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Introduction
Approximately 1,000 species of the fungal phyla Microsporidia, Chytridiomycota, Ento-
mophthoromycota (order: Entomophthorales), Basidiomycota, and Ascomycota are known to
infect and kill insects [1]. Of these, species such as Beauveria bassiana andMetarhizium robert-
sii (Ascomycota: Hypocreales) are well-studied models for exploring the mechanisms of fun-
gus–insect physiological interactions, and they are used as biological controls for insect pests
[2]. Entomopathogenic Hypocreales are phylogenetically closely related to plant pathogens
and endophytes [3], and their sexual stages belong to Cordyceps sensu lato [4]. However, these
species are taxonomically diverse and differ from each other considerably in their genomic fea-
tures [5–8] and, consequently, their host ranges, infection cycles, and life strategies. Fungal
infection normally, but not always, results in the death of an insect in situ. The parasitic fungi
such as the host-specific pathogen Ophiocordyceps unilateralis sensu lato can control insect
brains and manipulate their behavior to reach death locations that are optimal for spore dis-
persal, the so-called fungal extended phenotype [9]. On the other hand, on top of physiological
immune surveillance, insects (especially social insects such as ants and termites) can smell and
avoid fungal pathogens, groom each other to clear pathogenic spores, generate a fever response,
or die well away from their nestmates, which is termed behavioral or social immunity [10,11].
Either side of these interactions will benefit from behavioral changes in insects that maximize
their adaptive fitness. In this paper, both types of insect behavior alternations are reviewed, and
the underlying mechanisms are discussed.

The Fungal Infection Cycle and Host Specificity
Entomopathogenic fungi recognize and infect insects through the spore adhesion and forma-
tion of appressoria that penetrate the cuticle (Fig 1A). After reaching the hemocoel (body cav-
ity) of an insect, fungal filaments will switch into yeast-like cells that undergo budding for
rapid propagation and counteract the immune response of the hosts (Fig 1B). For the infection
cycle to complete, dead insects must be either mycosed to produce asexual conidial spores (Fig
1C) or colonized to form a fruiting body (Fig 1D and 1E) to yield sexual spores for the next
infection. Alternatively, insect pathogens such asM. robertsii with a broad host range can form
a root–rhizosphere relationship to transfer nitrogen from dead insects to a plant and acquire
carbon in return [12]; this is a strategy for long-term persistence in the soil when potential
hosts are absent.

Different species of parasitic fungi have different insect host ranges. Generalist species, such
as B. bassiana andM. robertsii, can infect hundreds of insect species of different orders,
whereas species such asM. acridum (specific to locusts and grasshoppers) [3,5], Cordyceps
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militaris (specific to caterpillars) [6], and O. unilateralis sensu lato (specific to formicine ants),
only infect a narrow range of insects [13,14]. In particular, O. unilateralis is a species complex
that includes different species being highly host specific, which is close to a level of one fungus
versus one ant species [13–15]. In terms of fungal host-specificity evolution, the study of
Metarhizium species with different host ranges has shown a directional trajectory of speciation
from being specialists to becoming generalists, and the process has been coupled with protein
family expansions [3]. In particular, the number of divergent G-protein coupled receptors is
significantly correlated with host specificity [3,5].

Control of Insect Behavior by Parasitic Fungi
Parasites often manipulate the behavior of their hosts; for example, crickets or grasshoppers
commit suicide by drowning when infected by the parasitic hairworm Spinochordodes tellinii
[16]. A striking death grip behavior has also been observed in carpenter ants (Camponotus
spp.) following infection by the parasitic fungus O. unilateralis [9]. The infected, moribund
ants essentially behave like zombies; they walk alone and erratically climb to a certain height in
the vegetation (approximately 25 cm above the soil surface). They bite leaf margins in rainfor-
ests and twigs in temperate woods and transition from wandering to biting takes place syn-
chronously around noontime (within 11:00–14:00 h) possibly in association with a solar cue
[13,17]. The fruiting body then erupts from their heads (Fig 1D). Likewise, the caterpillar fun-
gus O. sinensis specifically infects the larvae of soil-dwelling ghost moths (Hepialus spp.) and
maintains a symbiotic relationship for up to five years [8]. Before mummifying its host, the
fungus drives a larva close to the surface of the soil (approximately 1–3 cm), and the fruiting
body then grows from the caterpillar’s head (Fig 1E). Infections by obligate Entomophthorales
pathogens could also lead to similar “summit” diseases, i.e., the infected insects climbing to an

Fig 1. Micro- andmacrophenotypes related to fungal infection and colonization of insect hosts. (A) Appressorium (AP) formation concurrent with
mucilage production byM. robertsii on an insect cuticle 18 h after inoculation; CO: conidium; bar: 5 μm. (B) Formation of anM. robertsii hyphal body (HB) in a
locust hemocoel 36 h after infection. Arrows point to the contraction rings formed for yeast-like budding; HE: hemocyte; bar: 5 μm. (C) Locust cadaver killed
and mycosed by the asexual spores of the specific pathogenM. acridum. (D) Zombie ant. This carpenter ant (Camponotus sp.) was killed and colonized by
O. unilateralis to form sexual fruiting body (stroma), which erupted from the insect’s head. The insert shows the front of the ant, which was holding tightly to
the leaf before its death (courtesy of and copyright by Daniel Winker). Arrows indicate perithecial plates. (E) Caterpillar fungus. A ghost moth (Hepialus sp.)
larva infected byO. sinensis remained close to the soil surface with its head up in death, and the stroma erupted from the insect’s head (arrow) (courtesy of
and copyright by Daniel Winker).

doi:10.1371/journal.ppat.1005037.g001
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elevated position before death [18]. Such pathogen-controlled behavioral changes benefit the
fungi by maximizing spore transmission efficiency to begin the next infection cycle.

Inducement of Insect Behavioral Immunity
In contrast to being passively manipulated, insects can actively avoid and combat parasitic fun-
gal infections through a behavioral or social immune response [19]. This especially occurs in
social insects such as honeybees, ants, and termites, which can more easily compromise their
relatively fewer antimicrobial peptide genes than nonsocial insects [20,21]. The hygienic behav-
iors of honeybees, ants, and termites, such as mutual grooming, can be triggered by the odor of
Metarhizium fungal spores and provide behavioral resistance to the infection [22,23]. Other
studies have indicated that ant allogrooming is coupled with chemical disinfection through the
emission of formic acid, which reduces the viability ofMetarhizium spores [24]. In termites, a
salivary pleiotropic protein containing both a pattern recognition receptor and a β(1,3)-gluca-
nase antimicrobial effector domain is used as a nest-building material to protect colonies
againstMetarhizium or bacterial infection [25]. Behavioral prophylaxis can also occur through
social withdrawal and death in isolation. For example, garden ants (Lasius neglectus) infected
byM. anisopliae stay away from the brood chamber, and moribund ants cease social contact
with their nestmates and leave their nests hours or days before death [23]. So, in contrast with
the zombie ants manipulated by O. unilateralis (Fig 1D), dying away from the colony is an
active and altruistic response of fungus-infected ants. Density-dependent prophylaxis also
occurs in locusts, but desert locusts (Schistocerca gregaria) actively raise their body temperature
to inhibitM. acridum infection [26]. In addition, elevated physiological immune-surveillance
has been observed in gregarious locusts, which enabled the locusts to collectively become more
resistant toMetarhizium infection than solitary individuals [27].

Remaining Secrets behind the Fungal Manipulation of Insect
Behavior
As indicated above, behavioral alterations during fungus–insect interactions are diverse, but
generally, host-specific and obligate pathogens manipulate insect behavior while the spores of
generalist species can trigger active host behavioral immunity. Particular efforts including com-
parative proteomics, transcriptomics, and metabolomics have been undertaken to tentatively
unravel the molecular mechanisms underlying fungal hijacking diseases [13,28]. However,
unlike the single gene of a baculovirus (egt [ecdysteroid UDP-glucosyltransferase]) that can
inactivate the gypsy moth molting hormone and thereby promote the summit disease [29] and
a protein tyrosine phosphatase (ptp) of baculovirus that functions as a virion structural protein
to facilitate virus infection of insect brain tissues to induce enhanced locomotory activity
(ELA) [30], the key factor(s) involved in the fungal control of insect behavior is still unknown.
Our genome survey indicated that a viral egt-like gene is not present, but a single copy of PTP
domain-containing protein-encoding gene exists in the genomes of insect-parasitizing fungi,
e.g., MAA_02506 ofM. robertsii and BBA_03722 of B. bassiana. It remains to be determined
whether the interference with hormone turnover or virus-like PTP-mediated ELA effect occurs
during fungal infections. In addition, the genomes of parasitic fungi encode an array of line-
age-specific, effector-like polypeptides as well as the gene clusters involved in the biosynthesis
of small metabolites [3]. It has been found that the insecticidal cyclopeptide destruxins pro-
duced byMetarhizium could be used by the fungus to evade insect immunity, and its ability to
produce a toxin is connected with host specificity [31,32]. The findings suggest that fungi
could deploy small chemicals to alter insect physiology.
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As in mammals, the dopamine (DA; a catecholamine neurotransmitter)-signaling pathway
plays a conserved role in the modulation of invertebrate behavior [33]. Coupled with cuticle
melanization, the up-regulation of DA-biosynthetic genes in the head of a locust coincides
with the behavior change from solitary to gregarious [34]. DA has also been shown to contrib-
ute to behavior change and social interactions in ants [35]. An injection of biogenic amines
into red wood ants (Formica polyctena) demonstrated that serotonin could stimulate aggressive
behavior, while DA administration triggered mandible-opening and biting behaviors directed
at foreign insects [36]. As indicated above, the mandibles of zombie ants usually penetrate
deeply into plant tissues [9], so it is likely, although unconfirmed, that fungal infection could
alter the accumulation of DA and other chemicals in insects, thereby causing precise behavioral
manipulation.

Future Directions
Alterations of host behavior during fungus–insect interactions are diverse, intricate, and of
great scientific interest. Passive or active behavioral changes in insects are reminiscent of evolu-
tionary adaptations that either promote cross-kingdom control by fungi or altruistic behavior
by the hosts. There are still significant gaps in our understanding of the molecular mechanisms
underlying behavioral alterations in insects during their interactions with fungi. Due to the tax-
onomic diversity of both insects and fungi, the molecular machinery involved in insect behav-
ior changes could vary among the interacting species pairs or function on a case-by-case basis.
The establishment of an ideal model system (e.g., the zombie ant), the acquisition of genomic
information, and the deployment of the knowledge and techniques of the sciences of fungal
genetics, secondary metabolism, chemistry, and insect physiology and neurology would help
uncover the biological secrets behind changes in insect behavior.
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