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Abstract

(+)-Zincophorin methyl ester is prepared in 13 steps (longest linear sequence). A bidirectional 

redox-triggered double anti-crotylation of 2-methyl-1,3-propane diol directly assembles the 

triketide stereopolyad spanning C4-C12, significantly enhancing step-economy and enabling 

construction of (+)-zincophorin methyl ester in nearly half the steps previously required.

Polyketides derived from soil bacteria are estimated to account for roughly 20% of the top-

selling small molecule drugs,1 yet less than 5% of soil bacteria are amenable to culture.2 As 

methods for bacterial culture improve, the use of polyketides in human medicine will surely 

increase, as will the need for concise manufacturing routes to these stereochemically 

complex structures and their functional analogues. Presently, all commercial polyketides, 

with the single exception of Eribulin,3 are prepared by fermentation or semi-synthesis. 

Although de novo chemical synthesis can deliver otherwise inaccessible structural variants, 

routes that are reliant upon current technologies for acyclic stereocontrol via stepwise bond 

construction are especially lengthy, diminishing prospects for commercial application.
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We have developed a suite of catalytic methods for polyketide construction wherein lower 

alcohols are directly transformed to higher alcohols in a stereo- and site-selective fashion.4 

In such processes, hydrogen transfer from alcohols to π-unsaturated reactants triggers 

pairwise generation of carbonyl-organometal species en route to products of addition. These 

merged redox-construction events5 bypass discrete alcohol-to-aldehyde redox reactions and, 

because they may be deployed in a site-selective manner,6 streamline or eliminate the use of 

protecting groups. Most importantly, such redox-triggered carbonyl additions enable 

transformations and strategies beyond those accessible via conventional carbanion 

chemistry. Indeed, as borne out in total syntheses of roxaticin,7a bryostatin 7,7b trienomycins 

A and F,7c cyanolide A,7d and 6-deoxyerythronolide B,7e application of these methods have 

availed a “step-function increase” in efficiency – in each case, the synthetic route was 

significantly more concise than in any prior approach.4b These studies brought to light an 

especially powerful protocol for the direct assembly of acetate- or propionate-based triketide 

stereopolyads 2a or 2b involving the bidirectional enantioselective double allylation8a or 

anti-crotylation8b of 1,3-diols 1a or 1b, respectively (eq. 1).8

(eq. 1)

The iconic polyketide ionophore antibiotic (+)-zincophorin (Figure 1),9 which possesses 

potent (≤ 1 ppm) in vivo activity against gram positive bacteria,9c,10 including Clostridium 

coelchii, presented an opportunity to further assess the impact of direct triketide 

stereopolyad generation across diverse polyketide families. (+)-Zincophorin and its methyl 

ester have been the subject of five total syntheses.11,12,13 The shortest route previously 

reported is 21 steps (LLS).11g Here, we report a “more ideal” total synthesis of (+)-

zincophorin methyl ester in 13 steps (LLS) based on direct triketide stereopolyad generation 

via two-directional double anti-crotylation of 2-methyl-1,3-propane diol 1b.

Retrosynthetically, (+)-zincophorin methyl ester was envisioned to arise via convergent 

assembly of Fragments A and B via stereoselective carbonyl addition in accordance with the 

merged Felkin-Anh and Evans models,14 followed by oxocarbenium ion addition to install 

the terminal monoketide Scheme 1. Retrosynthesis of (+)-Zincophorin Methyl Ester. moiety 

using a chiral propionate enolate.11g,16 Fragment A is prepared in 8 steps from (+)-tert-butyl 

D-lactate 3. Key C-C bond formations include Breit’s method for the stereospecific 

substitution of α-hydroxy ester triflates with Grignard reagents to create the C22 

stereocenter,15 stereoselective Wittig olefination,17 which defines the geometry of the 

trisubstituted olefin, and direct redox-triggered anti-crotylation of allylic alcohol 5 to form 

the C18-C19 stereodiad.18 The synthesis of Fragment B takes advantage of the two-

directional double anti-crotylation of 2-methyl-1,3-propane diol 1b to form adduct 2b,7e,8b 

which directly establishes the triketide stereopolyad spanning C6-C10. Cross-metathesis is 
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used to introduce the C12-C13 carbon atoms of allyl alcohol 8, and hydroformylation is used 

to forge the C3-C4 bond of Fragment B.

The synthesis of Fragment A (Scheme 2) begins with the conversion of (+)-tert-butyl D-

lactate 3 to the corresponding triflate, which upon exposure to n-propylmagnesium chloride 

in the presence of substoichiometric quantities of zinc chloride delivers the product of 

substitution with inversion of stereochemistry.15 Reduction of the ester mediated by lithium 

aluminum hydride delivers alcohol 4.19 Swern oxidation of 4 followed by Wittig olefination 

of the chiral α-stereogenic aldehyde provides an α,β-unsaturated ester, which is subjected to 

DIBAL reduction to form the previously reported allylic alcohol 5.17 Direct redox-triggered 

anti-crotylation18 of allylic alcohol 5 forms the C18-C19 bond, delivering the homoallylic 

alcohol 6 with good levels of catalyst-directed diastereoselectivity (5.5:1 dr). Cross-

metathesis of compound 6 with 4-iodo-1-butene occurred uneventfully.20 Minor 

diastereomers generated in the formation of compound 6 are easily separated at this stage. 

Conversion of the C19 hydroxyl to the TES-ether completes the synthesis of Fragment A in 

8 steps from (+)-tert-butyl D-lactate.

To construct Fragment B (Scheme 3), diol 1b is subjected to two-directional double anti-

crotylation followed by iodoetherification to deliver 7.7e,8b Iodoetherification defines the 

chirotopic nonstereogenic center of diol 2b at C8, and serves to differentiate the terminal 

olefin moieties. The pseudo-C -symmetric diol 2b is produced as a single enantiomer due to 

Horeau’s principle,21 that is, the minor enantiomer of the intervening mono-adduct is 

converted to the pseudo-meso-diastereomer.22 In the conversion of diol 1b to adduct 2b, it 

was found that use of α-methyl allyl acetate prepared via acetylation of the corresponding 

alcohol using triethylamine rather than pyridine as base gave the best results. Whereas 

attempted cross-metatheses of 7 with allyl acetate or cis-butene diol di-acetate suffered from 

competing olefin isomerization, the Stewart-Grubbs catalyst enabled conversion of 7 to the 

allylic acetate in 81% yield.23 Bernet-Vasella cleavage24 of the iodoether in methanol 

solvent occurs with concomitant loss of the acetate. Subsequent formation of the acetonide 

delivers the allylic alcohol 8, which is converted to a single diastereomeric epoxide using the 

Sharpless protocol.25 Reaction of the epoxide with Gilman’s reagent delivers compound 9,26 

which incorporates the stereoheptad spanning C6-C12. Hydroformylation of 9 using a 

XantPhos modified rhodium catalyst27 provides the linear aldehyde, which upon exposure to 

methanol in the presence of substoichiometric p-toluenesulfonic acid delivers the pyran 10 
as a mixture of diastereomers at the anomeric position. The major diastereomeric pyran 10 
could be separated by flash chromatography and was converted to the tris(triethylsilyl) ether. 

Exposure to Swern oxidation conditions results in cleavage of the primary TES-ether and 

formation of the aldehyde Fragment B.28

The union of Fragments A and B is achieved through lithiation of the primary alkyl iodide 

Fragment A and subsequent addition to the aldehyde Fragment B.29 Synergistic 1,2- and 

1,3-stereoinduction effects14 were anticipated to enforce highly diastereoselective addition. 

However, under standard reaction conditions using HMPA as additive, the adduct 11 formed 

as a 1:1 ratio of C13 diastereomers. HMPA was necessary to facilitate Li-halogen exchange 

of Fragment A, as its omission resulted in tert-butylation of Fragment B. This was not the 
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case using 4-iodo-1-butene, which underwent addition to Fragment B in ether in 70% yield 

to furnish 2:1 ratio of C13 diastereomers. The diastereomeric ratio did not change upon 

introduction of HMPA, suggesting chelation control was not operative, however, an 

improved 99% yield was observed. The Cram-Reetz and Evans polar models14 assume the 

C11-OSiEt3 moiety should predominantly populate a conformation wherein the C11-OSiEt3 

bond dipole cancels the C13 formyl bond dipole. It appears the negative inductive effect of 

the highly oxygenated C10-C3 moiety erodes this conformational bias, leading to 

diminished diastereoselectivities (Figure 2). Hence, modification of the organolithium 

reagent by chiral 1,2-diamines was investigated as a means of amplifying stereoselectivity.30 

Using tetramethylcyclohexane diamine, a 3:1 molar ratio of diastereomers was obtained, 

which could be separated by flash chromatography. With compound 11 in hand, installation 

of the terminal C3 monoketide moiety was achieved using a chiral propionate enolate,11g,16 

providing the trans-pyran as a single diastereomer. Subsequent methanolysis of the thiazole 

thione from the crude reaction mixture delivered (+)-zincophorin methyl ester, which was 

identical in all respects to literature. In this way, (+)-zincophorin methyl ester, which 

incorporates 13 stereocenters, was prepared 13 steps (LLS) with 4 C – C bonds formed 

using hydrogenative coupling protocols.

Despite enormous progress in synthetic methods development, the vast majority of de novo 

chemical syntheses remain distant from the Hendricksonian ideal.31 This is principally due 

to (a) the separation of redox and skeletal construction events, and (b) the persistent 

requirement of protecting groups. Both deficiencies may be addressed through the design of 

catalytic methods that merge redox and C-C bond formation events,5 especially 

transformations that may be deployed in a site-selective manner, and the new strategies that 

such methods evoke. In the present study, hydrogenative couplings that exploit alcohol-to-

carbonyl oxidation as a driver for carbanion generation,4 are used to directly generate 

triketide stereopoly-ads that would otherwise require lengthy multi-step syntheses. As 

demonstrated here and in prior work,7 these methods have availed a “step-function” change 

in efficiency across diverse contexts, bringing us one step closer to the Hendricksonian 

ideal.31 More immediately, the concise nature of the present route to (+)-zincophorin methyl 

ester will enable access to material that will allow for a more complete investigation into its 

biological properties; studies which are currently underway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(+)-Zincophorin and (+)-Zincophorin Methyl Ester and Summary of Prior Total Syntheses.a

aFor graphical summaries of prior total syntheses, see Supporting Information. Longest 

Linear Sequence (LLS); Total Steps (TS).
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Figure 2. 
Merged 1,2- and 1,3-Stereoinduction Model.a

aR1 = C10-C3 of Fragment B, R2 = C15-C25 of Fragment A.
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Scheme 1. 
Retrosynthesis of (+)-Zincophorin Methyl Ester.
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Scheme 2. 
Synthesis of Fragment A via Direct anti-Crotylation of Allylic Alcohol 5.a

aYields are of material isolated by silica gel chromatography. Enantiomeric excess was 

determined by chiral GLC. See Supporting Information for further experimental details.
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Scheme 3. 
Synthesis of Fragment B via Two-Directional Double anti-Crotylation of 2-Methyl-1,3-

Propane Diol 1b.a

aYields are of material isolated by silica gel chromatography. See Supporting Information 

for further experimental details.

Kasun et al. Page 11

J Am Chem Soc. Author manuscript; available in PMC 2016 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 4. 
Union of Fragment A and Fragment B and Total Synthesis of (+)-Zincophorin Methyl 

Ester.a

aYields are of material isolated by silica gel chromatography. See Supporting Information 

for further experimental details.
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