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Abstract

Image-based dietary assessment has recently received much attention in the community of obesity 

research. In this assessment, foods in digital pictures are specified, and their portion sizes 

(volumes) are estimated. Although manual processing is currently the most utilized method, image 

processing holds much promise since it may eventually lead to automatic dietary assessment. In 

this paper we study the problem of segmenting food objects from images. This segmentation is 

difficult because of various food types, shapes and colors, different decorating patterns on food 

containers, and occlusions of food and non-food objects. We propose a novel method based on a 

saliency-aware active contour model (ACM) for automatic food segmentation from images 

acquired by a wearable camera. An integrated saliency estimation approach based on food location 

priors and visual attention features is designed to produce a salient map of possible food regions in 

the input image. Next, a geometric contour primitive is generated and fitted to the salient map by 

means of multi-resolution optimization with respect to a set of affine and elastic transformation 

parameters. The food regions are then extracted after contour fitting. Our experiments using 60 

food images showed that the proposed method achieved significantly higher accuracy in food 

segmentation when compared to conventional segmentation methods.
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1. Introduction

Diet evaluation is important in the study of a variety of chronic conditions, such as heart 

disease, diabetes, and obesity [1]. Currently, self-report based on dietary recall is the most 

commonly used method. However, this method is inaccurate and biased, especially among 

overweight individuals who often under-report their caloric intake [2][3]. These problems 

not only cause errors in studies that include dietary assessments, but also in the development 

of effective dietary strategies for overweight individuals. Because of the importance of 

accurate dietary assessments in such situations, we have developed a wearable computer 

“eButton” for the objective evaluation of food intake in real-life settings [4][5][6]. The 

eButton is a small, unobtrusive chest fob that can be pinned to clothing on the chest. It 

contains a low-power, high-performance central processing unit, several communication 

interfaces, electronic sensors, and a Linux or Android operating system. As a wearable 

computer, it has many applications that are determined by the selected subset of available 

sensors. In this study of dietary assessment, we use its camera to take pictures automatically 

at a rate of one picture per second during eating events as shown in the leftmost panel in 

figure 1. The image data are stored on a SD memory card for later analysis. With the 

eButton, an individual's diet can be passively recorded without disturbing the subject during 

eating episodes.

Image-based dietary assessment involves several steps (figure 1). First, food objects in 

images are recognized. Although this task is extremely difficult for a computer to 

accomplish, it can be performed easily by the person who previously consumed the food 

within a short period of time (e.g., within several days). Moreover, food objects are 

segmented from a selected image. This segmentation task is currently performed manually. 

In contrast to food recognition, manual segmentation is very time-consuming due to the 

need to follow all food contours using a mouse or a screen-interactive pen. Once food 

objects are segmented, the volume (or portion size) of each food object is estimated. In this 

process, we select a computer generated wire mesh in a shape similar to the food (e.g., a 

sphere for an apple) and fit the mesh to the segmented food object in the image using a 

3D/2D model-to-image registration algorithm [7]. Finally, the food name and volume are 

both provided to a standard nutrient database to obtain information about calories and 

nutrients. Detailed descriptions of these procedures are beyond the scope of this paper but 

can be found in the literature [4]-[11]. Here we focus on the critical problem of food 

segmentation which, when automated computationally, significantly improves the data 

processing efficiency in image-based dietary assessment.

Although there have been several image segmentation algorithms developed and applied to 

quantitative image analysis [12][13], the problem of automatic food segmentation has not 

been resolved due to several complex issues in images acquired from real-life settings. First, 
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food has a variety of colors, textures and geometries, and these features may even change 

substantially among different samples of the same food. It is often difficult to describe food 

servings mathematically and even to specify their boundaries (figures 2(a) and (b)). Second, 

a food container, e.g. a plate, may be printed with decorative patterns that can cause visual 

confusion regarding what is and what is not actual food (figure 2(b)). Third, food may be 

partially occluded or separated in two or more regions by a utensil (e.g., the spoon in figure 

2(c)). As a result, strong edges of the utensil may interfere with the food boundary, causing 

instability in segmentation results. In general, automatic food segmentation from images is a 

very challenging problem. Our goal in this study is to overcome these difficulties and design 

a practical and reliable segmentation tool to support automated image analysis of visual food 

intake records in large-scale, population-based dietary and obesity research.

2. Previous work on food segmentation

Existing image segmentation methods for dietary assessment fall into three categories: 

threshold-based, region-based, and deformable model-based methods. In the first category, 

Mery et al. [15] proposed an integrated segmentation approach using Otsu's thresholding. 

An optimization strategy based on regional contrast was developed to extract food 

boundaries. Kang et al. [16] segmented a number of food items based on color analysis and 

thresholding. A polynomial equation was derived to characterize the food color distribution. 

Unfortunately, since the food often contains components with different and variable colors, 

it is difficult for threshold-based methods to select color patches automatically and group 

them correctly.

In the second category, Sun et al. [17] proposed a region-based method with Sobel boundary 

constraints to segment food images. Morikawa et al. [18] implemented a manually seeded 

region-growing method implemented on the smartphone for personal dietary monitoring and 

evaluation. In general, region-based methods depend on the intensity/color similarity during 

the segmentation process. Similar to the methods in the first category, region-based methods 

have difficulties in identifying food accurately. Frequently, these methods produce several 

separate regions when food is composed of multiple components or placed in a container 

with certain decorative patterns, typically flowers, leafs, or fruits resembling real food 

ingredients in the container.

The representative method in the third category was proposed by Zhu et al. [19] in which an 

active contour model was applied to food segmentation by regional variance minimization 

of RGB color components. He et al. [20] improved segmentation results using a background 

removal procedure. In general, deformable model-based methods incorporate contour shape 

properties to reduce the algorithm sensitivity to non-food regions with similar intensity 

properties. However, this approach is effective only if the background (e.g., a tablecloth or a 

container) in the food image has a single color. This requirement is certainly too restrictive 

in practice.

These food segmentation methods were designed directly in the color domain. While color 

features are useful, we suspect that foods and containers can present similar colors and 

textures, thereby creating significant ambiguities in defining food boundaries. In this paper 
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we propose a novel approach based on “awareness of food saliency” to solve the food 

segmentation problem. An integrated saliency model is developed mimicking a biological 

procedure that the human cognitive system utilizes to automatically select visually attended 

locations. Spatial, color and statistical features of food regions are utilized to constitute a 

saliency domain that enhances food locations and suppresses non-food regions. Then, a 

saliency-aware active contour model (ACM) is developed to automatically segment the food 

boundary. Besides the elastic transformation commonly used in the existing methods, we 

utilize an affine transformation to adjust the model pose in a registration-assisted strategy to 

improve segmentation results.

This paper is organized as follows: Sections 3 and 4 describe details of the proposed 

methods. Section 5 states experimental results and discusses findings of this work before a 

conclusion in the last section.

3. Integrated saliency estimation for food presence

In our design, we utilize a computational model consisting of two stages, a top-down stage 

and a bottom-up stage. In the first stage, we do not detect food directly from images and 

instead, we detect food containers. In this way, the search for edible items from numerous 

input images, which is an extremely difficult task, is reduced to the search for containers of 

simple shapes, which can be managed by the computer. Although the container assumption 

is not always satisfied (foods are occasionally served without a container, in most cases, this 

assumption is valid. Once the food container is detected, we implement the bottom-up stage 

in which various image features are utilized to discover food-like regions, producing a food 

saliency map for further segmentation. The details of the two-stage approach are described 

as follows.

3.1 Top-down stage

3.1.1 Container detection by shape convexity—Except in some rare cases, food 

containers are convex in shape. We thus employ this property for detecting food containers 

[21]. In general, for a convex object, it is always on the same side of the tangent line at each 

boundary point of the object. To carry out this concept, we firstly employ the Canny edge 

detector to obtain the edge information from a given image [22]. Then, a number of square 

windows centered at edge pixels are randomly selected (see figure 3(b)). A trained support 

vector machine with the histogram of gradient as the classifier input is used to discard the 

non-container edge windows, increasing the detection efficiency [21].

Let A = {ai}, i = 1,...n, denote the windows consisting of possible container edges, and P = 

{pj|j = 1,...m} the set of containers. Without loss of generality, we assume that the containers 

are circular plates. Assumed ai belongs to pj, we can divide the entire image into two parts bi 

and  based on the above-mentioned convexity property using the tangent line of ai. The 

line is located at the center and perpendicular to the major gradient direction of ai, as shown 

in figure 3(c). Note that bi is the area on the side of the tangent line in the direction of the 

gradient of the center point in region ai. It thus follows that, for a window ak, k ≠ i, as long 

as ak belongs to pj as well, the condition ( ) is satisfied, where  represents 

the intersection between two conditions. An upper triangular matrix Cn×n, which is used to 
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characterize the relationships between regions, is formed where the (i, k)-th element is given 

by:

(1)

Since matrix C can be unfolded as an undirected graph (ai and ak are connected if cik equals 

one), cliques1 in the graph can be identified to represent the set of candidate plates, denoted 

by H = {hq| q = 1,...l}. This identification is performed using a likelihood function L(hq):

(2)

where sexpected is the expected plate diameter which is given by prior knowledge of user-

serving plate; and Dis(hq) is the maximum distance between two regions ai and ak in hq. 

Each value of likelihood function L(hq) in equation (2), chosen from q = 1,..., l, indicates a 

recognized convex shape. To work on multiple plates, a threshold can be assigned 

empirically to identify plates. In the current study, we focus on the serving plate closest to 

the wearable camera (worn on the eater's chest), from which the foods are the most likely to 

be taken by the eater. Therefore, the clique with the maximal likelihood is selected as the 

target plate for personal dietary assessment. Note that, sexpected is usually assigned as the 

diameter of the serving plate that is the closest one to the eater. We then apply the least 

square fitting method to approximate an ellipse to hq [23], as shown in figure 3(d)).

3.1.2 Food location prior—When a food is placed in a plate, it is more likely (in a higher 

probability) located at the central region of the plate. In addition, when people view a plate 

of food, they have a tendency to pay more attention to the central region of the image [24]. 

Due to these phenomena, we employ a broad Gaussian weighting function FP to suppress 

regions near the border of the detected plate:

(3)

where cx and cy represent the x-y coordinate of the container center; σx and σy determine the 

range of suppression region, and ξ1 is a normalization value. In our study, σx and σy were 

empirically set to 3lx/8 and 3ly/8 respectively, where lx and ly are the lengths of major and 

minor axes of the detected ellipse.

3.2 Bottom-up stage

With food container detected and its central region emphasized, we implement the bottom-

up stage to construct a salient map.

3.2.1 Color contrast—We use color contrast to characterize the attractiveness of a region 

since it indicates the difference of the objects in the region against their surroundings [25]. 

1A clique is made if for every two vertices, there exists an edge connecting them.
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First, four broadly-tuned color channels including red R = r − (g + b) / 2, green G = g − (r + 

b) / 2, blue B = b − (r + g) / 2, and yellow Y = (r + g) / 2 − r − g / 2 – b are created (negative 

values are set to zero), where r, g, b are the color values in the original image. Each of the 

broadly-tuned channels yields maximal response for pure, fully saturated hue to which it is 

tuned, and yields zero response to both black and white inputs. For example, if a pixel 

contains both red and green color values it will have a smaller broadly-tuned red response 

than if it only has red color. The four channels are utilized to create Gaussian pyramids R(σ), 

G(σ), B(σ), and Y(σ), where σ∈[1...5], for center-surround operations. Then, we use the four 

color channels to construct the double-opponent color images RG and BY:

(4)

(5)

where {−} denotes across-scale difference between two images which is obtained by 

interpolation to the finer scale and point-by-point subtraction, and c∈{1,2} and s∈{3,4,5} 

indicate the scales of the center and surround respectively. Finally, the color contrast map 

CC is computed through across-scale addition {+}, where each map is reduced to scale two 

and added point-by-point:

(6)

where N is a normalization operator which globally promotes maps with a small number of 

strong peaks, while globally suppressing maps with numerous comparable peaks (“CC” 

panel in figure 4). The details of implementing the normalization operator can be referred to 

Itti's study [25].

3.2.2 Color abundance—Color is important in food preparation and presentation since a 

colorful food receives more visual attention. In order to reflect this attention, we estimate 

color abundance using the entropy of local chromatic distribution:

(7)

where W is the window size used for evaluating the color abundance, and fc is the 

probability of a color c appearing in the local window. Since, in the eButton case, the 

variation of the distance between the camera and food is limited, a fixed W can be 

empirically determined (W was set to 20 in our experiments). The calculation of fc is 

performed on the 128-bin RGB color space. Equation (7) is used to characterize the color 

abundance of a local region so that boundary structures that separate colored patches can be 

identified (“CA” panel in figure 4).

3.2.3 Spatial arrangement—Although not universally true, a food element, in terms of 

spatial distribution, is usually centralized and compact, as compared with non-food regions, 
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e.g. decorating patterns on a plate. Therefore, a regional compactness map RC is defined 

based on color-weighted spatial variation [26]:

(8)

where Q is the number of image pixels; c(x, y) = [r(x, y) g(x, y) b(x, y)]T represents the color 

vector at pixel (x, y) in the RGB color space; x’ and y’ indicate the averaged position of a 

region with similar color to the pixel at (x, y) (Equation (9)); and w is a 3-D Gaussian 

function measuring the color similarity between two pixels (Equation (10)).

(9)

(10)

where σc controls the bandwidth of the weighting function (empirically assigned as 12 in our 

experiments), and ξ2 is a normalization factor to ensure the summation of pixel weights to 

be one. In our implementation, images were down-sampled by 23 to accelerate computation. 

Our experiments indicate that the compactness map is helpful in enhancing food elements 

and suppressing printed patterns on a plate (“RC” panel in figure 4).

3.3 Integrated saliency map

After implementing the top-down and bottom-up saliency estimation stages, we generate the 

final saliency map FS by

(11)

The entire saliency estimation process is exemplified in figure 4 in which the effects of each 

step of computation can be observed. The original food image presents complicated colored 

patterns on the container and a certain interference from a fork. It can be seen that the top-

down stage can directly put eyes’ focus on the food container, and each of the three visual 

attention features capture respective salient information from the image. A region is hence 

considered food-like if it is centrally located, attractive, structural and compact in the 

resulting saliency map.

4. Saliency-aware food segmentation

In this section we present a registration-assisted deformation approach to segment the food 

boundary based on the saliency map.
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4.1 Primitive representation

The conventional ACM manipulates a parametric curve by adjusting its shape parameters 

(i.e. the coordinates of contour points) based on gradient descent optimization [27]. 

However, the local search process for solutions is highly dependent on the given initial 

primitive. We therefore use an ellipse as the primitive but add a set of pose parameters to 

gain flexibility in curve manipulation. The proposed method parameterizes a deforming 

primitive contour as

(12)

where Ωi and Ωi+1 represent the evolving contours in iterations i and i+1; Θ = (tx, ty, θ, sx, sy) 

is the set of pose parameters including two displacements, one rotation angle and two axial 

scales of the elliptic primitive; T is an affine transformation matrix; n(Ω(s)) represents the 

outer-pointing norm (in radial direction) of the primitive contour at Ω(s), and μs is the 

displacement along n(Ω(s)). Note that, in equation (12), the global pose is determined by Θ, 

and the local shape is controlled by a set of shape parameters M = {μ0, ..., μs,..., μ1}. In the 

first iteration, T(Θ) = I3, M = {0}, and the primitive is an ellipse with center position (cx, cy) 

and axes (0.5*lx, 0.5*ly). The regions inside and outside the contour Ω are denoted as Ωin 

and Ωout respectively. The proposed method iteratively and dynamically optimizes the 

contour by modifying Θ and M individually in two separate steps as follows.

4.2 Primitive registration using regional saliency

A regional energy for deriving the pose parameters is designed based on the minimization of 

saliency inhomogeneity inside and outside the contour with respect to Θ:

(13)

where (x, y) represents the 2D coordinate of a pixel, and μin and μout are calculated by

(14)

(15)

Equation (13) is viewed as a modified Chan-Vese contouring energy with additional 

emphasis on the inner region (food) saliency [28]. It measures the variance of regional 

contrast rather than the gradient strength at local boundaries. Moreover, the optimization is 

performed on the parametric domain by using the Powell's multidimensional direction set 

method [29]. We are hence able to obtain good registration results and to provide a good 

initial condition for the subsequent contour deformation.
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4.3 Shape deformation using boundary saliency

Since there are still certain shape deviations between the registered primitive and the food 

boundary, we hence perform model deformation by solving the shape parameter vector M 
that minimizes the energy function E2:

(16)

where Eedge , Esmooth, and Eshape are, respectively, the edge energy, smooth energy, and 

shape energy; α and β are weights determining the relative importance of the energies. We 

formulate the edge energy based on weighted saliency gradients around the food boundary:

(17)

(18)

where L is used to define the neighborhood around the contour, and σd is a factor 

determining the weight for the saliency of inner neighborhood. The edge energy is used to 

attract the contour to the position having both a strong saliency gradient and a high saliency 

value inside the model contour.

The smooth energy indicating the local shape curvature of the deformable model is defined 

as

(19)

where Ω(s−1) and Ω(s+1) represent the neighboring points of Ω(s) on the contour model. 

Finally, the shape energy is given by

(20)

This energy aims to maintain the model curvature similarity in adjacent iterations. 

Otherwise, a large value is produced so that E2 in equation (16) will be penalized. The edge 

energy aims to accurately capture the desired food boundary, while the smooth and shape 

energies constrain the degree of contour deformation to avoid excessive distortions.

In implementation, we speed up the contour fitting process by a multi-resolution Gaussian 

pyramid. A 4-level pyramid of the saliency map is constructed by scaling down the original 

map by half between adjacent levels. We let the primitive evolve in the coarsest image using 

the previously described method. Once the primitive stabilizes at the current resolution, we 

proceed to the adjacent finer scale and let the primitive evolve until it stabilizes again at this 

resolution, as shown in figure 5. This process repeats until the finest resolution is reached. 
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Along with the change of coarse-to fine image pyramid, the value of α (weight of the 

smooth energy) is decreased progressively from 0.4 to 0.2, the value of β (weight of the 

shape energy) is decreased progressively from 0.4 to 0.2, and the weight of the edge energy 

is set to (1−α−β). In each level of the pyramid, the shape evolution is stopped when the sum 

of the changed points in the contour between the previous and current iterations is less than 

3, or when the number of iterations reaches 40. Our experience indicates that the primitive in 

each scale stabilizes quickly, normally in only a few iterations.

5 Results and discussions

5.1 Data sets

With institutional review board (IRB) approval, five adult human subjects participated in our 

experiments. Each of them wore an eButton on top of the chest to record eating activity as 

shown in the leftmost panel in figure 1. To ensure the food(s) can be imaged at such a short 

distance, a 105° wide angle camera was equipped within the eButton. The acquired image 

sequence was saved on an SD memory card within the eButton. After recording, the data 

were loaded to a computer where images without motion blur artifacts and missing parts in 

the plate of food were selected to test the proposed algorithm. In order to gain a balance 

between power consumption and image quality, the eButton was programmed to take one 

picture per second in resolution of 640 × 480 pixels.

Besides the eButton-recorded images representing the 30 eating events, additional 30 food 

images were randomly selected from the Jawbone database [14]. We used this database to 

test the feasibility of our algorithm for images acquired by other devices such as cell phones 

since the database contained a large number of food images taken by cell phones all over the 

world. For each of the 60 test images, we applied our algorithm to segment food 

automatically without human involvement. Then, we evaluated food segmentation accuracy, 

compared to the results of conventional methods, and analyzed the performances in different 

components of the algorithm, to be detailed below.

5.2 Accuracy evaluation of food segmentation

A qualitative evaluation was performed by visually inspecting the quality of fit of the 

automatic results to the food boundaries. Figure 6 includes both the eButton (top part) and 

JawBone (bottom part) images, where the original and the segmented images are shown on 

the left and right sides, respectively. Rectangles and arrows are utilized to indicate the 

difficulties in segmentation described in Section 1. A rectangle, solid arrow, and dashed 

arrow indicate, respectively, complex components and appearance, plate with printed 

patterns, and occlusion by non-food objects.

In addition to qualitative evaluation, the computational results were compared against the 

manual results. In each manual case, two research participants segmented the same image 

independently using a mouse on a 24-inch computer screen. The results were averaged as 

the ground truth. The comparison was based on three metrics: the mean error (ME), relative 

mean error (RME) and the dice similarity coefficient (DSC) [30], given by
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(21)

(22)

(23)

where ai represents the i-th point of the total N points on the automatic contour; bj is the j-th 

point of the total P points on the manual contour closet to ai; A and B are the sets of pixels 

classified as the foods in the automatic result and the ground truth, respectively. Briefly, the 

ME, RME and DSC evaluate, respectively, the contour distance deviation, the ratio of 

distance deviation to the food boundary, and the spatial dependency between the two 

segmented food regions. The evaluation results are summarized in Table 1. The average 

MEs were less than 7 pixels and the RMEs were smaller than 1%, which indicated a small 

segmentation error. Moreover, the obtained average DSCs for both data sets (93.46% and 

95.32%) were much greater than 70%, which has been reported to indicate a strong overlap 

between automatic results and ground truth [30].

5.3 Comparison study of segmentation methods

Although there have been numerous color based image segmentation methods, those 

specifically designed for food segmentation are rare. Three methods were found from the 

literature, including Otsu's thresholding (OT) [31], Chan-Vese level set evolution (CVLSE) 

[28], and grab cut (GC) [32]. We thus implemented them to compare with our method. Since 

the existing methods do not provide solutions for dining container extraction, they will very 

likely detect background objects falsely as food, thus disturbing the comparison. To avoid 

this problem, we limit the domain of segmentation to the dining plate detected using the 

algorithm described in Section 3.1.1. As in the previous case, we compared the new and 

existing methods both visually and quantitatively. The row in figure 7(a) shows four input 

images from eButton (first two images) and the JawBone database (last two images). The 

segmentation results using OT, GC, and our methods are shown, respectively, in rows (b), 

(d) and (e) with corresponding DSC values. It can be observed that, in both visual and 

quantitative measures, the proposed method is clearly superior.

In this comparative study, the OT method was based on the optimal binarization of the 

image intensity histogram, while the CVLSE method evolved the level set curve relying on 

the color homogeneity. Both methods were sensitive to the color distribution. For example, 

in the 1st, 3rd and 4th cases in figure 7, they produced fragmental regions. On the other hand, 

the GC method targeted an optimal cut of the undirected graph to minimize an image-based 

energy function. It further considered the classification consistency between pixels in the 

foreground and background, so that the segmentation results were improved over the OT 

and CVLSE methods. Nevertheless, the GC method required a careful manual determination 

of a region of interest that must cover the target object and exclude the background. This is 
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time-demanding for users to handle a large number of food images. In addition, the three 

major problems described in Section 1 were not solved since the food boundary was still 

defined purely in the color domain in terms of GC energy. The segmentation results were 

hence prone to deviations in the presence of complex container patterns or textures.

Compared to the three existing methods, the proposed method combines top-down and 

bottom-up features, including location prior, color contrast, information abundance, and 

spatial arrangement, to properly characterize food saliency in the image. For example, the 

color contrast in Section 3.2.1 can effectively reduce the saliency of strong lighting 

reflection or silver utensils which have quite limited color attention (see the 1st, 2nd, and 3rd 

examples in figure 7). Moreover, the spatial arrangement feature worked promisingly on 

eliminating the saliency of container decorating patters (see the 3rd and 4th examples in 

figure 7). Hence, the proposed method yielded more desirable segmentation results, as 

indicated by a high values of the DSC between the ground truth and computed boundaries.

5.4 System performance evaluation

In this experiment we study how segmentation accuracy is influenced by the individual 

processing components utilized in the proposed method. Two key components, primitive 

registration and ACM deformation, were examined using four input images shown in the left 

column of figure 8, and the ME, RME and DSC were evaluated using the standard ACM 

and the registration-assisted ACM. Both methods were given the same initial conditions. 

The segmentation results (after average for the four input images) of the standard ACM 

were 8.443 ± 5.203 mm, 0.8 ± 0.5 %, and 92.385 ± 4.974, respectively, for ME, RME, and 

DSC, while the corresponding values for the registration-assisted ACM are 3.215 ± 0.323 

mm, 0.3 ± 0.1 %, and 96.703 ± 1.239 %. Clearly, these results indicate that that 

improvement by the registration step is significant.

The conventional ACM framework searches for solutions mostly based on gradient descent 

or greedy optimization within a local region [33]. If the initial contour is far away from the 

target boundary, while the descending step is not well assigned or the search line does not 

reach the target, the conventional ACM tends to fail to converge. In the proposed method, an 

elliptical primitive is initialized automatically at the center of container. Then, the method 

registers the primitive with the salient region by adjusting its pose parameters in the 

parameter space. Because the registration step is able to drive the primitive close to the food 

boundary, the subsequent standard ACM deformation thus converges to the desired solution 

more easily. The results of the performance evaluation have also confirmed this argument.

5.5 Limitations and future works

We pointed out that our segmentation algorithm is not universally effective. It may have 

certain limitations. The proposed plate detector is designed based on the combination of 

both convex shape and edge information. Theoretically, as long as the edge segments of the 

plate can be extracted from the background, the detector should be capable of identifying the 

plate, even in the case of white plate on white table where the plate contour may be observed 

partially from the presence of a certain shadow or a small contrast difference. In the 

extremely tough case where the contrast between plate and background is so poor that the 
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plate edge is not observable, the proposed edge-based detector may fail. Preprocessing steps 

such as color contrast enhancement could be incorporated, prior to plate edge detection, in 

order to handle weak image contrast. Moreover, the used convex shape property is 

applicable to not only the circular shape, but also rectangular and many other shapes. The 

current circular plate detection protocol could be extended to detect rectangular plates by 

replacing the least square ellipse fitting method [23] with other geometric shape detection 

methods (e.g. using tiled or generalized Hough transform to approximate a parallelogram to 

candidate convex shapes). A future investigation can be addressed with the hope to expand 

the function of our system to detecting containers with ellipse, rectangular, and other convex 

shapes.

In addition, the method introduced in this paper can automatically generate accurate food 

contours from an eating image by starting from dining plate detection. However, many foods 

are consumed without using a circular plate. In these cases (e.g., figure 8(a)), our 

segmentation method can still be used but requiring a simple manual sketching step (e.g., 

figure 8(b)). Instead of using equation (3), the food location prior was calculated using the 

distance transform as the weighting function [34]. Following the same segmentation 

algorithm, food boundaries can be identified satisfactorily (figure 8(c)). These examples 

indicate that our method is still applicable when a plate is absent from the image. However, 

due to the use of hand-sketching, the segmentation process is not strictly automatic in these 

cases.

When the food is held by fingers during the eating process, a large segmentation error may 

occur. In this case, the hand itself represents a compact region in the image, as the case of 

some food. Therefore, the algorithm will likely assign a high saliency value to the hand, 

confusing the food segmentation process. In order to make the system more practical and 

convenient, a user-friendly interface, not discussed in this paper, has been developed in our 

software to allow a fast visual scan and make adjustments on the automatic segmentation 

results. In the future, the method presented in this work will be combined with our ongoing 

investigation on automatic food recognition, aiding in more efficient and objective dietary 

studies for a large population using advanced wearable computers, and ultimately informing 

people about their caloric intake automatically.

6 Conclusion

This paper has presented a new saliency-aware segmentation method for personal dietary 

assessment using food images. An integrated approach with top-down and bottom-up visual 

attention mechanisms has been developed to generate a food saliency feature domain that 

automatically enhances food regions. The boundary saliency values and container shape 

constraints have been incorporated into a deformable model in the segmentation process. A 

registration-assisted deformation scheme has been presented to improve the segmentation 

results. This saliency-aware segmentation method can overcome the difficulties caused by 

complex food configurations and confusing non-food regions, such as decorating patterns on 

the food container and the use of utensils (e.g., spoons or forks). Our experiments have also 

shown that the proposed method improves food segmentation results significantly when 

Chen et al. Page 13

Meas Sci Technol. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared to the existing methods. The proposed saliency-aware method eliminates the 

tedious manual segmentation task, providing a powerful tool to support obesity research.
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Figure 1. 
Personal dietary assessment using a wearable computer “eButton.” A subject wears an 

eButton on his shirt to record eating event. The acquired food image sequence was then 

processed by food recognition, segmentation, and volume measurement to generate a dietary 

report. Patient-specific feedback can thus be provided to the user.
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Figure 2. 
Major difficulties in automatic food segmentation; (a) multiple food components in complex 

and varying configurations; (b) colored decorative patterns on plates; (c) occlusion by non-

food objects. Photos (b) and (c) are from [14].
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Figure 3. 
Container detection using shape convexity; (a) input food image; (b) randomly selected edge 

windows; (c) candidate window selection based on tangent line separation; (d) detection 

result of the plate.
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Figure 4. 
Integrated food saliency estimation; given a food image, a top-down saliency search is 

performed, followed by a bottom-up visual attention calculation. The results are integrated 

to obtain the final saliency information. The original food photo is from the JawBone 

database [14].
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Figure 5. 
Saliency-aware food segmentation on multi-resolution pyramid.
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Figure 6. 
Automatic food segmentation results obtained by applying the proposed saliency-aware 

approach to the eButton and JawBone data sets.
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Figure 7. 
Comparison of segmentation methods; (a) original images, in which the first two rows 

belong to eButton data and the others are from JawBone database; (b) results of Otsu's 

thresholding method; (c) results of Chan-Vese level set evolution; (d) results of grab cut; (e) 

results of the proposed method. Arrows indicate the difficulties appearing in these examples.
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Figure 8. 
Examples of applying the proposed method to food images (JawBone) without a contianer 

or with an unknown shaped container; (a) original images; (b) easy user drawing for regions 

of interest; (c) final segmentation results.
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Table 1

Segmentation accuracy for the eButton and JawBone data sets evaluated using the mean error, relative mean 

error, and dice similarity coefficient in (mean, standard deviation).

Data Set ME (pixel) RME (%) DSC (%)

eButton (30 images) (4.397, 1.708) (0.751, 0.259) (93.463, 2.025)

JawBone (30 images) (6.542, 3.133) (0.483, 0.237) (95.329, 1.906)
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