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Abstract

Substance use and abuse begins during adolescence. Male and female adolescent humans initiate 

use at comparable rates, but males increase use faster. In adulthood, more men than women use 

and abuse addictive drugs. However, some women progress more rapidly from initiation of use to 

entry into treatment. In animal models, adolescent males and females consume addictive drugs 

similarly. However, reproductively mature females acquire self-administration faster, and in some 

models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both 

reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors 

(personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment 

especially peers and family) which influence the progression from initial use to abuse., Many of 

these important differences emerge during adolescence, and are moderated by sexual 

differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated 

processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances 

impulsivity and sensation seeking in both males and females. Several protective factors in females 

also influence initiation and progression of substance use including hormonal changes of 

pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/

sensation seeking. Same sex peers represent a risk factor more for males than females during 

adolescence, while romantic partners increase risk for women during this developmental epoch. In 

summary, biologic factors, psychiatric co-morbidities as well as personality and environment 

present sex/gender-specific risks as adolescents begin to initiate substance use.
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1. Introduction: Sex/Gender Differences in Substance Use and Abuse in 

Humans

The term sex/gender will be used throughout this review to indicate that both a person’s 

biologic sex as well as her or her gender role influence the development of substance use or 

abuse. It will begin with an overview of sex/gender differences in drug use patterns and a 

description of the emergence of these patterns during development. Then there is a brief 

review of factors which contribute to the initiation and progression of drug use followed by 

the main body which describes how sex/gender influence the major factors influencing 

initiation of substance use. The review focuses on adolescence, as this is the developmental 

epoch during which substance use begins in human populations. It will emphasize 

commonalities driven by developmental stage across cultures and geographic location, as a 

complete exploration of cross-cultural differences in initiation of sex/gender differences in 

substance abuse is beyond the scope of the present review.

“Adolescence” throughout is considered to be the developmental epoch between childhood 

and adulthood (Spear, 2000). It is the development period when animals attain their adult 

physical potential, become reproductively competent and undergo the final stages of 

cognitive development. Puberty occurs during adolescence and profoundly influences the 

physical and cognitive changes that occur during this time (Blakemore, Burnett, & Dahl, 

2010; Romeo, 2003; Romeo, Richardson, & Sisk, 2002; Sisk & Foster, 2004; Veldhuis et 

al., 2005), However, it is only a component of the changes that occur. For human, this 

occurs between 11–14 in females, and slightly later, between 13–16 in males (Parent et al., 

2003). Similarly in rodents, pubertal development in female rodents occurs abruptly at about 

a month of age when females have their first estrus cycle, while males gradually attain adult 

reproductive capacity gradually over the second month of life (Ojeda, Andrews, Advis, & 

White, 1980). Many behavioral and neurobiologic changes that influence the initiation and 

progression of substance use occur during adolescence, and a primary goal of this review is 

to describe which of these are influenced importantly by the endocrine changes associated 

with puberty.

2. Sex Differences in Substance Use and Abuse in Humans

According to the most recently published National Household Survey on Drug Use and 

Health (2013), men in the United States use more of every category of psychoactive drug 

than women, including alcohol, tobacco, marijuana, cocaine, methamphetamine, 

prescription stimulants, heroin and pain relievers ("National Household Survey on Drug Use 

and Health," 2013). Differences are greatest at high levels of consumption: two to three 

times as many males as females report alcohol, marijuana, stimulant or narcotic abuse or 

dependence. Disparities are smallest for use of pain relievers and prescription stimulants, for 

which men and women report close to the same amount of use. Men consume more alcohol 

than women and they are disproportionately represented in the highest drinking fraction of 

the population (Holdcraft & Iacono, 2002; "National Household Survey on Drug Use and 

Health," 2013; Wilsnack et al., 2000). Men are more likely to become alcohol dependent 

than women, although rates of alcohol dependence are equalizing (Grant et al., 2004; Health, 
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2005; Kerr, Greenfield, Bond, Ye, & Rehm, 2009; Keyes, Grant, & Hasin, 2008; Simons-

Morton et al., 2009; York, Welte, Hirsch, Hoffman, & Barnes, 2004).

The gender disparity in drug and alcohol use is not so obviously male dominated as it 

appears. These numbers are equalizing in younger age cohorts world-wide (Degenhardt et 

al., 2008; Geels et al., 2013; Johnson & Gerstein, 2000; Kerr et al., 2009; Keyes et al., 2008; 

Pitel, Geckova, van Dijk, & Reijneveld, 2010; York et al., 2004) and gender differences are 

somewhat exaggerated in college students, an over-sampled population, compared to non-

college attending late adolescents (Bingham, Shope, & Tang, 2005; White, Kraus, & 

Swartzwelder, 2006). Although women on average drink fewer drinks at a time, they attain 

higher blood ethanol concentrations (BECs) for a given dose of alcohol even when dose is 

adjusted for body weight (Frezza et al., 1990; Mumenthaler, Taylor, O'Hara, & Yesavage, 

1999; Whitfield & Martin, 1994). In the few studies which have evaluated BEC in people 

who are drinking voluntarily, women and men drank to comparable BECs (York, Welte, & 

Hirsch, 2003; York & Welte, 1994). Although more men than women smoke cigarettes, 

women on average smoke more cigarettes than men, have more trouble quitting and 

experience more intense withdrawal symptoms (O'Dell & Torres, 2014)

These drug use statistics parallel reports of sex/gender differences observed in laboratory 

studies of self-administration and subjective effects of drugs in humans. In laboratory 

studies, men reported more positive subjective effects of psychostimulants, cannabinoids 

and narcotics than women (Anker & Carroll, 2011; Becker & Hu, 2008; Carroll & Anker, 

2010; Carroll, Lynch, Roth, Morgan, & Cosgrove, 2004; Evans & Foltin, 2010; Evans, 

Haney, Fischman, & Foltin, 1999; Fattore, Altea, & Fratta, 2008; Fattore, Fadda, & Fratta, 

2009; Lynch et al., 2008; Lynch, Roth, & Carroll, 2002; Roth, Cosgrove, & Carroll, 2004; 

Vansickel, Stoops, & Rush, 2010). Reports of sex/gender differences in the reinforcing 

effects of nicotine and its self-administration in laboratory settings are mixed (O'Dell & 

Torres, 2014; Perkins, Donny, & Caggiula, 1999) and both men and women with family 

histories of alcohol dependence or current alcohol dependence report lower sensitivity to 

alcohol than non-users (Nolen-Hoeksema & Hilt, 2006; Schuckit, Smith, & Kalmijn, 2004). 

Menstrual cycle influences the subjective effects of psychostimulants (lower responses 

during the luteal phase) but such effects are not reported for nicotine, narcotics, marijuana or 

alcohol (Evans & Foltin, 2010; Fattore et al., 2008; Fattore et al., 2009; Mumenthaler, 

O'Hara, Taylor, Friedman, & Yesavage, 2001; Niaura, Nathan, Frankenstein, Shapiro, & 

Brick, 1987; Terner & de Wit, 2006).

Trajectories of drug use and alcoholism may be different in men and women. The 

phenomenon of “telescoping” of the time from initiation to problematic use and entrance 

into treatment in women has been reported for numerous drugs including alcohol, 

psychostimulants, narcotics and cannabis (Brady & Randall, 1999; Ehlers et al., 2010; 

Greenfield, Back, Lawson, & Brady, 2010; Haas & Peters, 2000; Hernandez-Avila, 

Rounsaville, & Kranzler, 2004; Khan et al., 2013; Lynch et al., 2002; Mann et al., 2005; 

Piazza, Vrbka, & Yeager, 1989; Randall et al., 1999; Schuckit, Daeppen, Tipp, Hesselbrock, 

& Bucholz, 1998). This phenomenon may not be present in younger age cohorts (Alvanzo et 

al., 2011; Johnson, Richter, Kleber, McLellan, & Carise, 2005; Keyes, Martins, Blanco, & 

Hasin, 2010; Zilberman, Tavares, & el-Guebaly, 2003) and may reflect early transition to 
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treatment seeking but not necessarily early escalation of use (Lewis & Nixon, 2014). Age of 

onset of drinking alcohol and perhaps other drug use has shifted earlier in recent years in 

women but not men (Grucza, Norberg, Bucholz, & Bierut, 2008). Even among women who 

started later, some studies show that they accelerate drinking more rapidly than men 

(Bohman, Cloninger, Sigvardsson, & von Knorring, 1987; Cloninger, Sigvardsson, & 

Bohman, 1988; Gilligan, Reich, & Cloninger, 1987; Lovallo, Yechiam, Sorocco, Vincent, & 

Collins, 2006; Piazza et al., 1989; Randall et al., 1999; Schuckit et al., 1998; Schuckit et al., 

2001; Tarter et al., 1999) and may show more persistence once they are diagnosed (Edens, 

Glowinski, Grazier, & Bucholz, 2008).

In summary, in human populations, men use addictive drugs more than women in adulthood, 

and the sex difference is greatest at the highest levels of consumption. However, these 

differences vary by age cohort: the differences are smallest at the youngest ages, and 

greatest from young adulthood into old age. One question that is undergoing active study in 

this field is whether these age differences represent “cohort effects” with younger users 

reflecting changing cultural attitudes about drug use, especially in women, or stable 

differences across different stages of life. This will be described in more detail below.

3. Sex Differences in Drug Use in Animal Models

Studies in animal models can evaluate sex differences in psychoactive drug consumption in 

a context that is not affected by the many social and environmental factors that influence 

human drug and alcohol consumption. Studies in non-human primates are perhaps most 

relevant to humans, but not abundant and contradictory. Several studies involving multiple 

primate species (cynomolgous macaque, rhesus, chimpanzee, orangutan) reported males 

drank more ethanol than females in a free access setting (Fahlke et al., 2000; Fitzgerald, 

Barfield, & Warrington, 1968; Vivian et al., 2001) but in another species (vervet), greater 

consumption by adolescent females than adolescent males was observed (Ervin, Palmour, 

Young, Guzman-Flores, & Juarez, 1990). However, other studies reported only marginal sex 

differences in alcohol consumption by non-human primates (Fahlke et al., 2000; Lorenz et 

al., 2006; Pakarinen, Williams, & Woods, 1999; Vivian, Higley, Linnoila, & Woods, 1999). 

In most non-human primate studies, individual differences in ethanol consumption and 

cohort effects were substantial and the subject numbers were small, and so the ability to 

study endocrine and sex differences was limited. Furthermore, alcohol consumption in non-

human primates is also sensitive to social influences like dominance (McKenzie-Quirk & 

Miczek, 2008).

There have been only a few studies of sex differences in psychostimulant self-administration 

in non-human primates, but these have shown that females will attain higher progressive 

ratios (work harder for) cocaine than males (Carroll, Batulis, Landry, & Morgan, 2005; 

Mello, Knudson, & Mendelson, 2007). Sex differences in cannabinoid and nicotine self-

administration in non-human primates have not been studied.

Studies of sex differences in drug-self administration in rodents are more abundant and 

consistent in the finding that females acquire self-administration faster, escalate use more 

during extended access and will work harder under a progressive ratio to obtain 
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psychostimulants, nicotine, opioids and tetrahydrocannabinol (Anker & Carroll, 2011; 

Becker & Hu, 2008; Carroll & Anker, 2010; Carroll et al., 2004; Fattore et al., 2008; Fattore 

et al., 2009; Feltenstein, Ghee, & See, 2012; Levin et al., 2011; Lynch, 2006; Lynch et al., 

2002). Most rodent studies have detected robust sex differences in alcohol consumption 

(females consume more, especially in mice) although the greater fluid consumption by 

females must be considered in evaluating reported results. Female mice consistently 

consume more alcohol than males under a variety of paradigms (Middaugh & Kelley, 1999; 

Rhodes et al., 2007; Tambour, Brown, & Crabbe, 2008) Most studies of rats report more 

ethanol intake in females than males, although a number of these studies were confounded 

by greater overall fluid intake (Blanchard & Glick, 1995; Juarez & Barrios de Tomasi, 1999; 

Lancaster & Spiegel, 1992; Piano, Carrigan, & Schwertz, 2005; Sluyter, Hof, Ellenbroek, 

Degen, & Cools, 2000). In rodents, female rats will self-administer lower doses of nicotine 

and respond more during progressive ratio responding, but as in humans, baseline levels of 

self-administration are roughly comparable in males and females (Donny et al., 2000; 

Feltenstein, Ghee, & See, 2012; Lynch et al., 2002; Perkins et al., 2009; Perkins et al., 

1999).

In adult rats, the presence of ovarian but not testicular hormones influences self-

administration. Numerous studies have shown that estradiol augments and progesterone 

inhibits self-administration and the reinforcing effects of psychostimulants, ethanol, nicotine 

and opioids (Anker & Carroll, 2011; Becker & Hu, 2008; Becker, Perry, & Westenbroek, 

2012; Carroll & Anker, 2010; Carroll et al., 2004; Donny et al., 2000; Feltenstein et al., 

2012; Levin et al., 2011; Lynch, 2009; O'Dell & Torres, 2014; Perkins et al., 1999). In 

contrast, the presence of testosterone was reported to have no effect on cocaine self-

administration (Caine et al., 2004; Mello, Knudson, Kelly, Fivel, & Mendelson, 2011) self-

administration of morphine (Cooper & Wood, 2014). However, testosterone could 

contribute to drug taking through actions on impulsive or risk-taking behavior rather than 

directly affecting the reinforcing properties of the drugs. There is evidence in rats that 

testosterone does not directly influence impulsivity in go/nogo tasks or preference for 

immediate vs. delayed reward, but that it does increase responding for a “risky” (large but 

punished) reward (Cooper, Goings, Kim, & Wood, 2014; Kritzer, Brewer, Montalmant, 

Davenport, & Robinson, 2007).

4. Emergence of Sex/Gender Differences in Drug Use during Development 

in Humans

The average age of initiation of tobacco use is 17.3 years, of alcohol is 17.8 years, of 

marijuana is 18, use of MDMA, stimulants and heroin between 20–22 ("National Household 

Survey on Drug Use and Health," 2013) Ages of initiation of tobacco use, cannabis and 

alcohol are fairly similar in males and females, with “early initiators” beginning ages 12–14, 

with a continuous rise in numbers of users to the early 20’s. No invariant sequence of 

initiation exists currently, in contrast to earlier generations in which tobacco and alcohol use 

typically preceded cannabis use. The rate of alcohol consumption among young adults from 

18–25 is about 60%, and young adults constitute the highest proportion of heavy drinkers 
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(Greenfield & Rogers, 1999). Similarly, young adults constitute the highest percentage of 

tobacco users, with about 37% reporting some use of tobacco products.

Sex differences in initiation ages and use are small to negligible in the youngest adolescents 

in both cross sectional and longitudinal studies of drug use initiation in humans. In the rather 

broad 12–17 age group, NHSDUH data show that smoking, alcohol use and cannabis use are 

about comparable in males and females in the United States. The youngest adolescent girls 

(age 14–15) drink as frequently and as much as boys (McPherson, Casswell, & Pledger, 

2004). Sex differences in cannabis initiation are small at the youngest ages (13–14) and 

become greater as youth approach the end of high school and boys begin to use more than 

girls (Schepis et al., 2011). In two large nationwide samples, the National Longitudinal 

Study of Adolescent Health (AddHealth) and the Adolescent Health Risk Study (AHRS), 

levels of smoking rose from the earliest age in the study (13–14) until 18, but levels of 

alcohol consumption increased more rapidly in males than females (Jackson, Sher, Cooper, 

& Wood, 2002). A community based study in Colorado showed rates of tobacco and alcohol 

use in males and females was similar up to age 18 (Young et al., 2002). Studies of middle- 

and high-school youth show that nonmedical use of prescription narcotic use is one of the 

few categories in which adolescent females may exceed males (Cranford, McCabe, & Boyd, 

2013; McCabe, Boyd, & Teter, 2009; McCabe, West, & Boyd, 2013). By late adolescence 

(over 18), most studies show that men drink more frequently, and drink more in a given 

drinking episode than women, and male dominance in alcohol abuse is emerging (Palmer et 

al., 2009; White et al., 2006). Similarly, male rates of smoking, as well as use of and 

dependence on alcohol and marijuana use begin to exceed female rates in older age cohorts 

(over 17) (Hicks et al., 2007; Palmer et al., 2009).

Pubertal development represents a significant risk factor in the initiation and progression of 

substance use in adolescent humans, especially females. Early pubertal development is 

associated with early initiation of tobacco, alcohol and marijuana use (Cance, Ennett, 

Morgan-Lopez, Foshee, & Talley, 2013; Copeland et al., 2010; Patton et al., 2004; Windle et 

al., 2008) A recent study reported that early pubertal maturation predicts alcohol use in both 

boys and girls, and also predicts alcohol use disorders specifically in girls (Costello, 2007). 

Multiple factors likely contribute to this association, including biologic, social and 

environmental factors that will be discussed below.

5, Emergence of Sex/Gender Differences in Drug Use during Development 

in Animal Models

Animal studies can elucidate the important roles of biologic factors like pubertal hormone 

changes, brain maturation and pharmacokinetic and pharmacodynamic effects of drugs in 

the emergence of sex differences in addictive drug consumption. The vast majority of such 

studies address issues related to biological sex, not gender. However, there is some 

interesting emerging evidence about the influence of social environment on drug taking in 

males and females that may constitute a modest inroad in understanding drug taking and 

non-human “gender.” A small but growing number of animal studies address social and 

environmental factors like previous stress, the presence of peers and availability of 

alternative behaviors like the opportunity to exercise. However, such studies are limited. In 
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most studies, drug taking occurs in a highly structured and socially impoverished 

environment in comparison to human life, and such studies provide less insight about more 

complex human social and environmental factors that contribute to drug taking.

The vast majority of animal studies which have investigated the establishment of sex 

differences in addictive drug vulnerability have studied either rates of drug self-

administration (the most direct analogy to the human drug taking), measures of the 

reinforcing or aversive effects of drugs using methods like conditioned place preference and 

conditioned taste or place aversion, or the sensitivity to behavioral effects of administered 

drug., There are numerous studies with psychostimulants and nicotine, but many fewer with 

ethanol, marijuana or narcotics.

Nicotine self-administration in rats during adolescence is greater than in adulthood in both 

sexes, but females maintain drug taking into adulthood while males decrease consumption 

(Levin et al., 2007; Levin, Rezvani, Montoya, Rose, & Swartzwelder, 2003; Levin et al., 

2011). Adolescent but post-pubertal female rats (postnatal age 40–45) acquired nicotine self-

administration at lower doses and attained higher break points than males of comparable age 

(Lynch, 2009). Adolescent female mice consumed more nicotine on a mg/kg basis in two 

bottle choice paradigms, although pharmacokinetic factors may have influenced drug 

consumption as plasma cotinine (the primary nicotine metabolite) levels were comparable in 

males and females (Klein, Stine, Vandenbergh, Whetzel, & Kamens, 2004; Nesil, Kanit, 

Collins, & Pogun, 2011). The emergence of sex differences in cocaine self-administration in 

rats showed a pattern similar to that of nicotine during adolescence: postpubertal females 

acquired at lower doses, exhibited higher breakpoints and escalated use more in one study, 

(Lynch, 2008) although another reported minimal sex differences in adolescents (Kantak, 

Goodrich, & Uribe, 2007). Female adolescent rats self-administered more amphetamine than 

adolescent males, a sex difference which persisted into adulthood (Shahbazi, Moffett, 

Williams, & Frantz, 2008).

While adult female rodents in most reports consume more alcohol on a mg/kg basis than 

males, studies in adolescents are inconsistent. The Spear group found that adolescent males 

drank more ethanol than adolescent females while adult females drank more than adult 

males (Vetter-O'Hagen, Varlinskaya, & Spear, 2009; Vetter-O'Hagen & Spear, 2011). A 

study from our lab using every other day drinking did not detect the emergence of a 

significant sex difference (Schramm-Sapyta et al., 2014). Female adolescent mice consumed 

more ethanol than males at the earliest age tested (PN 28) and the difference increased in 

age (Tambour et al., 2008). However, a similar pattern observed in adults in this study led 

authors to conclude that adolescence/puberty may not have been the key influence, but that 

females increased consumption more over time. A similar pattern of gradually exaggerating 

sex differences during adolescence was reported in rats (Lancaster, Brown, Coker, Elliott, & 

Wren, 1996), although no adult control was conducted in this study. There are virtually no 

studies exploring the emergence of sex differences in self-administration of cannabinoids, 

narcotics or sedative-hypnotics, a significant gap in the field.

Reinforcing effects of psychostimulants, nicotine and alcohol as assessed with conditioned 

place preference exhibit a similar development of sexual dimorphism during puberty in both 
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mice (Balda et al., 2006; Roger-Sanchez et al., 2012) and rats (Balda et al., 2006; Edwards 

et al., 2014; O'Dell & Torres, 2014; Zakharova, Wade, et al., 2009). In general, no sex 

differences are observed pre-pubertally, but greater CPP (or CPP at lower doses) emerge in 

females relative to males after puberty.

A growing literature investigating the effects of drugs of abuse on social behavior in rodents 

and the much smaller literature about the modulation of drug-taking by peers demonstrates 

that drugs influence social behavior and that peers influence drug taking, especially in 

adolescence. The most evidence exists for alcohol. Numerous studies by the Spear lab and 

others demonstrate that ethanol has developmentally specific effects on social behavior in 

rats: specifically that ethanol facilitates social interactions more in adolescents and cause 

social inhibition less in adolescents than adults (see recent review in (Varlinskaya & Spear, 

2014)). These effects occur roughly comparable in males and females at the young ages at 

which most studies were conducted. Sex differences in these effects are not marked. Alcohol 

not only influences social behavior, but experience with alcohol-intoxicated peers influences 

alcohol consumption in a sex and developmentally specific way in rats. Experience with an 

alcohol-intoxicated familiar rats leads to greater alcohol consumption by both adult males 

and females and adolescent females, but adolescent males avoid alcohol after such 

experience.

Peers also affect nicotine self-administration in adolescence. In a study of nicotine self-

administration in the presence of olfacto-gustatory clues, both males and females only self-

administered nicotine when partnered with a peer that consumed the cue (but not the 

nicotine) (Chen, Sharp, Matta, & Wu, 2011). Both nicotine and cocaine also can enhance the 

rewarding value of peers in adolescents rats (Thiel, Okun, & Neisewander, 2008; Thiel, 

Sanabria, & Neisewander, 2009), although the influence of sex was not considered in these 

studies.

This emerging literature is at least exploring how psychoactive drugs influence adolescent 

rodents in social settings, and the evidence indicates that at least alcohol, nicotine and 

cocaine enhance social interactions or social reward, and can promote drug consumption by 

peers. In situations in which this has been studies, effects were comparable in males and 

females, but all rodent studies have employed only same-sex social partners.

In summary, the greater consumption of nicotine, cocaine, amphetamine and alcohol by 

female rodents has been observed most frequently after females have completed puberty, 

although some studies report sex differences even before puberty, during early adolescence. 

One critical control missing from some studies was a comparable adult control group. 

However, two studies with ethanol suggested that some of the acceleration in drug 

consumption in adolescent females represents progression of consumption that can be 

observed at any age, raising the possibility that sex-specific neuroadaptations play a role in 

the emergence of sex differences at any age. This factor could play a role in the 

“telescoping” effect noted above even in adult populations.
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5. Emergence of Sex/Gender Differences in Drug Taking: Summary of 

epidemiologic and animal studies

In summary, both animal and human studies describe some common phenomena: a 

similarity of drug action and drug taking in males and females before puberty with 

divergence in drug taking post-pubertally for some but not all drugs. One startling contrast 

between human and animal studies is that adult female rodents consistently acquire drug 

self-administration sooner and escalate drug use more than males, while in human 

populations, use is about equal in males and females in early adolescence, but more males 

than females use addictive drugs as they progress from adolescence to adulthood. These 

differences are not perhaps as stark as they seem, nor do they invalidate the animal models. 

Some of the characteristics exhibited by mature female rodents that appear during 

adolescence (rapid acquisition) are mirrored in a number of human studies showing faster 

escalation in women users once they start Second, drug taking in animal studies is 

dominated by biologic factors like the rewarding effects of drugs which are likely 

exaggerated in the typical impoverished environment of rodent studies. As we will review 

below, strong social and environmental factors exert sex/gender-specific effects in human 

populations. Investigation of social factors influencing drug taking in animal studies are 

sparse, and cannot replicate human culture.

Finally, pregnancy exerts a strong influence on drug taking in human females. Alcohol, 

cigarette and marijuana use are dramatically lower in pregnant humans than non-pregnant 

humans, and after childbirth, substance use does not reach previous levels (binge alcohol 

and marijuana use remain less than half that of women with no children) (SAMSHA, 2009). 

Unfortunately, similar data are not available for men. A provocative animal study showing 

that cocaine self-administration diminished dramatically in pregnant rodents, only to resume 

after pregnancy, suggests biological factors contribute to decreased consumption by women 

during pregnancy (Hecht, Spear, & Spear, 1999). However, mixed data on consumption of 

alcohol by high-drinking rat and mouse strains during pregnancy has been published with 

some studies showing no change and some studies showing decreases (Brady, Allan, & 

Caldwell, 2012; Kleiber, Wright, & Singh, 2011; Wolfe, Means, & McMillen, 2000). As 

pregnancy/onset of family responsibilities occurs only after puberty, this could contribute to 

the emergence of sex/gender differences in drug taking that will be explored below.

6. Sex/Gender Differences in the Neurobiology of Addiction

In order to explain the role of neurodevelopmental events in the initiation and progression of 

substance use and abuse during adolescence, it is necessary to provide a brief overview of 

the different stages of addiction, and what is known about sex/gender differences in these 

factors. As the literature in this area is vast, this review has relied on a number of 

outstanding, recent reviews in this area for the sake of brevity. Figure 1 shows a simplified 

view of the sequence of substance use which progresses to compulsive use and the many 

intrinsic and extrinsic factors that affect this progression. An individual must first 

experiment and then repeat use of drug. A subset of individuals will gradually escalate use 

to the point that the underlying neuroadaptations induced by drug exposure will manifest as 

dependence and compulsive use.
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Biologic factors which influence the progression of drug use include the extent to which an 

individual finds drugs reinforcing or aversive and the contribution that pharmacokinetics/

pharmacodynamics influence drug effects within an individual. The neurobiology of the 

reward system including dopamine and opioid systems that mediate the reinforcing effects 

of addictive drugs, and the importance of the CRF/dynorphin systems that signal increasing 

drug aversiveness during escalated drug taking are prominent neurobiologic adaptations that 

contribute to the progression of drug use (Koob, 2010; Koob et al., 2014; Koob & Le Moal, 

2001; Taber, Black, Porrino, & Hurley, 2012; Zorrilla, Logrip, & Koob, 2014).

Genetic vulnerability clearly plays a role in addiction, although the ideal placement of this 

factor in this figure would be orthogonal to the figure, as genetics certainly affects both 

biologic and non-biologic issues in substance abuse. This is a small but growing area. 

Numerous genes including cytochrome 2A6, which degrades nicotine, genes related to 

dopamine function (especially monoamine oxidase which is X-linked), as well as opiate 

GABA and glutamate receptors are involved (Ahijevych, 1999; Becker & Hu, 2008; 

Bobzean, DeNobrega, & Perrotti, 2014; Enoch, 2003; Enoch & Goldman, 2001; Kreek et 

al., 2012; Nielsen & Kreek, 2012; Reed, Butelman, Yuferov, Randesi, & Kreek, 2014; 

Satarug, Tassaneeyakul, Na-Bangchang, Cashman, & Moore, 2006; Seeman, 2009; 

Tsankova, Renthal, Kumar, & Nestler, 2007). As our understanding of how these genetic 

influences contribute to the emergence of sex differences in substance use and abuse is 

marginal, we will not consider this important topic further.

Many intrinsic and extrinsic factors influence whether an individual progresses along this 

continuum, as shown in the bottom panel. Intrinsic factors include the personality/

neurobiology of the individual which influences the likelihood of initiation and progression 

of substance use, as well as psychiatric comorbidities. Extrinsic factors include social 

environment (family and peers), previous stress or abuse and engagement in “protective” 

activities like religious groups. Sex/gender differences in all of these factors have been 

identified in substance-using populations.

Figure 2 depicts the key neurobiologic components of the cycle of addiction. The cycle 

begins at the top with initiation of drug use, followed (in a proportion of users) by repeated 

use and gradual escalation of use. During this phase of escalated use, executive function 

(which may be deficient before initiation) becomes further biased toward immediate rather 

than delayed rewards and impulsive choice rather than appropriate self-regulation. As use 

escalates and tolerance develops, withdrawal symptoms begin to emerge. During the final 

and potentially most intractable stage of addition, drug use is likely driven by the desire to 

avoid the negative affect and symptoms of withdrawal and to satisfy the craving for drug use 

more than reinforcement.

Four neurobiologic systems are particularly important in the evolution of this cycle. 

Dopamine systems are integral to the reward system, and likely attach salience to 

reinforcement-predictive stimuli including drugs. Endogenous opioid systems also play a 

significant role in the reinforcing effects of drugs of abuse. While dopamine may signal 

“salience” of drug rewards, opioid systems in dorsal and ventral striatum as well as the 

ventral tegmental area contribute to the “consummatory” qualities or satisfaction provided 
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by drug consumption (Becker et al., 2012; Gianoulakis, 2009; Le Merrer, Becker, Befort, & 

Kieffer, 2009). The corticotropin releasing factor (CRF) and dynorphin systems drive the 

negative affect and anhedonic state which significantly control drug taking at later stages 

(Bari & Robbins, 2013; Bickel & Yi, 2008; George, Le Moal, & Koob, 2012; Koob, 2010; 

Koob et al., 2014; Koob & Volkow, 2010; Trifilieff & Martinez, 2013; Zorrilla et al., 2014). 

While some users successfully exit the cycle and maintain prolonged abstinence, stress or 

repeat drug exposure often trigger relapse and re-initiation of drug use.

Sex/gender differences exist in all four of these key substrates for the addiction cycle. The 

existence of sex differences in dopamine systems are the best described: both genetic sex 

and ovarian hormones augment dopamine function in dorsal and ventral striatum and 

enhance self-administration of psychomotor stimulants, narcotics and alcohol at least in 

rodents (Becker, 2009; Carroll & Anker, 2010; Di Paolo, 1994; Dluzen & McDermott, 2008; 

Dow-Edwards, 2010; Gillies & McArthur, 2010; O'Dell & Torres, 2014). Estradiol 

promotes while progesterone inhibits dopamine release and the reinforcing effects of most 

addictive drugs (Anker & Carroll, 2011; Becker & Beer, 1986; Becker & Cha, 1989; Becker 

et al., 2012; Becker & Ramirez, 1981; Becker & Rudick, 1999; Castner, Xiao, & Becker, 

1993; Di Paolo, 1994; Walker et al., 2012; Walker, Ray, & Kuhn, 2006; Walker, Rooney, 

Wightman, & Kuhn, 2000). Estradiol also alters firing rate of dopamine neurons (Chiodo & 

Caggiula, 1983; Zhang, Yang, Yang, Jin, & Zhen, 2008). The anatomy of dopamine neurons 

also differs in males and females: female rats are reported to have more dopamine neurons 

than adults in most (but not all) studies (Johnson, Day, et al., 2010; Johnson, Ho, et al., 

2010; McArthur, McHale, & Gillies, 2007). Results in mice differ, with more dopamine 

neurons reported in a study using quantitative stereology, and no sex differences reported in 

a study using somewhat less quantitative methods (Johnson, Day, et al., 2010; Johnson, Ho, 

et al., 2010; Levin et al., 2006; Lieb et al., 1996; McArthur et al., 2007; Sibug et al., 1996) 

Dopamine receptors have been studied less, and sex differences may be less robust than 

those observed for presynaptic functions. However, evidence suggests that sex/gender may 

also influence dopamine receptor number and function. D2 dopamine receptors vary over 

the menstrual/estrous cycle in both humans and rodents (Levesque & Di Paolo, 1990). 

Estradiol perhaps through ERβ, augments D2 receptor number (Morissette et al., 2008).

The existence of sex differences in dopamine function in non-human primates and humans is 

much less studied, contradictory data exist and interpretation of PET studies always are 

complicated by the ambiguity of whether results reflect higher binding to dopamine-relevant 

proteins because expression is higher or endogenous release of competing dopamine is 

lower. However, several studies conclude that basal dopamine production is greater in 

females than males (Evans & Foltin, 2010; Laakso et al., 2002; Laasko et al., 2002; Martin-

Soelch et al., 2011; Pohjalainen, Rinne, Nagren, Syvalahti, & Hietala, 1998; Riccardi et al., 

2011; Urban et al., 2010) Like rodents, non-human primates have more dopamine neurons in 

the ventral tegmental area, (Leranth et al., 2000). Finally, D2 receptors may vary over the 

menstrual cycle in humans (Munro et al., 2006; Wong et al., 1988) but see (Kaasinen, 

Nagren, Hietala, Farde, & Rinne, 2001). This enhanced dopamine neuron number and/or 

function is widely speculated to confer the protection against the development of 

Parkinson ’s disease in humans (Gillies, Murray, Dexter, & McArthur, 2004; Gillies, 

Pienaar, Vohra, & Qamhawi, 2014; Smith & Dahodwala, 2014). Similar cyclic differences 
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in D2 receptor occupancy also have been reported in nonhuman primates (Gould, Duke, & 

Nader, 2014)

Sex differences in dopaminergic function in the prefrontal cortex which is important for 

executive function are much less studied. The elegant work of Mary Kritzer in rats has 

shown that sex differences here reflect a significant role of androgen in enhancing 

dopaminergic innervation and working memory (Kritzer, 2003; Kritzer, 1997, 2000; Kritzer, 

Adler, & Bethea, 2003; Kritzer, Adler, Marotta, & Smirlis, 1999; Kritzer et al., 2007; 

Kritzer & Creutz, 2008; Kritzer & Kohama, 1998).

There has been considerably less investigation of underlying sex/gender differences in 

opioid mediation of reward, although a dominance of dynorphin expression in striatonigral 

neurons exist in females, and a dominance of enkephalin in striatopallidal neurons in males: 

how these relate to the role of opioids in drug reinforcement is not at all understood (see 

review in Becker (Becker et al., 2012). If dynorphin function is eventually shown to be 

enhanced in females, it could contribute significantly to sex differences in dynorphin-

mediated anxiety during withdrawal.

Sexual dimorphism in CRF mechanisms exist across mammalian species including rodents, 

and humans. Marked sexual dimorphism exists in CRF regulation of HPA axis function and 

in CRF receptor function both in the brain and pituitary of rats, with females exhibiting 

greater CRF mediated responses (Bangasser et al., 2010; Bangasser et al., 2013; Bangasser 

& Valentino, 2012; Dalla et al., 2005; Handa, Burgess, Kerr, & O'Keefe, 1994; Ogilvie & 

Rivier, 1997; Rivier, 1993, 1999; Valentino, Bangasser, & Van Bockstaele, 2013; Walker, 

Francis, Cabassa, & Kuhn, 2001). Stress reactivity of the HPA axis is markedly greater in 

female mice and rats, an effect mediated both by estradiol enhancement and androgen 

inhibition of HPA axis function (Bale, 2006; Bangasser & Valentino, 2012; Dalla, 

Pitychoutis, Kokras, & Papadopoulou-Daifoti, 2010; Fernandez-Guasti, Fiedler, Herrera, & 

Handa, 2012; Fox & Sinha, 2009; Handa et al., 1994; Shansky, 2009; Valentino, Reyes, Van 

Bockstaele, & Bangasser, 2012; Veldhuis, Sharma, & Roelfsema, 2013). Such sex 

differences exist but they are smaller and less consistently observed in humans (Veldhuis et 

al., 2013; Young & Korszun, 2010; Young, 1998). In any species, sex differences at 

multiple levels including release of CRF, release of ACTH, adrenal sensitivity to ACTH, 

plasma binding of corticosteroids and corticosteroid action all must be considered 

(Chrousos, Torpy, & Gold, 1998; Kudielka, Buske-Kirschbaum, Hellhammer, & 

Kirschbaum, 2004; Quinn, Ramamoorthy, & Cidlowski, 2014). Sex differences in the 

activation of CRF systems during drug withdrawal are poorly studied although some results 

support an enhanced role of CRF in reinstatement in females (Buffalari, Baldwin, 

Feltenstein, & See, 2012).

Finally, interest in the role of norepinephrine in both rewarding effects of drugs of abuse and 

stress-reactivity and relapse is growing (Becker et al., 2012; Curtis, Bethea, & Valentino, 

2006), and in rats at least, the noradrenergic neurons in the locus coeruleus exhibit marked 

sexual dimorphism with females demonstrating extensive dendritic arborization and more 

NE neurons than males (Bangasser & Valentino, 2012; Bangasser, Zhang, Garachh, 

Hanhauser, & Valentino, 2011; Curtis et al., 2006; Valentino et al., 2012). Finally, notable 
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sex differences exist in certain aspects of GABA and glutamate function. While differences 

in GABA and glutamate function may be important for the intoxicating effects of ethanol, 

studies relating sex differences in GABA and glutamate function to substance use and abuse 

are sparse. Given the special importance of glutamate adaptations to later stages of 

addiction, this represents an important gap in the field.

7. Sex Differences in Intrinsic and Extrinsic Factors Contributing to 

Addiction

The pharmacologic effects of drugs on specific neurotransmitter systems are not the only 

factors which influence the development of substances abuse. There are significant intrinsic 

and extrinsic risk factors that men and women share. Behavioral or personality 

characteristics including high sensation seeking, impulsivity and poor self-regulation are 

significant risk factors for substance use and abuse in men and women which precede the 

development of substance use (Bari & Robbins, 2013; Fineberg et al., 2014; Koob et al., 

2014; Koob & Volkow, 2010; Schumann et al., 2010; Volkow, Wang, Fowler, Tomasi, & 

Telang, 2011). Impulsivity/novelty seeking also predict drug self-administration in animal 

models (Anker, Perry, Gliddon, & Carroll, 2009; Broos, Diergaarde, Schoffelmeer, Pattij, & 

De Vries, 2012; Carroll, Anker, & Perry, 2009; Dalley et al., 2007; Poulos, Le, & Parker, 

1995). Impulsivity not only predicts the subsequent development of substance abuse, but 

extensive drug exposure also increases impulsivity as shown in rats and non-human primates 

(Carroll, Mach, La Nasa, & Newman, 2009; Winstanley et al., 2009). While high 

impulsivity is frequently identified in addict populations, relative normal inhibitory function 

in long-term abstinent addicts has been interpreted as recovery from drug-induced 

impulsivity (Bell, Foxe, Ross, & Garavan, 2014; Connolly, Foxe, Nierenberg, Shpaner, & 

Garavan, 2012; Morie et al., 2014). Although longitudinal studies of recovery would provide 

more rigorous evidence, these studies suggest that drug-induced impulsivity also occurs in 

human addict populations.

Sex/gender differences in the behavioral characteristics described above have been observed 

in healthy populations, even though mediating neural mechanisms are poorly understood 

Sensation seeking is consistently reported to be greater in males than females (Cross, 

Copping, & Campbell, 2011; Zuckerman & Kuhlman, 2000). However, sex differences in 

measures of impulsive choice or impulsive action are more subtle. Both human and rodent 

females typically show steeper discounting (bias toward immediate not delayed rewards) in 

the delayed discounting task, a widely used measured of impulsive choice, although some 

studies indicate human males discount more steeply for actual rewards (Cross et al., 2011; 

McClure, Podos, & Richardson, 2014; Perry, Nelson, Anderson, Morgan, & Carroll, 2007; 

Weafer & de Wit, 2014). Female mice also exhibit steeper delay discounting under 

conditions of mild food deprivation (Koot, van den Bos, Adriani, & Laviola, 2009), In 

studies of behavioral control or impulsive action, results depend upon the test (go/no vs. stop 

signal) but on average sex differences in adult humans are modest and task-specific 

(Garavan, Hester, Murphy, Fassbender, & Kelly, 2006; Weafer & de Wit, 2014). Similarly, 

in rat studies, females make more premature errors with long intervals in the 5 choice serial 

reaction time task and more errors in a go/no paradigm, but males show more motor 
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impulsivity in an attentional task (Anker, Gliddon, & Carroll, 2008; Burton & Fletcher, 

2012; Jentsch & Taylor, 2003). Several studies document the ability of women to exhibit 

better inhibitory control than men in the presence of reward. In a study of “desire vs. reason” 

women exhibited more self-control in the presence of reward (Diekhof et al., 2012)and 

women show faster inhibitory responses to a rare event (Yuan, He, Qinglin, Chen, & Li, 

2008). While performance in individual tasks varies, the trend in studies of inhibitory 

function show that men are more sensation seeking while women are more punishment 

sensitive (Cross et al., 2011). Hosseini-Kamkar and Morton (Hosseini-Kamkar & Morton, 

2014) reviewed evidence that women are least impulsive during the follicular phase of their 

menstrual cycle when they are fertile, and suggested that these differences might explain 

inconsistent findings across studies.

The complex neural circuits encompassing cortical and subcortical regions through which 

humans and animals select and implement behaviors circumstances are increasingly well 

understood (Bari & Robbins, 2013; Fineberg et al., 2014; Pattij & De Vries, 2013; Perry et 

al., 2011), but studies of sex differences in these circuits are rare.

A history of physical and sexual abuse and resultant PTSD is a risk factor for substance 

abuse (Cottler, Compton, Mager, Spitznagel, & Janca, 1992; Greenfield et al., 2010; 

Lawson, Back, Hartwell, Moran-Santa Maria, & Brady, 2013). In addition, co-morbidity of 

substance abuse and other psychiatric disorders including depression, anxiety, conduct 

disorder or ADHD is common (Charach, Yeung, Climans, & Lillie, 2011; Compton, 

Thomas, Stinson, & Grant, 2007; Flory & Lynam, 2003; Goldstein et al., 2007; Hasin, 

Stinson, Ogburn, & Grant, 2007). Significant sex/gender differences in all of these factors 

exist. Childhood sexual abuse is reported more frequently in female than male substance-

abusing populations and is associated with more drug use and higher rates of relapse (Afifi, 

Henriksen, Asmundson, & Sareen, 2012; Brady & Randall, 1999; Clark et al., 2012; Hyman, 

Garcia, & Sinha, 2006; Hyman et al., 2008). The incidence of depression, anxiety and 

bipolar disorder is greater among female than male substance abusers, while the incidence of 

conduct disorder and ADHD are higher among male than female substance abusers in most 

studies (although sex/gender neutral studies with ADHD also exist (Compton et al., 2000; 

Compton, Dawson, Conway, Brodsky, & Grant, 2013; Compton et al., 2007; Zilberman, 

Tavares, Blume, & el-Guebaly, 2003).

8. Adolescence: The Critical Period for Emergence of Drug Use

Experimentation with drugs during adolescence is virtually normative (Schramm-Sapyta, 

Walker, Caster, Levin, & Kuhn, 2009). Nevertheless, most individuals do not become drug-

dependent. The characteristics which increase vulnerability to or protect males and females 

from substance abuse during this developmental transition can differ. For the purposes of 

understanding the latter, we will focus on events related specifically to substance abuse 

which exhibit sex/gender differences. The influences on adolescents which impact the 

initiation of substance use are shown in Figure 3. During this critical developmental epoch, 

genetic sex and hormones continue to sculpt the final maturation of the brain, leading to the 

emergence of sex differences in critical behavioral variables including function of the brain 

areas involved in initiation and progression of substance abuse (the reward system, threat 
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system and executive function), extrinsic variables including peers and family and stress 

intrinsic variables including the emergence of sex differences in psychiatric co-morbidities 

including attention deficit hyperactivity disorder (ADHD), conduct disorder and depression. 

These will be discussed in the following sections.

The normal neurobehavioral state of the brain which prepares the adolescent to leave the 

natal family predisposes vulnerable individuals to experiment with and repeat drug use. 

Adolescents are sensation seeking and impulsive relative to younger and older individuals 

(Steinberg, 2008; Steinberg et al., 2008; Steinberg et al., 2009), and are converting their 

social network from being family-centric to peer-centric (RJ., 2005; Smith, Steinberg, 

Strang, & Chein, 2014; Steinberg, 2008).

To understand the neural substrates of these developmentally-specific behavior patterns and 

how they influence experimentation with drugs, Monique Ernst and colleagues have 

introduced the “triad of motivated behavior” as a model. As shown in Figure 4, prefrontal 

cortex executive function provides balance for and control over two subcortical influences 

on behavior: the reward system which drives motivated behavior, and the extended 

amygdala, which evaluates affective valence and may signal especially information about 

threat to the cortex (Eldreth, Hardin, Pavletic, & Ernst, 2013; Ernst & Fudge, 2009; Ernst & 

Korelitz, 2009; Ernst, Pine, & Hardin, 2006; Ernst, Romeo, & Andersen, 2009; Richards, 

Plate, & Ernst, 2012). All three points of this triangle function differently in adolescents and 

adults.

The bottom left point of the triangle, reward-related areas, seems to play a more dominant 

role in decision making in adolescents than adults. B.J Casey has shown that reward-

dominated subcortical areas drive decision making during adolescence (Casey, Jones, & 

Somerville, 2011; Casey, Duhoux, & Malter Cohen, 2010; Casey, Getz, & Galvan, 2008; 

Casey, Jones, et al., 2010; Chambers, Taylor, & Potenza, 2003). This state may increase the 

reinforcing efficacy of drugs which activate reward systems. Similarly, the bottom right, the 

amygdala which responds to threat responds more powerfully to emotional content like 

fearful faces during adolescence than adulthood, although this response is not consistently 

accompanied by the behavioral inhibition/avoidance that occurs in adults (Guyer et al., 

2008; Hare et al., 2008; Killgore, Oki, & Yurgelun-Todd, 2001). Finally and most 

importantly, cortical control, the peak of the pyramid, is weaker during adolescence. One 

reason for this may be that adolescents respond more to salient reward cues relative to 

adults, and may also respond more to any stimulus with strong emotional content due to 

weaker control over amygdala processing of environmental stimuli (Ernst, Daniele, & 

Frantz, 2011; Richards et al., 2012). The development of response inhibition by the cortex 

exhibits a gradual ontogeny in contrast to the earlier appearance of responses driven by 

emotional factors, which may explain this developmental trajectory that contributes to 

addiction risk during adolescence (Blakemore & Robbins, 2012; Brenhouse & Andersen, 

2011; Ernst & Fudge, 2009).

The structural and functional changes which mediate these important neurobehavioral 

characteristics are poorly understood even though the structural development of the brain 

during adolescence is increasingly well characterized. Several excellent recent reviews 
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profile the most important changes that are relevant to addiction (Brenhouse & Andersen, 

2011; Giedd et al., 1999; Laviola, Adriani, Terranova, & Gerra, 1999; Spear, 2000). The 

elegant longitudinal studies of human brain structure by Giedd and colleagues have shown 

that maximal brain volume is attained during childhood followed by a period of loss which 

proceeds caudally to rostrally (Giedd, Raznahan, Mills, & Lenroot, 2012). Gray matter in 

the frontal cortex falls during adolescence while myelination continues linearly, and 

synaptic pruning is an active process. However, two specific changes relate in an intriguing 

way to the triadic model described above: structural maturation of the caudate and amygdala 

precede that of the cortex, while cortical: amygdala connectivity is a relatively late 

phenomenon (Cressman et al., 2010; Cunningham, Bhattacharyya, & Benes, 2008). 

However each area has its own trajectory, and none are exactly linear (Mills, Goddings, 

Clasen, Giedd, & Blakemore, 2014). Accumbens volume falls starting early during 

adolescence, amygdala volume in males continues reaches an asymptote during late 

adolescence while cortical thinning, a marker for one aspect of cortical maturation continues 

into the early 20’s, Finally, gray matter volume is at best an indirect measure of maturation 

that may reflect total neuronal volume (cell bodies and processes) but does not capture many 

functionally important but subtle events. Figure 5 provides a relative graphic of the 

structural development of accumbens, amygdala and cortex, based on the aforementioned 

study. By replotting the data on an increasing trajectory toward adult values, regardless of 

whether volume is increasing or decreasing, the later attainment of adult structure in the 

cortex is clear.

Functional studies using fMRI imaging during task performance have provided better insight 

into at least which brain areas are active when adolescents and adults are performing 

comparable tasks. Many of these are cited to support the triadic model. However, there are 

several caveats to this simple model which have been summarized in two recent reviews 

(Crone & Dahl, 2012; Pfeifer & Allen, 2012). First, the exact test situations vary widely in 

different studies, and especially the degree of motivation and use of social or non-social cues 

can yield quite different results. The robust activation of reward networks in adolescents by 

salient reinforcers can generate quite different results from a less engaging task. In addition 

the maturation of cortical areas involved in social-affective perceptions and behaviors 

(Crone & Dahl, 2012) which allows adolescents to understand and value the perspective of 

other people is ongoing and a key contributor to experimental results which involve social 

cues. Indeed, the rising importance of peers is a key characteristic of adolescent social 

behavior. Finally, increased activity in fMRI is often interpreted oppositely by different 

groups: it is interpreted by some to mean an area is “online” and functional, and by another 

to indicate inefficient activation of an immature network. Figure 6 provides a revised “triad” 

which accommodates multiple elements of executive function during adolescence (social 

cognition, the ability for self-reflection and self-regulation), each of which likely exhibits its 

gradually increasing but unique developmental trajectory across adolescence.
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9. Factors Governing Emergence of Drug Use During Adolescence

Neurobiologic factors influencing Drug Action during Adolescence

Neurobiologic factors influence the pharmacologic effects of addictive drugs in adolescents. 

In general, the rewarding effects of drugs of abuse are greater and aversive effects of drugs 

of abuse are less in adolescents. Both characteristics create a positive bias in drug 

experience.

Studies in experimental animals support the greater reinforcing effects of drugs in 

adolescents. Most data which directly address age differences in reinforcing effects derive 

from animal studies, as ethical constraints limit such studies in humans. Both self-

administration and conditioned place preference studies in rodents show that nicotine, 

alcohol and psychomotor stimulants are more reinforcing in adolescents than adults in most 

(Badanich, Adler, & Kirstein, 2006; Balda et al., 2006; Edwards et al., 2014; Natarajan, 

Wright, & Harding, 2011; Natividad, Torres, Friedman, & O'Dell, 2013; O'Dell, 2009; 

Philpot, Badanich, & Kirstein, 2003; Wong, Ford, Pagels, McCutcheon, & Marinelli, 2013) 

but not all (Adriani & Laviola, 2003; Dickinson, Kashawny, Thiebes, & Charles, 2009; 

Frantz, O'Dell, & Parsons, 2007; Holtz & Carroll, 2013) studies. Narcotics provide an 

exception, in which self-administration in rodents has been reported to be greater in 

adolescent than adult rats (Doherty & Frantz, 2012) but conditioned place preference in 

mice less in adolescents than adults (Niikura, Ho, Kreek, & Zhang, 2013; Zhang et al., 2009)

The lower aversiveness of drugs of abuse in adolescents is an even more consistent finding 

than that of enhanced reward in experimental studies in rodents. Multiple laboratories have 

used conditioned taste aversion or conditioned place aversion to show that adolescent 

rodents are less likely to avoid a taste or place paired with a dose of drug than adults. This is 

true for every drug that has been tested including alcohol, nicotine, THC, cocaine, 

amphetamine, narcotics and even LiCl, the prototype GI irritant that is used as a control in 

these studies (Acevedo, Molina, Nizhnikov, Spear, & Pautassi, 2010; Anderson, Agoglia, 

Morales, Varlinskaya, & Spear, 2012; Anderson, Morales, Spear, & Varlinskaya, 2013; 

Anderson, Varlinskaya, & Spear, 2010; Carvalho, Reyes, Ramalhosa, Sousa, & Van 

Bockstaele, 2014; Drescher, Foscue, Kuhn, & Schramm-Sapyta, 2011; Hurwitz, Merluzzi, & 

Riley, 2013; Natarajan et al., 2011; Pandolfo, Vendruscolo, Sordi, & Takahashi, 2009; 

Philpot et al., 2003; Schramm-Sapyta et al., 2007; Schramm-Sapyta et al., 2010; Schramm-

Sapyta et al., 2014; Schramm-Sapyta, Morris, & Kuhn, 2006; Sherrill, Berthold, Koss, 

Juraska, & Gulley, 2011; Shram, Siu, Li, Tyndale, & Le, 2008; Vetter-O'Hagen et al., 2009). 

The latter finding suggests that the lack of conditioned taste aversion reflects a fundamental 

aspect of how the adolescent brain processes aversive input rather than a characteristic of 

any particular drug. At first, these studies seem to contradict the human imaging studies 

showing enhanced amygdala reactivity to aversive stimuli. However, this may reflect the 

difference in experimental approach: rodent studies all require that animals process the 

aversive stimulus, remember it, recall it at a later time and behave accordingly. All that we 

can measure in rodents is how they behave at a later time. As pointed out in the earlier 

section, high amygdala reactivity is not necessarily accompanied by increased behavioral 

inhibition, a finding generally compatible with the “triadic” hypothesis that what is lacking 
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is inhibitory control facilitated by the cortex. Recent studies showing that adolescents are 

less likely to recall contextual fear memories than either juvenile or adult animals (Pattwell, 

Bath, Casey, Ninan, & Lee, 2011), but can even recall an experience in early adulthood that 

they did not recall earlier support this interpretation. Future research is required to 

understand whether memory recall, or behavioral response to the memory is different in 

adolescents than adults. Several studies with nicotine and one with heroin showing that 

adolescent animals experience fewer unconditioned negative effects of withdrawal however, 

support the more general hypothesis that aversive stimuli have less weight than reinforcing 

stimuli in adolescents (Doherty & Frantz, 2013; O'Dell, Bruijnzeel, Ghozland, Markou, & 

Koob, 2004; O'Dell et al., 2006; O'Dell, Torres, Natividad, & Tejeda, 2007; Shram et al., 

2008).

The dopamine system which mediates reward merits particular attention as it may play a 

significant role in the initiation of drug use in general and the emergence of sex-specific 

addiction vulnerabilities. The ontogeny of dopamine systems during adolescence 

surprisingly does not point to the state of obvious hyperfunction that might be expected, but 

a situation of immature presynaptic stores and exaggerated postsynaptic reactivity. 

Dopaminergic innervation of dorsal, ventral striatum and prefrontal cortex reaches a peak 

during adolescence and then declines to adult levels in rodents and humans (Andersen & 

Gazzara, 1993, 1994, 1996; Haycock et al., 2003). Basal dopamine is lower in adolescent rat 

striatum, and studies of psychostimulant-induced changes in dopamine release are 

conflicting, with reports of responses both higher (for cocaine) and lower (for amphetamine) 

than are observed in adults (Camarini, Griffin, Yanke, Rosalina dos Santos, & Olive, 2008; 

Cao, Lotfipour, Loughlin, & Leslie, 2007; Kuczenski & Segal, 2002; Matthews, Bondi, 

Torres, & Moghaddam, 2013; Stansfield & Kirstein, 2005; Walker, Francis, Caster, & Kuhn, 

2007; Walker et al., 2010). There is a hyperproduction of D1 and D2 receptors during 

adolescence followed by a pruning which could play a significant role in modulating 

dopamine function during adolescence (Andersen, Thompson, Rutstein, Hostetter, & 

Teicher, 2000; Meng, Ozawa, Itoh, & Takashima, 1999; Teicher, Andersen, & Hostetter, 

1995). C-fos responses to dopaminergic agents in rodents which reflect the integration of 

pre- and postsynaptic responses reflect this pattern of lower presynaptic function but greater 

postsynaptic function, showing lower responses to agents that must mobilize stores but 

higher responses to agents like cocaine that are not limited by immature stores (Andersen, 

LeBlanc, & Lyss, 2001; Cao et al., 2007; Caster & Kuhn, 2009).

More dramatic discontinuities in dopamine receptor function during adolescence occur in 

cortex. Transient expression of D1 receptors on cortical afferents to the nucleus accumbens 

occurs during adolescence (Brenhouse, Sonntag, & Andersen, 2008). Furthermore, a 

dramatic change in cortical D2 function occurs during adolescence, with a switch from 

inhibitory to excitatory action (O'Donnell, 2010). The late cortical changes in D2 receptor 

function are particularly intriguing given the importance of D2 receptors for response 

inhibition, a late-appearing phenomenon (Ghahremani et al., 2012).

Behavioral effects of investigator-administered addictive drugs have been studied 

extensively, but their findings are contradictory across laboratories and hard to correlate 

with addiction risk. For example, both enhanced and decreased locomotor responses to 
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psychomotor stimulants, nicotine and narcotics are reported in adolescents compared to 

adults although reported increases outnumber decreases (Adriani & Laviola, 2000; Adriani, 

Macri, Pacifici, & Laviola, 2002; Cao et al., 2010; Caster, Walker, & Kuhn, 2005; Faraday, 

Elliott, Phillips, & Grunberg, 2003; Koek, 2014; Koek, France, & Javors, 2012; McQuown, 

Dao, Belluzzi, & Leslie, 2009; Zombeck, Lewicki, Patel, Gupta, & Rhodes, 2010)

Decreased sedative:hypnotic effects of ethanol, have been observed consistently in rodent 

models (Hefner & Holmes, 2007; Little, Kuhn, Wilson, & Swartzwelder, 1996; Silveri & 

Spear, 1998, 1999). Decreased sensitivity to ethanol is the variable which best predicts 

ethanol intake in animals (Bell, Rodd, Lumeng, Murphy, & McBride, 2006) as well as 

humans (Schuckit, 1992, 1994), suggesting that adolescent insensitivity could be a factor 

that drives high alcohol consumption during this developmental epoch.

Studies of neuroadaptation during exposure to addictive drugs during adolescence are 

surprisingly sparse, but some behavioral studies provide information about the relative 

behavioral plasticity of adolescents and adults after repeated drug administration. Behavioral 

sensitization after repeated treatment with psychostimulants is widely used as a behavioral 

“surrogate” for neuroplasticity in the ascending dopamine system and its targets, although its 

relevance to addiction has been debated (Robinson & Berridge, 2008; Vanderschuren & 

Pierce, 2010). Studies of sensitization in adolescents and adults have yielded surprisingly 

contradictory results. The psychomotor stimulants amphetamine, methylphenidate and 

cocaine have been studied the most. Some studies report less sensitization in adolescents 

than adults after repeated treatment with amphetamine or cocaine (Laviola, Wood, Kuhn, 

Francis, & Spear, 1995; Torres-Reveron & Dow-Edwards, 2005; Zakharova, Leoni, Kichko, 

& Izenwasser, 2009), others report more sensitization to the challenge drug and/or cross-

sensitization to another psychomotor stimulant (Adriani, Chiarotti, & Laviola, 1998; 

Brandon, Marinelli, Baker, & White, 2001; Caster et al., 2005; Caster, Walker, & Kuhn, 

2007; Guerriero, Hayes, Dhaliwal, Ren, & Kosofsky, 2006). One factor might be that drugs 

which rely on dopamine release like amphetamine and methylphenidate may be less 

effective than drugs that inhibit uptake like cocaine due to the relative lack of stores to 

mobilize in adolescents compared to adults (Walker et al., 2010). However, similarly 

disparate findings are reported for nicotine, with one study reporting a sensitization that 

perseveres to adulthood (Faraday et al., 2003), another which reported sensitization in adults 

but not adolescents (Zago et al., 2012), and a third which reported comparable sensitization 

following adolescent or adult treatment (Adriani, Deroche-Gamonet, Le Moal, Laviola, & 

Piazza, 2006) Two studies reported increased cross-sensitization to cocaine (Santos, Marin, 

Cruz, Delucia, & Planeta, 2009) or amphetamine (McQuown et al., 2009) after adolescent 

nicotine. Similarly, one study reported comparable sensitization to heroin in adolescents and 

adults (Doherty & Frantz, 2013), while another reported more persevering sensitization in 

adolescents than adults (Koek, 2014). Overall, results of sensitization experiments are 

equivocal about whether sensitization is more, less or comparable in adolescents and adults. 

Different treatment ages, treatment paradigms, post-treatment challenge timing 

(immediately after treatments vs. in adulthood), different species (mice vs. rats) all could 

contribute to these disparate findings.
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Sensitization is only a surrogate for the effects of early initiation on neuroadapation and 

vulnerability to escalation of drug intake during repeated intake or later vulnerability to 

initiation and progression in the use of other drugs. Such experiments are very difficult to 

accomplish because it is difficult to start self-administration studies during the brief window 

of rodent adolescence. While there are many studies of how investigator-administered drugs 

during adolescence influence subsequent self-administration, results are conflicting, drug-

specific and plagued by the same differences in protocols described above for sensitization. 

The small number of self-administration studies in adolescents which have followed 

extinction, withdrawal and/or relapse point to persevering neural adaptations in adolescents. 

Some studies with psychomotor stimulants and ethanol indicate that self-administration is 

higher, escalation greater, extinction of drug-taking is slower and drug and stress-induced 

relapse more likely, a finding suggestive of more persevering neuroadaptations after 

adolescent use (Anker & Carroll, 2010; Brenhouse & Andersen, 2008; Schramm-Sapyta et 

al., 2008; Siegmund, Vengeliene, Singer, & Spanagel, 2005; Wong et al., 2013). The slower 

extinction may well reflect a general characteristic of adolescent brain function, as 

extinction of fear-based memories is slower in adolescent brain, a characteristic that is 

thought to reflect failure of neuroadaptation in specific cortical areas (prelimbic and 

infralimbic) of adolescent brain (Pattwell et al., 2012; Pattwell, Lee, & Casey, 2013). 

However, this is not a universal finding, as another study reported less cue-induced 

reinstatement and comparable cocaine-induced reinstatement in adolescents compared to 

adults (Li & Frantz, 2009).

In summary, biologic variables that influence drug taking on average promote more drug use 

in adolescents than adults. Human imaging and cognitive studies as well as self-

administration studies in animal models suggest that enhanced behavioral control by the 

reinforcing properties of additive drugs plays a role in this vulnerability. The enhanced 

sensitivity to emotional cues combined with a relative lack of aversive input/behavioral 

inhibition in response to such input minimizes restraints on drug taking by aversive effects 

of drug taking or withdrawal.

10. Intrinsic and Extrinsic Factors that Influence Initiation of Addiction 

during Adolescence

The important intrinsic factors which enhance or protect against initiation and progression of 

drug use in adolescents are personality characteristics and the emergence during adolescence 

of psychiatric illnesses which influence the progression of substance use. “Novelty seeking” 

and/or sensation seeking (these are behavioral constructs with somewhat overlapping 

definitions) are characteristic of adolescents in general, and those who rank at extreme levels 

of high novelty seeking are at special risk for initiation of substance abuse (see above). 

Tarter’s group has developed a metric they characterize as “neurobehavioral disinhibition” 

which includes similar characteristics, and includes impulsivity/difficulty in response 

inhibition, and high ranking in this characteristic during early adolescence is strongly 

predictive of the later development of dependence on tobacco, marijuana, alcohol and 

cocaine over the next 7–9 years (Clark, Cornelius, Kirisci, & Tarter, 2005; Kirisci, Tarter, 

Mezzich, & Vanyukov, 2007; Tarter et al., 1999). In contrast, the personality trait of 
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conscientiousness, which reflects the capacity for self-regulation, is highly protective against 

the development of substance abuse (Whelan et al., 2014).

Anxiety, depression, bipolar disorder conduct disorder and ADHD enhance the progression 

of substance use (Charach et al., 2011; Deas, 2006; Matthys, Vanderschuren, & Schutter, 

2013; Simkin, 2002; Zulauf, Sprich, Safren, & Wilens, 2014). While anxiety disorders tend 

to first appear during childhood, levels of this disorder rise during adolescence, as does 

depression. Bipolar disorder typically appears during late adolescence and early adulthood, 

and is associated with increased abuse of both alcohol (to dampen manic symptoms) and 

psychomotor stimulants (to relieve depressive symptoms) (Blumberg, 2007; Deas, 2006; 

Goldstein & Bukstein, 2010).

Extrinsic factors both contribute to and protect from initiation and progression of substance 

use during adolescence. A childhood history of physical or sexual abuse (Downs & 

Harrison, 1998; Nomura, Hurd, & Pilowsky, 2012) or profound stress (Enoch, 2011) are 

associated with development of substance abuse during adolescence. Peers play a dominant 

role in initiation of tobacco and alcohol use, and association with deviant peers is a very 

important predictor of the initiation and progression especially of smoking during 

adolescence (Haas & Schaefer, 2014; Kobus, 2003; Pollard, Tucker, Green, Kennedy, & Go, 

2010). Family environment is also crucial: high levels of parental use and low parental 

supervision are associated with higher rates of initial use and progression (Clark et al., 2005; 

Kirisci et al., 2007). Overall, parental supervision and involvement is a protective factor 

which retards initiation and progression of tobacco and alcohol use during adolescence 

(Mahabee-Gittens, Xiao, Gordon, & Khoury, 2013; Morin, Rodriguez, Fallu, Maiano, & 

Janosz, 2012; Ryan, Jorm, & Lubman, 2010; Van Der Vorst, Engels, Dekovic, Meeus, & 

Vermulst, 2007; van der Zwaluw et al., 2010). However, the match between personality and 

parenting style has a strong impact on initiation and progression of substance use during 

adolescence. While effective, “authoritative” parenting is effective overall, the pairing of an 

impulsive, acting out adolescent and authoritarian rather than authoritative parent is a risk 

factor which increases the risk of substance abuse by adolescents (Armstrong et al., 2013). 

Finally, other activities in the life of adolescents have a protective effects, especially 

engagement in religious activities and sports (Agrawal & Lynskey, 2009; Metzger, Dawes, 

Mermelstein, & Wakschlag, 2011; Nasim, Belgrave, Jagers, Wilson, & Owens, 2007; Silins 

et al., 2013) Engagement is sports is especially protective against initiation of smoking 

(Adachi-Mejia, Gibson Chambers, Li, & Sargent, 2014).

11. Summary: risk and protective factors influencing the emergence of 

substance use and abuse in adolescence

Numerous factors contribute to the initiation and progression of substances abuse including 

how an individual reacts to a particular drug, the neurobiology of the adolescent brain in 

general, and the brain of vulnerable individuals (novelty-seeking, disinhibited). However, 

the interactions of the individual with his or her environment are also crucial: families, 

peers, individual engagement in activities all influence the initiation and progression of 

substance use. These factors have been outlined in such detail because a considerable body 
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of evidence suggests that gender/sex influences the weight of all of these key variables. The 

remainder of this chapter will aim to describe these interactions.

Biologic Factors that Influence the Emergence of Sex/Gender Differences in Substance Use 

and Abuse during Adolescence

12. Sexual Differentiation of the Brain: The role of genes and hormones

Many aspects of brain structure and function are sexually dimorphic. The most obvious of 

these are the functions and structures supporting reproduction and sexual behavior, but the 

reward system, executive function, aggression and stress sensitivity are different in males 

and females. Multiple phenomena contribute to these differences, as depicted in Figure 7. 

Males and females receive their complement of X and Y chromosomes at fertilization, 

which dictate whether a fetus will be male (XY) or female (XX). A rapidly expanding 

literature shows that sex-specific gene expression occurs in the brain even before ovaries 

and testes form (Viveros et al., 2012). XX genotype alone accelerates habit formation, a 

critical component in the transition from reinforced to compulsive responding (Quinn, 

Hitchcott, Umeda, Arnold, & Taylor, 2007), and also influences nociception, aggression and 

maternal behavior (Arnold & Chen, 2009) The testis-determining gene sry exerts direct 

effects on brain development independent of the production of testosterone (De Vries et al., 

2002; Dewing et al., 2006; Gatewood et al., 2006; Quinn et al., 2007).

Once the gonads are established, hormonal factors begin to contribute to sexual 

differentiation of the brain. These changes take two forms which have been termed 

“organizational” and “activational” (Arnold, 2009). Organizational effects reflect 

irreversible effects on brain organization due to exposure to gonadal hormones during a 

critical period. Aromatization of testosterone to estradiol within the brain plays a critical role 

in this process in the male during fetal/early neonatal life as a fetal form of albumin prevents 

estradiol from entering the female brain (MacLusky, Lieberburg, & McEwen, 1979; 

MacLusky & Naftolin, 1981; McCall, Han, Millington, & Baum, 1981; Pardridge & Mietus, 

1979). Rising testosterone and estradiol in males and females at puberty respectively causes 

further sexual differentiation of behaviors including aggression in males and feeding-related 

behaviors in females (Juraska, Sisk, & DonCarlos, 2013; Schulz, Molenda-Figueira, & Sisk, 

2009; Schulz et al., 2004; Schulz & Sisk, 2006; Sisk & Foster, 2004; Sisk & Zehr, 2005). 

After puberty, gonadal steroid hormones exert ongoing “activational” effects that reverse 

when hormone is eliminated. The profound rise in gonadal hormones during puberty creates 

the endocrine environment of adulthood which contributes to many of these effects. Recent 

research also suggests a role for central production of estradiol by brain aromatase in sexual 

differentiation of the brain (Bakker, Honda, Harada, & Balthazart, 2002; Brock, Baum, & 

Bakker, 2011; Dugger, Morris, Jordan, & Breedlove, 2007; Garcia-Segura, 2008; Hill & 

Boon, 2009; Lephart, 1996).

All three major gonadal hormone receptors, ERα, ERβ and androgen receptor, contribute to 

sexual differentiation of the brain (Holterhus, 2011; Johansen, Jordan, & Breedlove, 2004; 

Kudwa, Michopoulos, Gatewood, & Rissman, 2006; Raskin et al., 2009; Sisk & Foster, 

2004; Sisk & Zehr, 2005). Although work in this area is just beginning, epigenetic 
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regulation of gonadal steroid hormone gene promoters is likely a mediating mechanism in 

the evolving role of these different receptors in sexual differentiation of specific brain 

regions/behavioral functions (Matsuda, 2014; Matsuda, Mori, & Kawata, 2012). Finally, as 

Figure 7 depicts, adolescence, the developmental epoch when most individuals begin to 

experiment with drugs, overlaps with puberty and the full expression of genomic and 

hormonal influences which contribute to the emergence of sex/gender specific behavior.

Sexually dimorphic changes in several key brain structures relevant to the triadic model 

finalize during adolescence in both humans and rodents. First, structures of reward-relevant 

areas like the caudate nucleus change differentially in adolescent males and females. Basal 

ganglia volume attains peak volume and then prunes to adult size earlier in girls than boys 

(Giedd et al., 2012). There are conflicting data, but some studies suggest that females attain 

higher final volume than males (reviewed in Giedd (Giedd et al., 2012). In amygdala, 

changes are nucleus specific, but size of the important basolateral amygdala that is crucial 

for stress systems attains adult dimensions in childhood in girls, but it continues to grow 

during adolescence in boys to a greater final volume (Juraska et al., 2013; Viveros et al., 

2012). Finally, while thinning of the cortex occurs in both boys and girls, the sex difference 

(thickness greater in boys than girls) diminishes in critical prefrontal areas during 

adolescence, and girls attain adult thickness in these areas related to executive function and 

behavioral inhibition before boys (Raznahan et al., 2010). Each of these anatomical changes 

correlates with developing sexual dimorphisms in the neurobiologic substrates of addiction 

including determination of reward system, executive function and neurobiologic 

determinants of key behaviors like sensation seeking, as well as environmental and cultural 

influences on gender-typical behavior/social roles. Several critical examples are described 

below.

The emergence of sexually dimorphic characteristics which contribute to addiction is best 

understood for the dopamine system involved in the initiation of addiction. Genotype, 

organizational and activational effects of gonadal hormones all contribute to the 

establishment of sex/gender differences in adulthood. The testis-determining gene, sry, 

affects expression of a number of genes in dopamine neurons (Czech et al., 2012; Tao et al., 

2012). Greater dopamine neuron numbers occur in females even in DA cell culture, in the 

absence of any hormonal information, while in this context, male neurons are bigger and 

express higher levels of some dopamine markers (Beyer, Eusterschulte, Pilgrim, & Reisert, 

1992; Beyer, Ivanova, Karolczak, & Kuppers, 2002; Beyer, Pilgrim, & Reisert, 1991; 

Engele, Pilgrim, & Reisert, 1989; Reisert, Engele, & Pilgrim, 1989; Reisert et al., 1987). 

Anatomic differences in organization of ascending dopamine systems can be detected well 

before the pre/postnatal “critical” period in rodents (Kolbinger, Trepel, Beyer, Pilgrim, & 

Reisert, 1991; Reisert, Schuster, Zienecker, & Pilgrim, 1990). Therefore, the brain structure 

underlying the enhanced dopamine response to females may be established early in 

gestation.

Events during this pre/postnatal “critical period” in rodents also contribute to the sculpting 

of the emerging reward system. Exposure to testosterone during this time frame 

“masculinizes” behavioral responses to amphetamine in females, an effect that is insensitive 

to hormonal manipulations later in life (Forgie & Stewart, 1993; Forgie, M. L. & J. Stewart, 
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1994; Forgie, M.L. & J. Stewart, 1994). Dopamine innervation of the cortex is blunted by 

testosterone aromatized to estradiol during the pre/postnatal critical period (Stewart & 

Rajabi, 1994). The final organizational events and onset of activational contributions of 

gonadal hormones at puberty complete the emergence of sexual dimorphisms in dopamine 

function. Several waves of dopamine cell loss in rats occur after birth, the final one at 

puberty, which occurs disproportionately for males (Kuhn et al., 2010). Adult rats, like non-

human primates, exhibit greater numbers of dopamine neurons in the ventral tegmental area 

than males, although these findings are not universal in all rodent studies (McArthur, 

McHale, & Gillies, 2006; McArthur et al., 2007). The enhanced dopamine release observed 

consistently in females of rats and mice relative to males also emerges during puberty. The 

combination of an organizational effect of testicular hormones to suppress dopamine 

function and the onset of activational effects of estradiol to augment dopaminergic function 

lead to a divergence of dopaminergic function (Kuhn et al., 2010; Walker & Kuhn, 2008).

Dopamine receptor populations also exhibit marked sexually dimorphic changes in rodents 

during adolescence that are well described: D2 receptor numbers rise precipitously and then 

prune markedly in males, while changes in females are blunted in comparison (Andersen, 

Rutstein, Benzo, Hostetter, & Teicher, 1997; Andersen & Teicher, 2000; Andersen et al., 

2000). These changes are independent of hormonal changes at puberty, but the role of earlier 

endocrine and genomic effects has not been explored (Andersen, Thompson, Krenzel, & 

Teicher, 2002).

Numerous pubertal changes both in addictive drug action and self-administration that reflect 

sex-specific development of dopamine systems have been reported in animal models. 

Enhanced self-administration of cocaine and nicotine in females relative to males emerges, 

although the role of gonadal hormones was not investigated in these studies (Levin et al., 

2011; Lynch, 2008, 2009). However, a study of the effects of prepubertal gonadectomy on 

cocaine-stimulated locomotion in adulthood, a common surrogate for activation of dopamine 

reward systems, showed that gonadectomy lowered responses in females and elevated them 

in males compared to gonadally intact animals (Parylak, Caster, Walker, & Kuhn, 2008). 

One intriguing study comparing acquisition, intake and motivation to self-administer 

cocaine suggested that organizational effects of estradiol at puberty specifically organizes 

motivation but not the other parameters (Perry, Westenbroek, & Becker, 2013).

Studies of the emergence of behavioral sensitization tell a similar story about the importance 

of puberty and gonadal hormones on the appearance of elevated sensitization in females. An 

extensive literature shows that chronic exposure of rats to cocaine or nicotine causes 

enhanced behavioral responding to a test dose of cocaine (sensitization) that is greater in 

females than in males (Booze, Welch, et al., 1999; Booze, Wood, Welch, Berry, & 

Mactutus, 1999; Hu & Becker, 2003; Quinones-Jenab & Jenab, 2012; Yang, Zhao, Hu, & 

Becker, 2007).

A similar role for organizational/activational influences on alcohol consumption may occur 

during puberty. Prepubertal gonadectomy reversed sex-specific patterns of ethanol 

consumption in adult mice, as early gonadectomized males consumed more than early-

gonadectomized females (Sherrill, Koss, Foreman, & Gulley, 2011). Sex differences in the 
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use-limiting effects of ethanol may emerge during puberty. Sex differences in ethanol-

induced sedation exist on postnatal day 60 but not on day 30 (Cha, Li, Wilson, & 

Swartzwelder, 2006). Similar findings have been reported by Silveri and Spear (Silveri & 

Spear, 1998) who showed that adult female rats are less sensitive to the sedating effects of 

ethanol but that no sex difference existed during juvenile or adolescent development. While 

sex differences in alcohol-related impairment also develop during puberty in non-human 

primates, the changes are more complex. Males and females both exhibit a decrease in 

ataxia, but females exhibit more locomotor stimulation and impaired jumping with age 

compared to males (Schwandt, Barr, Suomi, & Higley, 2007).

The emergence of sex differences in stress systems during puberty may also contribute 

significantly to the emergence of sex-specific trajectories into drug use and abuse through 

effects both on the protracted stage of CRF-mediated drug craving, and on the role of stress 

and emergence of psychiatric disorders during puberty (see below). In both humans and 

rodents, HPA reactivity to stress is high in adolescence in comparison to earlier life stages 

and this increase interacts with the hormonal changes of puberty. In humans, cortisol 

responses to stress are high in adolescents compared to children (Gunnar, Wewerka, Frenn, 

Long, & Griggs, 2009). Basal cortisol, stress-induced cortisol and CRH-induced rises in 

cortisol are higher in human females than males after puberty, reflecting a more pronounced 

fall in males than females (Adam, 2006; Blumenthal, Leen-Feldner, Badour, Trainor, & 

Babson, 2014; Gunnar et al., 2009; Kiess et al., 1995; Netherton, Goodyer, Tamplin, & 

Herbert, 2004; Oskis, Loveday, Hucklebridge, Thorn, & Clow, 2009; Shirtcliff et al., 2012; 

Stroud, Papandonatos, Williamson, & Dahl, 2011). Rodents show a similar pattern: they 

attain maximal HPA axis reactivity just before puberty (Jankord et al., 2011). Corticosterone 

responses to stress are high due in part to sluggish glucocorticoid feedback (Sapolsky & 

Meaney, 1986) As male rats go through puberty, HPA axis responses fall (Klein & Romeo, 

2013; Romeo, 2010). Organizational effects during the perinatal period but not adolescence 

contribute to this fall (McCormick, Furey, Child, Sawyer, & Donohue, 1998; Patchev, 

Schroeder, Goetz, Rohde, & Patchev, 2004; Seale, Wood, Atkinson, Lightman, & Harbuz, 

2005). However, activational effects of androgen to suppress corticosterone secretion 

contribute to regulation in adulthood (McCormick & Mathews, 2007; McCormick, 

Mathews, Thomas, & Waters, 2010). In female rats, the onset of estrous cyclicity and 

estradiol secretion allow them to maintain high, adolescent- like stress responses through 

activational effects at multiple sites including CRF production, glucocorticoid feedback and 

others (Evuarherhe, Leggett, Waite, Kershaw, & Lightman, 2009; Veldhuis et al., 2013).

The development of enhanced HPA axis reactivity during puberty in vulnerable human 

females has the potential to contribute to sex/gender specific trajectories in substance use 

and misuse in two ways. First, rising HPA axis reactivity is thought during puberty is 

thought to be related to the emergence of the higher incidence of depression in females 

relative to males (Young & Korszun, 2010; Young, 1998; Young & Altemus, 2004). 

Second, it may also be related to enhanced withdrawal from nicotine and stress-induced 

relapse to psychostimulant self-administration observed in animal models (Feltenstein, 

Henderson, & See, 2011; Hudson & Stamp, 2011; O'Dell, 2009; O'Dell et al., 2004).
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Much less is known about emergence of sex differences in opioid systems of reward or 

dynorphin mediated stress responses: these remain gaps in the neurobiology literature.

13. Intrinsic Factors in Sex/Gender Differences in Emergence of Substance 

Use and Abuse during Adolescence

The appearance of sex differences in and hormonal influences on critical personality/

neurobehavioral domains influence substance use and abuse risk play a crucial role in the 

patterns of substance use and abuse in developing males and females. This is true for the risk 

factors of sensation seeking and impulsivity and for the protective factors of behavioral 

inhibition and self-regulation.

In both male and female humans, the personality constructs of neurobehavioral 

disinhibition/novelty seeking (Lovallo et al., 2006; Tarter et al., 1999) or high novelty 

seeking/low harm avoidance (Bohman et al., 1987; Cloninger et al., 1988; Gilligan et al., 

1987) are highly predictive of the development of alcohol (and other substance abuse) 

problems. Pubertal development is a risk factor for early substance use and abuse in both 

males and females, and several studies suggest that sensation seeking is a behavioral 

mediator of this association (Castellanos-Ryan, Parent, Vitaro, Tremblay, & Seguin, 2013; 

Forbes & Dahl, 2010; Gunn & Smith, 2010; Kong et al., 2013; Martin et al., 2002; Steinberg 

et al., 2008). High testosterone predicts drug use in both sexes (Kerschbaum, Ruemer, 

Weisshuhn, & Klimesch, 2006; Reynolds et al., 2007). However, during adolescence, an 

interesting discrepancy begins to appear which differentiates drug using and non-drug using 

females. Levels of neurobehavioral disinhibition/sensation seeking/impulsivity are generally 

lower in adolescent females than males, a difference which becomes exaggerated after 

puberty (Shulman, Harden, Chein, & Steinberg, 2014). However, adolescent females with 

high scores in these domains are more likely to develop substance abuse during adolescence, 

like males, and they are generally correlated with pubertal development in both males and 

females (Castellanos-Ryan et al., 2013; Grano N, 2004; Kirisci, Mezzich, Reynolds, Tarter, 

& Aytaclar, 2009; Kong et al., 2013; Martin et al., 2002). Therefore, while slightly lower 

levels of impulsivity may protect females in general, those at the high end of the spectrum 

are still at significant risk.

These personality domains correlate well in brain imaging and psychophysiology studies 

with reward sensitivity and striatal activation, in keeping with the triadic model proposed 

earlier. During puberty, testosterone was correlated with striatal activation during a 

gambling task for both males and females, suggesting that androgen effects on reward 

sensitivity plays a role in both males and females (Op de Macks et al., 2011). Perhaps the 

most interesting study is one showing that threat cues evoked exaggerated responses in both 

threat-related areas (amygdala) and reward related areas (striatum) in males, and that these 

responses correlated with testosterone (Spielberg, Olino, Forbes, & Dahl, 2014). Startle 

amplitude, a measure of CNS arousal in response to emotionally arousing pictures, increased 

in midpuberty/late puberty in comparison to earlier ages in males and females (Quevedo, 

Benning, Gunnar, & Dahl, 2009). This small but intriguing literature links these 

“personality” constructs to neurobiologic changes which occur during adolescence, and may 

suggest that the emergence of exaggerated male responses in the domains of sensation/
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impulsivity are driven by gonadal steroid hormone effects influencing basic neurobiologic 

circuits involved in threat and reward.

Emergence of sex differences in protective factors including capacity for self-regulation may 

also contribute to the development of male dominance in substance use and abuse in 

adulthood. While adult male and female humans perform similarly in tasks related to 

behavioral inhibition in adulthood (Garavan et al., 2006; Li, Huang, Constable, & Sinha, 

2006), adolescent females perform better than boys in tasks of motor inhibition (Aarnoudse-

Moens, Duivenvoorden, Weisglas-Kuperus, Van Goudoever, & Oosterlaan, 2012; Bezdjian, 

Baker, Lozano, & Raine, 2009) and delay of gratification (Hosseini-Kamkar & Morton, 

2014). In fact, most studies show that these sex/gender differences are established well 

before puberty and perhaps even more prominent in children than in adolescents (Hosseini-

Kamkar & Morton, 2014). The early emergence of this sexual dimorphism could reflect 

early sexual differentiation of these areas. Imaging studies further suggest that adolescent 

males and females use slightly different strategies in selecting risk vs. reward: during a 

gambling task, adolescent females preferentially activated left inferior, frontal and striatal 

areas in contrast to males, with dominant right inferior parietal activation (Rubia et al., 

2013), a pattern that has been linked to “top-down,” habit-learning dominance in females 

compared to visuospatial “bottom up” processing in males.

Co-morbid psychiatric illness is a factor in the progression of addiction in men and women, 

and sex/gender differences in the most frequently observed co-morbidities emerge during 

adolescence. In adolescent males, the psychiatric disorders most frequently cited as 

increasing the risk of substance abuse are conduct disorder and attention deficit 

hyperactivity disorder (ADHD) (Andersen & Teicher, 2000; Dakof, 2000; Deas, 2006; 

Latimer, Stone, Voight, Winters, & August, 2002), while depression is the most common 

diagnosis in females (Latimer et al., 2002; Simkin, 2002). After puberty sex/gender 

differences in depression change dramatically to being female-dominated (Angold & 

Costello, 2006; Angold, Costello, Erkanli, & Worthman, 1999; Angold, Costello, & 

Worthman, 1998), and depression is more frequently a factor in substance abuse in 

adolescent females than adolescent males (Latimer et al., 2002). On average girls more 

frequently endorse coping as a rationale for drinking alcohol while males more frequently 

cite getting high/having fun (Kuntsche & Muller, 2012). Similarly, teenage girls more 

frequently cite desire to reduce anxiety as a reason to smoke cigarettes than boys (O'Dell & 

Torres, 2014).

The emergence of sex-differences in executive function, reward sensitivity and behavioral 

inhibition discussed above as well as the different pattern of association between psychiatric 

diagnosis and sex during adolescence all converge to generate different trajectories into 

substance use by adolescent males and females. While rates of initiation and use may be 

similar, the factors driving use diverge rapidly during adolescence for males and females. 

Nevertheless, individual differences in all of these domains also contribute to vulnerability: 

females with conduct disorder and males with depression are at increased risk of substance 

abuse despite not being gender-typical.
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14. Extrinsic Factors in Sex/Gender Differences in Emergence of Substance 

Use and Abuse during Adolescence

The intersection of sex/gender and environment play a significant role in the emergence of 

gender-specific patterns of substance abuse. Early adversity, especially physical or sexual 

abuse or early emotional maltreatment, is a dramatic predictor of later substance abuse 

problems. Although early physical or sexual abuse are risk factors for the development of 

substance abuse in both men and women (Afifi et al., 2012; Banducci, Hoffman, Lejuez, & 

Koenen, 2014; Clark et al., 2012; Dube et al., 2005), some studies report that women 

experience more dramatic impact on substance abuse behaviors (Hyman et al., 2006; Hyman 

et al., 2008)

Cultural variations in gender roles contributes significantly to initiation of substance use in 

different countries but rates of initiation of men and women in the youngest cohorts are 

equalizing in developed countries (Degenhardt et al., 2008; Okoli, Greaves, & Fagyas, 2013; 

Piko, Wills, & Walker, 2007; Zilberman, M. et al., 2003). Environmental factors including 

parenting style, the impact of peers, education and socioeconomic status all influence 

substance use initiation in all adolescents, but also have gender specific effects in humans. 

Overall, the impact of deviant peers on substance use initiation may be less in girls than 

boys (Kirisci et al., 2009). However, consumption of alcohol, smoking and use of many 

drugs in females is enhanced/encouraged by romantic partners to a greater extent in females 

than males, a pattern that emerges during adolescence (Brady & Randall, 1999; Branstetter, 

Blosnich, Dino, Nolan, & Horn, 2012; Forbes & Dahl, 2010; Miller et al., 2009). Cohort 

studies showing that initiation of smoking, alcohol consumption and use of cannabis are 

occurring earlier and equalizing across gender in current adolescents compared to earlier 

generations suggest that lower stigmatization and changing roles for women are changing 

drug use patterns in adolescent females (Degenhardt et al., 2008; Geels et al., 2013; Johnson 

& Gerstein, 2000; Kerr et al., 2009; Keyes et al., 2008; Pitel et al., 2010).

15. Conclusions

Experimentation with psychoactive drugs and the initiation of substance abuse for most 

humans begins during adolescence, the developmental epoch when the genetic and 

hormonal processes which contribute to the emergence of adult sex/gender-specific 

behaviors emerge. In addition, the social environment of this and earlier developmental 

epochs shapes social roles which further influence sex/gender-specific behaviors including 

drug taking. Drug experimentation and progression to substance use is enhanced in 

adolescent humans as well as in animal models. Peak use of addictive drugs occurs during 

early adulthood in humans and then tapers off dramatically into adulthood. Drug use by the 

youngest adolescents is similar in males and females in humans and in animal models, but 

differences emerge with adulthood. More men than women use and become dependent upon 

most drugs, and drug use falls more in females than males during the transition to adulthood. 

However, females may progress more rapidly from initiation of use to problematic use to 

treatment. In rodent models, which provide a window into the role of biologic factors in the 

absence of cultural and environmental risks, enhanced drug taking in females emerges at 
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puberty, due in large part to organizational effects of androgen and activational effects of 

estradiol on the dopamine system. In rodents, like humans, the enhanced stress reactivity of 

females which contributes to stress and cue-induced relapse also develops after puberty. The 

risks in the drug-using population and the protective factors in the larger population that 

never progresses beyond drug experimentation contribute to this developmental pattern of 

drug use.

Risk factors which predict the development of substance abuse are similar in adolescent 

males and females. These include the neurobiology of adolescence which favors selection of 

rewarding experiences without inhibition by aversive consequences, the novelty seeking/

sensation seeking personality and psychiatric comorbidities like depression as well as 

environmental factors including drug-using family environment. However, sex differences 

in the relative importance of each of these factors emerge during puberty. These include 

enhanced novelty seeking/sensation seeking especially in males, depression/anxiety in 

females, and the emergence of stress-induced risk for relapse in females. These intrinsic 

factors lead to the development of a sex/gender specific trajectory from experimentation into 

substance abuse for males and females. These are mediated by biologic factors in part 

including sexual differentiation of cortical and subcortical brain areas responsible for 

reward, executive function and stress. The emergence of sex differences in factors which 

protect the larger population of females who do not progress or stop using drugs is rarely 

considered or studied. These include lower levels of impulsivity and sensation seeking, 

higher levels of self-regulation during adolescence specifically and greater impact of family 

environment which provide a window into the role of biologic factors in the absence of 

cultural and environmental risks. These may continue to protect a large population of 

females despite the gradual change in social roles which protected women historically. 

Many of these risk factors reflect characteristics that are difficult to model in animals, which 

may contribute to the apparent divergence in sex/gender specific drug taking in animal 

models and humans.

In summary, biologic, psychiatric co-morbidities as well as personality and environment 

present sex/gender-specific risks as adolescents begin to initiate substance use. In females, 

enhanced dopaminergic and CRF-related functions as well as psychiatric comorbidity 

(depression) and previous abuse represent vulnerability factors. In men, neural development 

during adolescence and the pubertal testosterone surge lead to a greater increase in 

impulsivity/sensation seeking and poorer self-regulation which represents risk factors for 

them.
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Figure 1. 
Factors In Addiction
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Figure 2. 
Neurobiology Factors in Addiction
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Figure 3. 
Factors Influencing Initiation of Substance Use during Adolescence
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Figure 4. 
The triadic model of executive function (adapted from (Richards et al., 2012)
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Figure 5. 
Trajectory of accumbens, amygdala and cortical development (modified from (Mills et al., 

2014)
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Figure 6. 
The modified triadic model of executive function
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Figure 7. 
Sexual differentiation of brain and behaviour.
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