bandwidth by n−d0, 

for some d0 ∈ (0, 3/10).

To correct for the potential over-fitting bias in estimating the reclassification rates, one may 

also use the K-fold cross-validation. For k = 1, …, K, we use all observations not in Jk to fit 

the regression models with and without the new markers and obtain  and . Then 

using observations in Jk,  and , we obtain an estimate for  based on 

equation (3.3), denoted by . Then the final cross-validated estimator of  is 

.

The proposed operational procedure can be briefly summarized as:

1. Construct a scoring system based on the conventional biomarkers predicting the 

binary outcome .

2. Construct a scoring system based on the conventional as well as novel biomarkers 

predicting the binary outcome .

3. Nonparametrically estimate

based on .

4. Correct the estimation bias by applying cross-validation for steps 1-3.

5. Make inference on , P(s), Dl(s) and D+(s) with the proposed re-sampling 

method.

4 Numerical Studies

We apply the proposed procedures to analyze the data from female participants in the 

Cardiovascular Health Study (CHS) with respect to the risk classification rule recommended 

by AHS for the 10-year risk of CHD events. There are two different ways to define the 

binary response variable Y. First, if a study subject died before her ten-year follow-up from a 

non-CHD cause, we let Y = 0 (no CHD event). If the subject experienced a CHD event (non-

fatal MI, angina or CHD-related death), we let Y = 1. There are no loss-to-follow-ups for 

these endpoints, therefore, we observe all Y ’s in this analysis. For the second analysis, we 

let the time to death of other causes be an independent censoring variable C for the time to 

the CHD event. As we discussed in the introduction, we consider three risk categories (0, 

10%], (10%, 20%] and (20%, 100%] in the analysis.
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For both analyses, we consider an additive model (2.1) with g1(·) being the anti-logit 

function. The vector X consists of the usage of hypertensive medication and all variables 

used in the model for deriving the FRS given in Wilson et al (1998). Specifically, the FRS 

model includes various dummy variables indicating levels of blood pressure, total 

cholesterol, and HDL, as well as age, age2, present smoking status and diabetic status. Next, 

we fit the data using an additive model (2.2) with g2(·) being the anti-logit function and W 

being the above risk factors/markers X and the log-transformed CRP variable. For estimating 

functions (3.1) and (3.2), the estimator  is the standard K-M estimator with all death and 

CHD event times as censored observation for censoring variable C. For the nonparametric 

function estimation, we let K(·) be the Epanechnikov kernel, and . The 

smoothing parameter h = 0.11 was obtained through the 10-fold cross validation scheme. 

Specifically, we let h be the minimizer of  in (3.7) for both 

 and  multiplied by a normalizing constant n−1/10. To approximate the 

distributions of these estimators, we used the resampling method (3.4) with 500 independent 

realized samples of {Vi, i = 1, · · ·, n}. In addition, to correct for the potential overfitting 

bias, we also obtained cross-validated estimates of η(l) with h = 0.11. The results shown 

below are based on the cross-validated estimates although there appears to be a minimal bias 

for the present case.

For the case where there is no censoring involved, we present the results of our analysis in 

Figure 1. Here, we choose the 2nd and 98th percentiles of the empirical distribution of 

 as the boundary points ρl and ρr, respectively. Therefore, the results 

presented here are for . Part (a)-(c) of the Figure are the estimated 

 along with their 95% point-wise confidence intervals, for l = 1, 2, 3 and y = 0, 1. Part 

(d) of the Figure gives the estimated re-classification rates over . As expected, there are 

substantial re-allocations with the CRP around the boundary points for the risk classification 

rule. Part (e) shows estimates for the overall gain, D+(s). The results suggest that although 

substantial reclassifications occurred, most of the reclassifications are not substantially 

better than random reallocations with estimated D+ ranging from 0% to 2.1%. Only subjects 

with conventional risk estimates  have lower bounds of the 

95% confidence interval slightly above zero. However, no subgroup of individuals would 

benefit from the additional CRP information based on simultaneous confidence intervals 

which controls for the overall type I error. That is, we cannot claim that the reclassification 

to risk categories by the new marker is better than a random allocation process. Part (f) of 

the Figure is a smoothed density estimate for , which provides useful information 

regarding the relative size of the subgroup Ds of subjects such that .

For the second set of analysis by treating non-CHD death as censoring, 18.8% of subjects 

are censored with respect to the CHD events of interest. For this case, the smoothing 

parameter is 0.14 via the 10-fold cross validation by minimizing 

 in (3.7) with normalizing constant n−1/10. We present the 
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results in Figure 2 for  under the same settings as in Figure 1. The 

regions for which the CRP may be helpful are 

. However, the magnitude of gain is also 

very minimal with estimated D+ ranging from 0% to 2.5% and no region appears to have a 

significant gain after controlling for the overall family-wise type I error.

To assess the performance of the proposed procedure under practical settings, we conducted 

an extensive numerical study to examine the bias of our point estimator and the empirical 

coverage levels of its corresponding interval estimators for . Based on the results 

of the study, we find that the new proposed estimation procedure has negligible bias and the 

coverage levels are very close to the nominal counterparts. For example, in one of our 

simulation studies, we simulated data from a study similar to the CHS setting.

Specifically, we generated the event time with a lognormal model with the vector of 

covariates that is identical to that of the CHS study. First, for each subject, we generated its 

discrete covariates XD, which include levels of blood pressure, total cholesterol, HDL, 

present smoking status and diabetic status, based on the empirical distribution of the CHS 

data. Then, for each given value of XD, we generated the corresponding value of continuous 

covariates XC = (Age, logCRP), from N (µXD, Σ), where µXD is the empirical mean of XC 

given XD and Σ is the empirical covariance matrix of XC in the CHS dataset. Then, we 

generated the survival time T from log T = α0 + α′ w + ε, where ε ~ N (0, σ2), w = (XD, XC, 

Age2), and (α0, α1, σ)′ was obtained from fitting this log-normal model to the CHS data but 

the coefficient of CRP was multiplied by a factor of two to represent the setting where CRP 

is indeed helpful in risk reclassification. The censoring was generated from a Weibull with 

shape and scale parameters obtained by fitting the two-parameter Weibull model to the CHS 

data. This results in about 78% of censoring and an overall 10-year event rate of 17%. As in 

the CHS example, we assess the accuracy of CRP for predicting the 10-year risk and 

reclassifying subjects into three risk categories with ν1 = 0.1 and ν2 = 0.2.

We considered a moderate sample size of 3000 and a relatively large sample size of 6000. 

For computational ease, the bandwidth for constructing the non-parametric estimate was 

fixed at h = 0.09 for n = 3000 and 0.07 for n = 6000. Here, these h’s were chosen as the 

averages of the bandwidths selected based on (3.7) with d0 = 0.1 from 10 simulated datasets. 

For both settings, the non-parametric estimator has negligible bias, the estimated standard 

errors are close to their empirical counterparts, and the empirical coverage levels of the 95% 

confidence intervals are close to the nominal level. In Figure 3, we summarize the results of 

our findings performance for the point and interval estimation procedures for 

 when n = 3000. The coverage levels are slightly lower or higher than the 

nominal level when s is near the boundaries of the support and the true reclassification rates 

 are close to 0. However, the coverage level improves when we increase the sample 

sizes. Similar performances were observed for . For example, when s = 0.2, the 

coverage levels for  are (0.96, 0.93, 0.96) when n = 3000 and (0.96, 0.93, 

0.95) = 6000. Other choice of the coefficient of CRP reflecting strong/weak association with 
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the biomarker of interest was also used in the simulation and the corresponding results are 

fairly close to that reported above.

5 Remarks

In this article, we present a systematic approach to quantify the added value from new risk 

markers for classifying subjects into pre-specified risk categories. At each estimated 

conventional risk level, we provide point and interval estimates for the reclassification rates 

along with the corresponding proportions of accurate re-assignment for this subgroup of 

individuals. The proposed procedure is nonparametric and does not depend on any 

parametric assumptions on the underlying model generating the data. On the other hand, as a 

limitation, when the reclassification rate (when the new biomarker is uninformative) or pr(Y 

= 1) is low, a large sample size is often required to make reliable inferences. Furthermore, 

appropriate weighting scheme reflecting the relative importance of cases and controls can be 

conveniently accommodated. These quantities play vital roles for cost-benefit analysis even 

when the cost of measuring the new markers is not an issue or the re-categorization via the 

new markers is not generated from a random allocation process. In general, if the new 

markers improve the risk prediction and change the risk estimates drastically, one may 

expect the new marker to be helpful in risk reclassification for the entire population. 

However, in most practical settings, we expect that subjects whose conventional risk 

estimates are not around the risk threshold values would not benefit much from the new 

markers with respect to a better assignment of risk category. This is indeed confirmed with 

the results from extensive analysis of the data from the Cardiovascular Health Study. Thus, 

to optimize the usage of the new markers for risk classification, one may consider 

ascertaining the new markers only for subjects with conventional risk estimates in a certain 

range. The proposed procedures can be easily be extended to quantify the average gain for a 

range of subgroups by integrating D+(s) over the range of interest.

Although the risk score is generally on a continuous scale, clinical practitioners almost 

always discretize the score for decision making. Furthermore, when there are multiple 

underlying disease subtypes or subpopulations, such a risk discretization may serve as a 

proxy for these subgroups. For example, a composite score consisting of several biomarkers, 

including cyclin E and Ki-67, stratified non-small cell lung cancer (NSCLC) patients into 

markedly different survival subgroups. Cyclin E expression is involved in the cell growth, 

highly predictive of early disease recurrence after surgery, and considered a good candidate 

as a molecular target for treatment. Risk groups determined by these biomarkers may 

represent underlying disease subtypes associated with different treatment responses. To 

illustrate how an underlying biological process may be approximated by such risk 

discretization, we conducted a simulation study where we generated the log survival time 

from N (4, 1) if D = 1 and N (0, 1) if D = 0; the “latent” binary group membership D is 

generated based on a probit model P (D = 1)X, Z) = (−2 + 2Z) and (X, Z) were generated 

from a multivariate normal. Suppose that we only observe (T, X, Z), the risk classification 

rule P (T ≤ 10)X, Z) ≥ 0.20 is a highly accurate approximation to the unobserved D with 

concordance rate as high as 90%. Here T is the survival time. Thus, if D represents unknown 

disease subtypes, appropriate binary risk classification rule is essentially separating disease 

subtypes and may guide more effective treatment.
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The determination of an appropriate set of risk thresholds is an important yet difficult 

problem. Appropriate cut-off values could potentially be chosen by evaluating the threshold 

effect of risk factors or performing cost-risk-benefit analysis. Most likely the new markers 

have non-trivial incremental values for patients whose conventional risk scores are in the 

neighborhood of the threshold values. The new proposal provides some guidance about how 

large this neighborhood would be. When there are no specific risk categories in 

classification, we may compare certain characteristics of the risk scores for “cases” and 

“controls” to evaluate the added value of new markers. For example, given an initial risk 

estimate of , one may consider estimating the mean value of  among these 

with Y = 1 and among those with Y = 0. If the new marker is indeed helpful for the group 

with , one would expect that  is positive and 

 is negative. For the CHS example, as shown in Figure 4, the 

gain from CRP over the FRS score seems rather small. Further research is needed to justify 

this nonparametric estimation procedure.
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Appendix

Throughout, unless otherwise noted, we use the notation  to denote equivalence up to op(1) 

uniformly in s,  to denote bounded above up to a universal constant, and  to denote 

dF (x)/dx for any function F. We use ℙn and ℙ to denote expectation with respect to the 

empirical probability measure of {(Ti, Δi, Xi, Wi), i = 1, · · · , n} and the probability measure 

of (T , Δ, X, W ), respectively. Similarly . Let β0 and γ0 denote the solution 

to the equations  and 

, respectively. Let . We assume that τ 

(·), the density function of , is continuously differentiable with bounded derivatives 

and bounded away from zero on the interval [ψ−1(ρl), ψ−1(ρu)] ⊂ (0, 1). We also assume that 

the marker values are bounded,  belongs to a compact set Ω. For the bandwidth h, 

we assume that h = O(n−v ), 1/5 < v < 1/2.

We first note that from Uno et al. (2007), we have

(A.0)
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It follows that , where 

, and . It is also important 

to note that  for any function s(·, ·, ·), where . 

We next derive the asymptotic theory for , but note that the same arguments can be 

used to justify the asymptotic properties of other quantities. For the ease of notation, in 

Appendix A and B, we suppress the subscript l and supscript (q) from  and .

A. Uniform Consistency of 

At any given s, let  be the root of the estimating equation

 and

Our objective is to show that  in probability as n → ∞. To this end, we note that 

for any given s,  is the solution to the estimating equation , where d = (da, db)

′,

and .

The first step is to show that  is uniformly consistent for
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We first show that

and 

are both . To this end, we note that from (A.0),

This, together with the convergence of , implies that

where  is a class 

of functions indexed by β and c. Furthermore, δ is uniformly bounded by an envelop 

function in the order of  with respect to L2 norm. By the maximum inequality of van der 

Vaart and Wellner (1996), we have 

. This, coupled 

with  implies that .

Secondly, with the standard arguments used in Bickel and Rosenblatt (1973), we have
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Therefore, for ,

is . From (A.0), , and similar arguments as given 

above,

and hence . From the same 

arguments as above, . Therefore 

. This uniform convergence, coupled with the fact that 0 is 

the unique solution to the equation S(d, s) = 0 with respect to d and all the eigenvalues of 

 are uniformly bounded 

above zero, suggests that , which implies the 

consistency of .

B. Asymptotic distribution of 

It follows from a Taylor series expansion that

where  is the first row of . Using arguments similar 

to those in the previous section, one can show that  converges to , the first row 

of , uniformly in s. Furthermore, with the convergence rate of , it is not difficult 

to show that the remainder term is bounded by  uniformly in 

s. It follows that
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This, together with the convergence rate of , implies . 

It follows that  is asymptotically equivalent to

where G0(s, y) = g0[a(s) + b(s){y − ψ(s)}]. We next show that  is asymptotically 

equivalent to

i.e.,  and  can be replaced by their respective  and  in , where 

. To this end, noticing the fact that  is bounded 

away from zero uniformly in s, we have

where 

is the class of functions indexed by (γ, β, c). By the maximum inequality and 

, we have . It follows that 

 is asymptotic op(1) uniformly in s. This, together with the 

standard arguments for local linear regression fitting, implies that 

converges to a normal with mean 0 and variance , where  and 

. Then, from a delta method, 

 is asymptotically normal with mean 0 and variance σ2(s).

To justify the resampling method, we note that from (A.0),
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where  (1) is with respect to the product probability measure generated by the 

observed data and V,

(A.1)

(A.

2)

 is the estimated density function of 

  and  are the respective solutions to

(A.

3)

 is the weighted Kaplan-Meier estimates with weights V and . 

Thus, conditional on the data the random variable given in (3.4) is asymptotically equivalent 

to , which is asymptotical 

normally with mean zero and variance 

. From the same arguments 

given in Appendix A,  in probability, as n → ∞. Note that the second term, 

which accounts for the variability in , involves estimating the partial derivative of 

 with respect to β and γ. Since the optimal 

bandwidth for such derivative functions is of order n−1/7 which could be substantially larger 

than h used for the estimation of , we find that the second term in (3.4) approximates the 

additional variability in  better when a larger bandwidth is used to obtain . As a result, 

the standard bootstrap method, which essentially uses the same h for b -l performs poorly in 

finite sample.
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Fig. 1. 
Evaluating CRP incremental values for female participants from Cardiovascular Heath 

Study by treating non-CHD death as non-event; (a)-(c): , l = 1, 2, 3, (solid lines for y 

= 1 and dashed lines for y = 0; thick lines for point estimators and thinner lines for 95% 

confidence intervals); (d) proportion of reclassification to other risk categories; (e) net gain 

in reclassification as measured by D+(s) (point estimator: thick solid line, 95% point wise 

confidence intervals: dashed lines, and simultaneous confidence intervals: shaded region); 

(f) density function of the initial risks.
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Fig. 2. 
Evaluating CRP incremental values for female participants from Cardiovascular Heath 

Study by treating non-CHD death as censoring; (a)-(c): , l = 1, 2, 3, (solid lines for y = 

1 and dashed lines for y = 0; thick lines for point estimators and thinner lines for 95% 

confidence intervals); (d) proportion of reclassification to other risk categories; (e) net gain 

in reclassification as measured by D+(s) (point estimator: thick solid line, 95% point wise 

confidence intervals: dashed lines, and simultaneous confidence intervals: shaded region); 

(f) density function of the initial risks.
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Fig. 3. 
Performance of the proposed procedure under a mis-specified model with sample size 3000 

where the underlying effect of CRP is twice as big as that estimated from CHS data: (a,b,c) 

the sample average of  (solid curve) compared to the truth (gray dashed 

curve); (d,e,f) the average of the estimated standard errors (solid curve) for 

compared to the empirical standard error estimates (gray dashed curves); and (g,h,i) the 

empirical coverage of the 95% confidence intervals based on the proposed resampling 

procedures. The three columns represents l = 1, 2 and 3, respectively.
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Fig. 4. 
Evaluating CRP incremental values with respect to improvement in mean risk among cases 

with Y = 1 (dashed curve) and among controls with Y = 0 (dotted curve) for female 

participants from Cardiovascular Heath Study by treating non-CHD death as non-event.
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