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Abstract
Relation between the gut microbiota and human 
health is being increasingly recognised. It is now 
well established that a healthy gut flora is largely 
responsible for overall health of the host. The normal 
human gut microbiota comprises of two major phyla, 
namely Bacteroidetes and Firmicutes. Though the 
gut microbiota in an infant appears haphazard, it 
starts resembling the adult flora by the age of 3 
years. Nevertheless, there exist temporal and spatial 
variations in the microbial distribution from esophagus 
to the rectum all along the individual’s life span. 
Developments in genome sequencing technologies and 
bioinformatics have now enabled scientists to study 
these microorganisms and their function and microbe-
host interactions in an elaborate manner both in health 
and disease. The normal gut microbiota imparts specific 
function in host nutrient metabolism, xenobiotic and 
drug metabolism, maintenance of structural integrity 
of the gut mucosal barrier, immunomodulation, and 
protection against pathogens. Several factors play a 
role in shaping the normal gut microbiota. They include 
(1) the mode of delivery (vaginal or caesarean); (2) 
diet during infancy (breast milk or formula feeds) 
and adulthood (vegan based or meat based); and (3) 
use of antibiotics or antibiotic like molecules that are 
derived from the environment or the gut commensal 
community. A major concern of antibiotic use is 
the long-term alteration of the normal healthy gut 
microbiota and horizontal transfer of resistance genes 
that could result in reservoir of organisms with a 
multidrug resistant gene pool.
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Core tip: In this review we present an up-to-date 
overview of the normal gut microbiota, their functional 
implications in health, and the mechanistic insights 
that orchestrate these functions. We also discuss the 
characteristics that define a healthy gut microbiota 
and factors that shape and perturb the gut microbial 
diversity and functions. The evidence that we present 
here is a composite of observational and experimental 
studies on humans, germ free and humanized mice.
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INTRODUCTION
Microbiota refers to the entire population of micro­
organisms that colonizes a particular location; and 
includes not just bacteria, but also other microbes 
such as fungi, archaea, viruses, and protozoans[1]. 
Significant interest have evolved on the gut microbiota 
in the recent years within the scientific community; 
and the gut microbiota have been associated with a 
large array of human diseases ranging from luminal 
diseases such as inflammatory bowel diseases (IBD)[2] 
and irritable bowel syndrome (IBS)[3], metabolic 
diseases such obesity and diabetes[4], allergic disease[5] 

to neurodevelopmental illnesses, though the strength 
of evidence is not robust with many of them. It has 
been speculated since long that the gut microbiota 
bear significant functional role in maintaining the 
gut in the normal individual and human health as 
a whole. There is now mounting evidence resulting 
from studies on humans and germ free mice that 
supports these speculations. Several high quality data 
from the US Human Microbiome Project (HMP)[6], 
European Metagenomics of the Human Intestinal 
Tract (MetaHIT)[7] and several other studies have 
now demonstrated the beneficial functions of the 
normal gut flora on health down to the genetic level. 
For example, studies have now identified several gut 
microbial genes, such as the HMO-related gene cluster 
1 that is responsible for human milk oligosaccharide 
digestion.

From an immunological perspective, micro­
organisms are viewed as pathogens by the host 
immune system that recognizes and eliminates 
them. However, majority of the gut bacteria are 
non-pathogenic and, co-habit with the enterocytes 
in a symbiotic relationship. The gut commensals 
predominantly aid in nutrient metabolism, drug me­
tabolism, prevention of colonization of pathogenic 
microorganisms and in intestinal barrier function. At 
the same time, the immune system has co-evolved 

to live in a collaborative relationship with the healthy 
microbiota, while serving its function to fight off 
invasive pathogenic microorganisms.

The purpose of this manuscript is to review the 
recent evidence on the functions of the normal 
gut microbiota and the mechanistic insights into 
the execution of these pro-health functions. Data 
presented in this review is a composite of both 
observational and experimental studies on humans, 
germ free and humanized mice. The implications of the 
gut microbiota in disease states are out of the scope of 
this review.

CURRENT METHODS TO STUDY GUT 
MICROBIOTA
To study the gut microbiota, stool samples have to 
be collected from individuals and DNA from stool is 
isolated. Isolation, identification and enumeration of 
the vast majority of gastrointestinal microorganisms 
using conventional culture based techniques is an 
arduous task. Earlier, using culture based techniques, 
scientists were able to isolate only 10%-25% of 
the microbiota, and this was because most of the 
microorganisms in the gut are anaerobic. Later, 
with the improvements in the anaerobic culturing 
techniques, dominant genera were identified such 
as, Bacteroides, Clostridium, Bifidobacterium etc. 
The major drawback in using these techniques is the 
difficulty in studying the culture characteristics of 
various colonies on a petri plate. Secondly, it is time 
consuming[8-10].

With the availability of high throughput gene 
sequencing technology, study of the gut microbiota 
currently consists of two major stages: (1) 16S 
rRNA based sequencing of bacterial gene; and (2) 
bioinformatics analysis. Metabolomics is another 
rapidly expanding field of gut microbiota research 
that evaluates small molecules associated with the 
interrelationship of host-bacterial metabolism that 
has implications in health and disease. Composite 
data from the gut microbiota and the metabolome 
currently provides the most powerful evidence that can 
demonstrate the closest association with health and 
diseased states.

Bacterial gene sequencing
Sequencing of bacterial genes involves metagenomic 
analysis of DNA that codes for the 16S rRNA. The 
16S region of bacterial gene is small (1.5 Kb size) 
and highly conserved, with 9 hyper variable sites 
that are sufficient to differentiate various bacterial 
species[11]. Common regions for bacterial identification 
in 16S rRNA are the V3, V4, V6 and V8[12]. With the 
development of biomedical technology, bacterial 
gene sequencing has rapidly evolved from Sanger’s 
sequencing to several variations of next-generation 
sequencing (NGS). Even though NGS could provide 



Table 1  Advantages and disadvantages of few of the currently 
available next generation sequencing techniques[15,16]

8789 August 7, 2015|Volume 21|Issue 29|WJG|www.wjgnet.com

voluminous data with fair to good accuracy, they are 
not free from problems. A recent study have shown 
that sequencing could be prone to errors that most 
likely results from the library preparation methods 
and choice of primers[13]. The other issue of concern 
in 16S rRNA based sequencing is the variability of 
results across different sequencing centers, both for 
predominant and minor taxa. This variation again 
could be result of differences in primers used to 
generate the amplicon libraries[14]. Table 1 presents 
the accuracy, advantages and disadvantages of the 
currently available sequencing techniques[15,16].

BIOINFORMATICS ANALYSIS
The data obtained from sequencing is often volu­
minous, fragmented, noisy, overlapping, and con­
taminated. Bioinformatics analysis enables cleaning 
up the data and the identification of the bacterial taxa. 
This can also be extended to obtaining information 
also on metabolic functions using a wide array of 
bioinformatics platforms. Furthermore, statistical 
analysis of the sequence data also help in identifying 
alpha diversity (diversity of species within the same 
individual), beta diversity (inter-individual species 
diversity), relative abundance, and several other 
parameters related to the organisms. Figure 1 shows 
the workflow of study of the gut microbiota.

COMPOSITION OF THE NORMAL GUT 
MICROBIOTA
Even though it was earlier thought that the gut 
microbiota comprised of 500-1000 species of mic­
robes[17] a recent large scale study has estimated 
that the collective human gut microflora is composed 
of over 35000 bacterial species[18]. Furthermore, if 
defined from a perspective of total bacterial genes, the 
Human Microbiome Project and the Metagenome of the 
Human Intestinal tract (MetaHIT) studies suggest that 
there could be over 10 million non-redundant genes 
in the human microbiome. A Danish study of the gut 
microbiome and their function involving 123 non-obese 
and 169 obese individuals resulted in the concept of 
high gene count (HGC) and low gene count (LGC), both 
of which have implications in health and disease[19]. 
The HGC microbiome includes Anaerotruncus coli­
hominis, Butyrivibrio crossotus, Akkermansia sp., 
and Fecalibacterium sp.; with a high Akkermansia 
(Verrucomicrobia): Ruminococcus torque/gnavus 
ratio. The defining features of HGC microbiome 
in favour of a digestive health includes increased 
proportion of butyrate producing organisms, increased 
propensity for hydrogen production, development of 
a methanogenic/acetogenic ecosystem and reduced 
production of hydrogen sulfide[19]. The HGC individuals 
have a functionally much robust gut microbiome 
and lower prevalence of metabolic disorders and 
obesity. On the other hand, LGC individuals harbor 
a higher proportion of pro-inflammatory bacteria 
such as Bacteroides and Ruminococcus gnavus, both 
of which are known to be associated inflammatory 
bowel disease[20,21]. Other members of LGC bacteria 
include Parabacteroides, Campylobacter, Dialister, 
Porphyromonas, Staphylococcus and Anaerostipes. 
In addition, few of the key bacterial metabolites in 
LGC individuals include modules for β-glucuronide 
degradation, degradation of aromatic amino acids, and 
dissimilatory nitrite reduction, all of which are known 
to have deleterious effects.

Overall, the healthy gut microbiota is predominantly 
constituted by the phyla Firmicutes and Bacteroidetes. 
This is followed by the phyla Actinobacteria and 
Verrucomicrobia. Even though this general profile 
remains constant, gut microbiota exhibits both temporal 
and spatial differences in distribution at the genus 
level and beyond. As one travels from the esophagus 
distally to the rectum, there will be a marked difference 
in diversity and number of bacteria ranging from 101 
per gram of contents in the esophagus and stomach 
to 1012 per gram of contents in the colon and distal 
gut[22]. Figure 2 depicts the temporal diversity of the 
gut microbiota as one travels from the esophagus 
distally to the colon. Streptococcus appears to be the 
dominant genus in the distal esophagus, duodenum 
and jejunum[23,24]. Helicobacter is the dominant genera 
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present in the stomach and determines the entire 
microbial landscape of the gastric flora, i.e., when 
Helicobacter pylori (H. pylori) inhabits the stomach as 
a commensal, there is a rich diversity constituted by 
other dominant genus such as Streptococcus (most 
dominant), Prevotella, Veillonella and Rothia[25,26]. This 

diversity shrinks once H. pylori acquire a pathogenic 
phenotype. The large intestine constitutes of over 70% 
of the all microbes found in the body, and gut flora 
that is generally discussed in the context of disease 
state by and large implies the colonic flora (especially 
those derived from stool metagenomic data). The 
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Figure 1  Bioinformatics work flow. This figure explains the various steps involved in the bioinformatics analysis, starting from collection of samples, extraction, 
sequencing and statistical analysis. The interaction between host and microbes along with the functional capacity of the microbiota can be studied. MG-RAST: 
Metagenomics rapid annotation using subsystem technology; CAZy: Carbohydrate active-enzymes; MetaPhlAn: Metagenomic phylogenetic analysis; KEGG: 
Kyoto encyclopaedia for genes and genomics; COG: Clusters of orthologous group; PICRUst: Phylogenetic investigation of communities by reconstruction of 
unobserved states; MEGAN: Meta genome analyzer; MEDUSA: Metagenomic data utilization and analysis; FANTOM: Functional annotation and taxonomic analysis 
of metagenomes; HUMAan: Human microbiome project unified metabolic analysis network; BLAST: Basic local alignment search tool; TIGRFAM: Protein sequence 
classification; PFAM: Protein families; SOAP: Short oligonucleotide analysis package; QIIME: Quantitative insights into microbial ecology.

Esophagus pH
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Prevotella , Rothia sps., 
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Colon pH
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Figure 2  distribution of the normal human gut flora.
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predominant phyla that inhabit the large intestine 
include Firmicutes and Bacteroidetes. Traditionally, the 
Firmicutes: Bacteroidetes ratio has been implicated 
in predisposition to disease states[27]. However, the 
significant variability even in healthy individuals that 
has been observed across recent studies makes the 
relevance of this ratio debatable. Besides genera from 
phyla Firmicutes and Bacteroidetes, human colon 
also harbors primary pathogens, e.g., species such 
as Campylobacter jejuni, Salmonella enterica, Vibrio 
cholera and Escherichia coli (E. coli), and Bacteroides 
fragilis, but with a low abundance (0.1% or less of 
entire gut microbiome)[6,28]. The abundance of the 
phylum Proteobacteria is markedly low; and its absence 
along with high abundance of signature genera such 
as Bacteroides, Prevotella and Ruminococcus suggests 
a healthy gut microbiota[29]. Besides this longitudinal 
difference, there also exists an axial difference from 
the lumen to the mucosal surface of the intestine. 
While Bacteroides, Bifidobacterium, Streptococcus, 
Enterobacteriacae, Enterococcus, Clostridium, 
Lactobacillus and Ruminococcus are the predominant 
luminal microbial genera (can be identified in stool), 
only Clostridium, Lactobacillus, Enterococcus and 
Akkermansia are the predominant mucosa and mucus 
associated genera (detected in the mucus layer and 
epithelial crypts of the small intestine)[30].

The other way of classifying the gut flora, as 
proposed by the MetaHIT Consortium[31], is based on 
species composition which cluster into well-balanced 
host-microbial symbiotic states that is stable over 
geography and gender, but can respond differently 
to diet and drugs. These clusters have been named 
enterotypes. Interestingly, the abundance of molecular 
functions however may not correlate with abundance 
of species within the enterotypes. Furthermore, as 
shown in a recent study on the association of gut 
microbiome with atherosclerosis, there may not 
be significant changes in the enterotype observed 
in disease conditions[32]. There are broadly three 
enterotypes[29], namely: Enterotype 1, which has a 
high abundance of Bacteroides; Enterotype 2, which 
has high abundance of Prevotella; and Enterotype 
3 which has high abundance of Ruminococcus. The 
bacteria belonging to Enterotype 1 have a wide 
saccharolytic potential, as evidenced by the presence 
of genes that code for enzymes such as proteases, 
hexoaminidases and galactosidases. In view of these 
set of enzymatic potential, it appears likely that these 
organisms derive energy from dietary carbohydrates 
and proteins. Enterotype 2 behave predominantly as 
a degrader of the mucin glycoproteins that line the 
gut mucosal layer. Enterotype 3 also is associated with 
mucin degradation, in addition to membrane transport 
of sugars. The enterotypes also possess other specific 
metabolic functions. For instance, biotin, riboflavin, 
pantothenate and ascorbate synthesis are more 
abundantly seen in enterotype 1 while thiamine and 
folate synthesis are more predominant in enterotype 

2. However, the concept of enterotyping does not 
explain the relative distribution of different classes of 
organisms in different individuals. Since Bacteroides 
and Prevotella do not exist in equal proportion in the 
gut, the concept of enterogradient based upon the 
dominance of either of these two organisms could be 
another defining concept. This could explain the inter-
individual distribution at the class level in a better 
way[33].

Functional aspects of the normal 
gut microbiota
The gut microbiota maintains a symbiotic relationship 
with the gut mucosa and imparts substantial me­
tabolic, immunological and gut protective functions 
in the healthy individual. The gut microbiota, which 
derives its nutrient from host dietary components 
and shed epithelial cells, is an organ by itself with 
an extensive metabolic capability and substantial 
functional plasticity[34]. These characteristics of 
the gut microbiome have been rapidly shifting the 
research focus from the abundance and diversity of 
the microbial members to the functional aspects. 
This section provides a brief overview of the major 
functions of the normal gut microbiota.

Nutrient metabolism
The gut microbiota largely derives their nutrients 
from dietary carbohydrates. Fermentation of the 
carbohydrates that escaped proximal digestion and 
indigestible oligosaccharides by colonic organisms 
such as Bacteroides, Roseburia, Bifidobacterium, 
Fecalibacterium, and Enterobacteria result in the 
synthesis of short chain fatty acids (SCFA) such as 
butyrate, propionate and acetate, which are rich 
sources of energy for the host[35,36]. This host energy 
balance is believed to be mediated via a ligand-
receptor interaction of the SCFAs with a G protein-
coupled receptor Gpr41. Another enteroendocrine 
hormone PYY (Peptide Tyrosine Tyrosine/Pancreatic 
Peptide YY3-36) has also been implicated in this 
action[37]. Furthermore, butyrate can prevent the 
accumulation of toxic metabolic by-products such as 
D-lactate[38]. Members of the genus Bacteroides, which 
are the predominant organisms that participate in 
carbohydrate metabolism, perform this by expressing 
enzymes such as glycosyl transferases, glycoside 
hydrolases and polysaccharide lyases. The best 
example among these organisms is Bacteroides 
thetaiotaomicron that is endowed with a genome that 
codes for over 260 hydrolases, which is far more than 
the number encoded by the human genome[39]. The 
oxalate that is synthesized in the intestine as a result 
of carbohydrate fermentation and bacterial metabolism 
is countered by organisms such as Oxalobacter 
formigenes, Lactobacillus species, and Bifidobacterium 
species thereby reducing the risk of formation of 
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oxalate stone in the kidney[40,41].
The gut microbiota has also been shown to impart 

a positive impact on lipid metabolism by suppressing 
the inhibition of lipoprotein lipase activity in adipocytes. 
Furthermore, Bacteroides thetaiotaomicron is demon­
strated to augment the efficiency of lipid hydrolysis by 
up regulating expression of a colipase that is required 
by pancreatic lipase for lipid digestion[42].

The gut microbiota is also enriched with an efficient 
protein metabolizing machinery that function via the 
microbial proteinases and peptidases in tandem with 
human proteinases. Several amino acid transporters 
on the bacterial cell wall facilitate amino acid entry 
from the intestinal lumen into the bacteria, wherein 
several gene products convert the amino acids into 
small signaling molecules and antimicrobial peptides 
(bacteriocins). Important examples include conversion 
of L-histidine to histamine by the bacterial enzyme 
histamine decarboxylase, which is coded by the 
bacterial hdcA genes[43]; and glutamate to γ-amino 
butyric acid (GABA) by glutamate decarboxylases, 
which are coded by the bacterial gadB genes[44].

Synthesis of vitamin K and several components 
of vitamin B is another major metabolic function of 
the gut microbiota. Members of genus Bacteroides 
have been shown to synthesize conjugated linoleic 
acid (CLA) that is known to be antidiabetic, antia
therogenic, antiobesogenic, hypolipidemic and have 
immunomodulatory properties[45-47]. The gut micro­
biota, especially Bacteroides intestinalis, and to a 
certain extent Bacteroides fragilis and E. coli, also has 
the capacity to deconjugate and dehydrate the primary 
bile acids and convert them into the secondary bile 
acids deoxycholic and lithocolic acids in the human 
colon[48]. The normal gut microbiota has also been 
shown to impart a healthy metabolome in the serum 
by increasing the concentrations of pyruvic acid, citric 
acid, fumaric acid and malic acid, all of which are 
indicators of higher energy metabolism[49].

Recent studies have shown that human gut mic­
robiota is also involved in breakdown of various 
polyphenols (phenolic compounds) that are consumed 
in the diet. Polyphenolic secondary metabolites are 
found in a variety of plants, fruits and plant derived 
products (tea, cocoa, wine), for example, flavanols, 
flavanones, flavan-3-ols, anthocyanidins, isoflavones, 
flavones, tannins, lignans and chlorogenic acids. 
Of these, flavanoids and flavanoid sub-families are 
most commonly absorbed by the intestine. Poly­
phenols exist as glycosylated derivatives bounded 
with sugars such as glucose, galactose, rhamnose, 
ribulose, arabinopyrinose and arabinofuranose. 
Polyphenols, which usually remain inactive in diet are 
biotransformed to active compounds after removal 
of the sugar moiety by the gut microbiota, among 
other factors. Structural specificity of polyphenol 
and individual richness of microbiota determines the 
level of biotransformation that occur in the intestine. 
The final active products are absorbed by the portal 

vein and travel to other tissues and organs, thereby 
providing antimicrobial and other metabolic action. 
This can be exemplified by the conversion of inactive 
isoflavones to the aglycon equol, which has anti-
androgenic and hypolipidemic effects[50]. Table 2 shows 
an elaborate list of the dietary polyphenols and the gut 
microbiota involved in its transformation[51-69].

Xenobiotic and drug metabolism
The capability of the gut microbiome to metabolize 
xenobiotics and drugs was first recognized over 40 
years back. An increasing body of evidence has now 
provided sufficient insights on the role of the gut 
microbiota on xenobiotic metabolism, which could have 
profound impact on therapy for various diseases in 
future. Recent studies by Clayton et al[70] have shown 
that a gut microbial metabolite p-cresol can reduce the 
capacity of the liver to metabolize acetaminophen due 
to competitive inhibition of hepatic sulfotransferases. 
Furthermore, cardiac glycosides like digoxin have 
been recently shown to up-regulate a cytochrome 
containing operon in the common organism Egger­
thella lenta from the Actinobacteria phyla, which 
results in inactivation of digoxin[71]. Another interesting 
example of microbiome induced drug metabolism is 
the microbial β-glucoronidase induced deconjugation 
of the anticancer drug irinotecan that can contribute 
to its toxicities such as diarrhea, inflammation and 
anorexia[72].

Antimicrobial protection
The requirement of a healthy gut microbiota for normal 
homeostasis puts the gut mucosal immune system in 
a challenging situation in that it needs to be tolerant to 
the beneficial commensals and yet prevent overgrowth 
of the resident pathogens. One of the simplest me­
chanisms of antimicrobial protection is the presence 
of the two-tiered mucus layer, which keeps luminal 
microbes away from epithelial contact, predominantly in 
the large intestine. Mucus is constituted of a variety of 
mucin glycoproteins that are secreted by the intestinal 
goblet cells and extend up to 150 μm away from the 
colonic epithelium[73,74]. The inner layer is denser and 
does not contain any organism, while the outer layer 
is more dynamic and provides glycans as a source of 
nutrition for the organisms[75]. Other than the mucin 
glycoproteins, the goblet cells also produce factors like 
trefoil-factor and the resistin-like molecule-β that can 
stabilize mucin polymers and thereby maintain barrier 
integrity[76,77].

Contrary to the large intestine where the mucus 
plays an important role, antimicrobial proteins play 
a larger role in the small intestine since the mucus 
layer here is discontinuous and inadequate. The 
gut microbiota, via its structural components and 
metabolites, has been shown to induce synthesis of 
antimicrobial proteins (AMP) such as cathelicidins, 
C-type lectins, and (pro)defensins by the host Pa
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neth cells via a pattern recognition receptor (PRR) 
mediated mechanism[78,79]. The PRR family includes the 
membrane associated TLRs, C-type lectin receptors 
(CLRs) such as Dectin-1, and the cytosolic nucleotide-
binding and oligomerisation domains (NOD) like 
receptors (NLRs)[80]. The PRRs in turn are activated by 
organism specific microbe-associate molecular patterns 
(MAMPs), which includes various microbial components 
such as peptidoglycan, LPS, lipid A, flagella and 
bacterial RNA/DNA, fungal cell wall β-glucans[80,81]. 
PRR-MAMP (pattern recognition receptor- Microbe 
Associated Molecular Patterns) cross-talk results 
in activation of several signaling pathways that are 
essential for promoting mucosal barrier function, 
and production of AMPs, mucin glycoproteins and 
IgA. Since the Paneth cells reside in the base of the 
small intestinal crypts, concentration of the AMPs are 
maximal at this location. Even though the composite 
healthy microbiota appears to be a prerequisite for 
AMP production, Bacteroides thetaiotaomicron and 
Lactobacillus innocua appear to be among the key 
individual species that drive this production[82,83]. 
The organism Bacteroides thetaiotaomicron has 
also been shown to induce expression of the matrix 
metalloproteinase matrilysin from the Paneth cells, 
which subsequently cleaves prodefensin to form active 
defensin[84]. Another example of microbiota-host 
interaction in providing antimicrobial protection is the 
capability of Lactobacillus sp. to produce lactic acid, 
which can augment the antimicrobial activity of host 
lysozyme by disrupting the outer membrane of the 
bacterial cell wall[85]. Besides this two-way interactive 
mechanism of AMP expression, bacterial metabolic 
products such as SCFAs and lithocholic acid have also 
been shown to induce the expression of cathelicidin by 
mechanisms involving histone deacetylation and MEK/
ERK (Mitogen activated protein kinase/Extracellular 
signal regulated kinases) pathway[86-88]. The AMPs 

primarily act by disrupting the surface structures of 
both commensals and pathogens.

The other mechanism that the gut microbiota 
has evolved is to keep a check on the overgrowth 
of pathogenic strains by inducing local immunoglo­
bulins. The gut microbiota, especially Gram-negative 
organisms like Bacteroides are shown to activate 
intestinal dendritic cells (DCs), which induces plasma 
cells in the intestinal mucosa to express secretory IgA 
(sIgA)[89]. The sIgA can in turn coat the gut microbiota. 
The sIgA that coats the microbiota are predomi
nantly of sIgA2 subclass, which is more resistant to 
degradation by bacterial proteases. Furthermore, 
the intestinal epithelial cells (IECs) can produce a 
proliferation-inducing ligand (APRIL) in a TLR-mediated 
bacterial sensing mechanism that can induce class 
switching from a systemic sIgA1 phenotype to the 
intestinal mucosal sIgA2[90]. These mechanisms restrict 
the translocation of the microbiota from the intestinal 
lumen to the circulation, thereby preventing a systemic 
immune response.

Immunomodulation
The gut microbiota contribute to gut immunomodulation 
in tandem with both the innate and adaptive 
immune systems. The components and the cell types 
from the immune system that participate in the 
immunomodulatory process includes the gut associated 
lymphoid tissues (GALT), effector and regulatory T 
cells, IgA producing B (plasma) cells, Group 3 innate 
lymphoid cells, and, resident macrophages and dendritic 
cells in the lamina propria (Figure 3).

The role of gut microbiota in shaping a normal 
GALT is implied by the impaired development of the 
Peyer’s patches and isolated lymphoid follicles that are 
marked by the abundance of IgE+ B cells instead of 
the normally seen IgA+ B cells[91]. The effector T cell 
responses in the intestine have also been shown to be 

Polyphenolic 
compounds

Classes involved Foods containing polyphenols Gut bacteria

Flavanols Kaempferol[51], Quercetin[53], Myricetin[52] Onions, capers, apples, broccoli, grapes 
and plums

Bacteroides distasonis, Bacteroides uniformis, 
Enterococcus casseliflavus and Eubacterium ramulus

Flavanones Hesperetin, Naringenin[54] Citrus fruits and tomatoes Clostridium sps, E. ramulus
Flavan-3-ols Catechin[55], Epicatechin[56], 

Gallocatechin[57,58]
Green tea, cocoa, kola, banana, 

pomegranate
Bifidobacterium infantis and Clostridium coccides

Anthocyanidins Cyanidin[59], Pelagonidin, Malvidin[60] Bilberries and all red, blue and purple 
fruits (especially berries)

Lactobacillus plantarum, L. casei, L. acidophilus 
and Bifidobacterium longum

Isoflavones Daidzein[61,62], Geinstein[63], Formononentin[64] Soy, beans, lentils, chickpea (Fabaceae family) Lactobacillus and Bifidobacterium
Flavones Luteolin[65], Apigenin[66] Cereals, parsley, thyme, celery and citrus 

fruits
C.orbiscinden, Enterococcus avium

Tannins Gallo tannins, Ellagitannins[67] Raseberries, cranberries, strawberries, 
walnuts, grapes and pomegranate

Butyrivibrio sps

Lignins Secoisolariciesinol, metaresinol, 
pinoresinol, larciresinol, isolarciresinol, 

syringiresinol[68]

Flax seeds, cereals, strawberries, and 
apricots

Species of Bacteroides, Clostridium, 
Peptostreptococcus and Eubacterium

Chlorogenic acids Caffeic acid, feruic acid[69] Peach, plums and coffee E. coli, Bifidobacterium sps and L. gasseri
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primarily controlled by Th2 responses as opposed to 
the Th1 responses[92]. The latter is primarily mediated 
by Th1 and Th17 cells under a physiological milieu; 
and gut commensals are believed to result in TLR-
MyD88 signaling mediated activation of IL1β which in 
turn promote development of IL17[93].

Intestinal microbiota is also essential for the 
normal development and function of Foxp3+ T 
regulatory (Treg) cells. However, the mechanism by 
which this is mediated is still not clear. For example, 
in the case of certain Clostridium clusters it could be 
either independent of PRRs or dependent on My-D88 
dependent mechanisms[94]. In the case of Bacillus 
fragilis, induction of Tregs appear to be mediated 
by TLR2 signaling by polysaccharide A[95]. SCFAs, 
especially butyrate have also been implicated in the 
development and function of Tregs. SCFAs are shown 
to activate G-protein coupled receptors expressed by 
the IECs and regulate Treg by epigenetic regulation 
(increased acetylation) of the Foxp3 locus[96-98].

As mentioned in the previous section, mucosal 
plasma cells produce secretory IgA upon induction 
by DCs. Though the mechanisms are not clear, it is 
speculated that this function is mediated by My-D88 
signaling in lamina propria and follicular DCs. My-D88 
signaling can be activated by the gut microbiota. 
Furthermore, in addition to class switching of sIgA by 
APRIL mediated stimulation, the gut microbiota also 
stimulate DCs in the Peyer’s patches to secrete TGF-β, 
CXCL13, and B-cell activating protein (BAFF), which 
leads to IgA production and class switching[99].

Another set of innate immune cells, namely the 

innate lymphoid cells (ILCs) are capable of responding 
rapidly to epithelium-derived cytokine signals[100]. 
ILCs arise from common lymphoid precursors and 
have a cytokine expression pattern that is similar to 
that of T helper subsets (particularly Th17 cells); but 
the differentiation is more dependent on microbial 
composition rather than somatic recombination[101]. 
Based on the functional properties, ILCs can be divided 
into three groups, namely, group 1 [T box expressed 
in T cells (T-bet)+], Group 2 [Gata binding protein 
3 (GATA-3)+], and group 3 [retinoid-related orphan 
receptor gamma t (RORγt)+]. Of these, RORγt+ ILCs 
appear to be most closely associated with regulation of 
gut immunity[102]. Even though the precise mechanisms 
are unclear, it is speculated that gut microbes could 
regulate ILCs both directly and indirectly. Evidence in 
favor of the former is provided by the observation that 
the bacterial metabolite indole-3-aldehyde stimulates 
ILC via the aryl hydrocarbon receptor to induce 
synthesis of IL22[103]. Indirect mechanism of ILC 
regulation, on the other hand, is via the recruitment 
of other immune cells such as the CX3CR1+ intestinal 
macrophages[104].

The immunomodulatory action of resident macro­
phages in the lamina propria is to express pro-IL1β in 
the steady state, which aids in the rapid production of 
mature IL1β in response to pathogen invasion. MyD-88 
dependent mechanisms induced by commensal flora is 
essential for this action; while the microbiota regulated 
IL-10 production by the macrophages entail MyD-88 
independent mechanisms[105,106].

Apart from the gut microbiota, other factors also 
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Figure 3  Broad schematic representation of cell types and mediators involved in immunomodulation in the gut. Black arrow indicate either physiological 
secretion or activation; Red arrow indicates pathological event; Blue arrows with rounded ends indicates pathogen inhibition; ? indicates unknown mechanisms; SFB 
indicates short filamentous bacteria.
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play a role in modulation of the gut immune system. 
For example, the IECs secrete an isoform of alkaline 
phosphatase (intestinal alkaline phosphatase) that 
dephosphorylates the LPS endotoxin[107]. Another 
example is the reduced neutrophil recruitment into 
the intestinal lumen in response to tumour necrosis 
factor-α (TNF-α). This action is mediated by the 
intestinal alkaline phosphatase[107]. Furthermore, an 
immunoprotective mechanism that is acquired at birth 
and is seen predominantly with vaginal delivery is the 
down regulation of IL-1 receptor-associated kinase 
(IRAK-1), which acts through TLR4[108].

Integrity of the gut barrier and structure of the 
gastrointestinal tract
Currently there is a convincing body of evidence that 
supports the role of the gut microbiota in maintaining 
the structure and function of the gastrointestinal tract. 
Bacteroides thetaiotaomicron is reported to induce 
expression of the small proline-rich protein 2A (sprr2A), 
which is required for maintenance of desmosomes 
at the epithelial villus[109]. Another mechanism that 
maintains the tight junctions is by TLR2 mediated 
signaling that is stimulated by the microbial cell wall 
peptidoglycan[110]. Furthermore, the Lactobacillus 
rhamnosus GG strain produces two soluble proteins 
namely p40 and p75 that can prevent cytokine 
induced apoptosis of the intestinal epithelial cells in an 
epithelial growth factor receptor (EGFR) and protein 
kinase C (PKC) pathway dependent manner[111]. The 
endocannabinoid system is yet another entity that 
regulates gut microbiota mediated maintenance of the 
gut barrier function. E.g., the Gram negative bacteria 
Akkermansia muciniphilia can increase the levels of 
endocannabinoids that control gut barrier functions by 
decreasing metabolic endotoxemia[112].

The gut microbiota contributes to structural 
development of the gut mucosa by inducing the 
transcription factor angiogenin-3, which has been 
implicated in the development of intestinal micro­
vasculature[113]. This is also supported by a significant 
reduction of villus capillary network in germ-free (GF) 
mice, which in turn can impair nutrient digestion and 
absorption. Other evidence that support role of gut 
microbiota in maintaining structure and function is 
obtained from GF mice that have a lower intestinal 
surface area[114], thin villi (secondary to lower re
generation)[115], increase cell cycle time[116] and im­
paired peristalsis[117]. The gut microbiota can also 
modulate mucosal glycosylation patterns that are 
microbial attachment sites both at the cell surface and 
subcellular levels. For example, a signaling molecule 
secreted by the organism Bacteroides thetaiotaomicron 
can stimulate expression of the carbohydrate moiety 
fucose on the cell surface glycoconjugates[118].

FACTORS AFFECTING VARIATIONS IN 
THE NORMAL GUT MICROBIOTA
Several factors contribute to the shaping of the healthy 
gut microbiota; and this continues dynamically all 
throughout the life of an individual.

Age
Even though it is widely believed that the gut gets 
colonized by microbes immediately after birth, there 
is emerging evidence that the infant gut could be 
colonized by organisms even in utero[119]. 16S rRNA 
based sequencing studies have revealed that the 
first meconium is rich in genera such as Escherichia-
Shigella, Enterococcus, Leuconostoc, Lactococcus, and 
Streptococcus[120]. Nevertheless, it is now clear that the 
first microbiota profile is largely shaped by the mode 
of delivery. The intestines of infants born vaginally 
are initially colonized by organisms from the maternal 
vagina, which is best exemplified by the organisms 
from the genera Lactobacillus and Prevotella[121]. On 
the contrary, in cesarean delivery mostly the maternal 
skin flora colonizes the infant’s intestine, as exemplified 
by the dominance of Streptococcus, Corynebacterium, 
and Propionibacterium[119,121]. The initial milieu of 
the infant’s gut microbiota after primary inoculation 
appears unstable and devoid of diversity; but with 
time it stabilizes, diversifies, and acquires 40%-60% 
similarity with the adult microbiota by the age of 3 
years[122]. On the contrary, studies have also shown 
that young children and adolescents could demonstrate 
significant differences in proportions of Bacteroides 
and Bifidobacterium compared to adults[123,124]. The gut 
microbiota by and large rest in a stable state from the 
3rd to the 7th decade of life, even though proportions 
of Bifidobacteria, Firmicutes, and Fecalibacterium 
prausnitzii tend to decrease with an increase in E. 
coli, Proteobacteria and Staphylococcus[125-127]. Few 
of the functional impacts of the temporal alteration in 
the normal gut flora include a reduced capability to 
synthesize vitamin B12, reduced activities of microbial 
reductases, increased tendency for DNA alterations, 
elevated stress response, and immune dysfunction[128]. 
Although the initially developing microbiota is largely 
influenced by the type of feed (breast milk or formula 
feeds) after primary inoculation, the temporal alte
ration is affected by dietary patterns, lifestyle, life 
events, and environmental factors including antibiotic 
use[1].

In pre-term infants, bacteria that colonize the gut 
include Bifidobacterium and Lactobacillus and basically, 
these differ depending on the type of feeding habits. 
In formula-fed infants, Enterococcus, Enterobacteria, 
Bacteroides, Clostridia, and other anaerobic Strep­
tococcus dominates the gut niche; whereas, in 
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breast-fed infants Bifidobacterium and Lactobacillus 
dominates. Breast milk contains indigestible glycans 
termed as human milk oligosaccharides (HMO) which 
are easily broken down by these bacteria. Pre-term 
microbiota are said to maintain the gut associated 
lymphoid tissue (GALT), and is involved in generating 
the innate immunity during development. Therefore, 
abnormal colonization of the gut microbiota may result 
in pediatric diseases because of poor immunity[129,130].

Diet
The earliest effect on the gut microbiota, after the mode 
of delivery, is the early infant diet, i.e., breast milk and 
formula feeds. Several studies have shown substantial 
differences in the gut microbial composition between 
breast-fed and formula-fed infants. It is important 
to understand the effect of breast milk and formula 
feeds on the gut microbiota since there has been an 
increasing trend of moving away from breast-feeding by 
modern day mothers. Besides meeting the nutritional 
and physiological demands of the infant, breast milk 
also contains several bioactive compounds that are not 
available in formula-feeds. These compounds have a 
significant role in nutrient digestion and absorption, 
immune protection and anti-microbial defense[131,132]. 
HMOs provide nutrition to the colonic bacteria of the 
infant, thereby providing a selective growth advantage 
for Bifidobacterium sp.[133]. This has been observed 
at a significantly higher abundance in breast-fed 
infants compared to that in formula-fed infants. These 
organisms ferment dietary oligosaccharides resulting in 
health promoting SCFAs such as butyrate, and modulate 
the host immune system to express IgG[134]. Studies 
have shown that several strains of Bifidobacterium, 
especially the Bifidobacterium longus subs infantis 
contain unique gene cluster (HMO-related gene cluster 
1) that codes for difference glycosidases (sialidase, 
fucosidase, hexosaminidase and galactosidase) and 
carbohydrate transporters that are capable of importing 
and metabolizing HMOs[134]. On the contrary, the 
abundance of anaerobic organisms like Bacteroides 
sp. and Clostridium sp. is lower in breast-fed infants 
as compared to formula-fed ones[135-137]. Even though 
Bacteroides sp. can also digest HMO, the abundance 
of Bifidobacterium is higher in breast-fed infants, thus 
pointing towards competitive relationship between these 
two organisms in favor of Bifidobacterium in breast-fed 
infants.

Diet continues to be the most important deter
minant in shaping the composition, diversity and 
richness even throughout adulthood. In general, 
intake of diet rich in fruits, vegetables and fibers is 
associated with a higher richness and diversity of 
the gut microbiota. Individuals consuming this kind 
of a diet have a higher abundance of the insoluble 
carbohydrate metabolizing organisms of the Firmicutes 
phylum such as Ruminococcus bromii, Roseburia and 

Eubacterium rectale[138]. It was recently shown that 
a 4-d administration of animal-based diet resulted 
in a decrease in the abundance of Firmicutes; and 
an increase in that of bile-tolerant organisms such 
as Alistipes sp. and Bacteroides sp. from the phylum 
Bacteroidetes and Bilophila sp. from the phylum 
Proteobacteria. This indicates that even very short 
dietary manipulations can have substantial impact on 
the gut microbiota[139].

Several studies have shown that there are sig­
nificant geographic and seasonal variations in the 
gut microbiome. However, these differences were 
also associated with a difference in dietary patterns. 
For example, it was demonstrated that rural African 
children had a higher abundance of Prevotella, while 
children from Europe had higher proportions of 
Bacteroides[140]. Even though Prevotella and Bacteroides 
are taxonomically and functionally similar, higher 
abundance of Prevotella indicates an agrarian diet 
that was consumed by the African children. On the 
contrary, the children from Europe consumed a western 
diet rich in animal protein, sugar, starch and poor in 
fibers, which is marked by the higher abundance of 
Bacteroides. Furthermore, it was also shown that the 
relative abundance of the phylum Actinobacteria was 
significantly higher in Hutterites during winter season 
compared to that during summers. This could be 
ascribed to the higher intake of meat-based diet in 
winter when compared to the fresh, carbohydrate and 
fiber rich diet that was consumed during summer[141].

Dietary polyphenols, besides their systemic anti
microbial and metabolic functions, also play a role in 
the inhibition of gut bacteria. While the polyphenolic 
compound querectin is degraded by Bacteroides 
distasonis, Bacteroides uniformis, Bacteroides ovatus, 
Enterococcus casseliflavus, and Eubacterium ramu­
lusare the compound that degrade this flavanol, 
hesperetine (a rutinoside containing aglycon), is poorly 
degraded by the colonic microbiota. This aglycon has 
an inhibitory activity against vancomycin- intermediate 
Staphylococcus aureus and H. pylori[142].

Seaweeds are active resources with bioactive 
compounds with various biological activities such as 
antibacterial, anti-oxidant, anti-inflammatory, anti-
coagulant, anti-viral and apoptotic activity. They 
are rich source of fiber with nearly 50%-60% of 
water soluble fibers, and are also rich in sulfated 
polysaccharides such as porphyrans, and agarases. 
Few species of red sea weeds like Palmaria decipiens 
and Pterocladiella capillacea contains sulfated 
polysaccharides and uronic acids (i.e., xylans and 
xylogalactans) respectively[143]. Several human and 
rat studies have demonstrated a significant shift in the 
gut microbiota upon the use of seaweeds as a food 
supplement. In humans, supplementation of Gelidium 
seaweed has significantly increased the expression 
of Bifidobacterium genera, without any change in the 
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others. There was also an increase in the production of 
the SCFA’s[144]. Another study conducted on Japanese 
populations explained the transfer of porphyranases 
and agarases to the gut bacteria Bacteroides plebius 
through carbohydrate active enzymes (CAZymes)[145]. 
These studies points towards the feasibility the use of 
sea weeds as a potential prebiotic.

Antibiotics
Even though study on antibiotics in general have 
centered around their bactericidal and bacteriostatic 
activities against pathogens, recent years have seen 
several studies on their effect on gut bacterial ecology 
in a holistic manner. A strong body of evidence has 
now clearly demonstrated that use of antibiotics 
does have several short and long-term implications 
in the ecology of the normal gut microbiota. It has 
been shown that multi-drug resistant bacterial genes 
have been prevalent for thousands of years before 
the advent of antibiotics, indicating an influence of 
exposure to small molecules from the environment 
with growth inhibitory properties[146]. This could also 
be secondary to a dysbiotic commensal microbiota 
that could further augment the development of 
resistance genes[147]. This culminates in uncoupling of 
the mutualistic relationship between the healthy gut 
microbiota and the host intestinal milieu.

One of the major properties of the healthy gut 
microbiota against pathogen is the capability to 
cause competitive exclusion[148]. It was demonstrated 
around four decades ago that antibiotics could result 
in disruption of the competitive exclusion machinery 
that resulted in Salmonella infection immediately after 
antibiotic therapy. One of the possible mechanisms of 
this kind of event could be a loss of the wide network 
of interspecies interactions within the microbiota that 
increase the abundance of host-derived sialic acid which 
is growth promoting for pathogens such as Salmonella 
typhimurium and Clostridium difficile[149]. Major changes 
in the gut microbiota in response to antibiotics include 
diminished taxonomic diversity and persistence of the 
changes in a substantial proportion of individuals. It 
has been shown that the effect of even short-term use 
(7 d) of broad-spectrum antibiotics with predominant 
anaerobic coverage (e.g., Clindamycin) could last up to 
2 year, with a persistent non-recovery of the diversity 
of Bacteroides[150]. Similarly, a short course H. pylori 
eradication with clarithromycin containing triple therapy 
resulted in a dramatic reduction in the diversity of 
Actinobacteria with a thousand-fold increase in the 
ermB resistance gene[151]. This persisted for over 4-years 
in a proportion of these patients, while it recovered 
in the others. The effect of ciprofloxacin, which has 
predominantly Gram-positive coverage, is relatively 
short-lived with abrupt reduction of Ruminococcus 
sps.[152]. Another recent study that evaluated the role 
of short course (7 d) of ciprofloxacin and beta-lactams 

indicated the reduction of microbial diversity by 25% 
and the core taxa from 29 to 12 with an increase in the 
Bacteroidetes: Firmicutes ratio[153]. The major concern 
that stems out of use of broad-spectrum antibiotics, 
besides alteration of the normal gut microbial diversity, 
is the phenomenon of propagating the resistance strain 
via horizontal gene transfer[154,155]. Bacterial species 
are capable of transferring mutant genetic information 
across different species through mechanisms such 
as conjugation, phage transduction and natural 
transformation. The gene transfer could also be via 
transposons and integrin. Interestingly, it has been 
shown that among different environments, the human 
gut associated microbiota has 25 times more likelihood 
of having horizontal gene transfer[156]. This would result 
in development of a reservoir state of resistance genes, 
and therefore mandates extreme care in the use of 
broad spectrum antibiotics.

Probiotics, Prebiotics and 
Synbiotics
The World Health Organization defines probiotics 
as live microorganisms that can provide benefits 
to human health when administered in adequate 
amounts. Several species such as Lactobacillus casei, 
Lactobacillus planatarum, Lactobacillus bulgaricus, 
Lactobacillus acidophilus, Bifidobacterium longum, 
Bifidobacterium infantis, Streptococcus thermophilus, 
E. coli strain Nissle 1917, to name a few have been 
shown to impart immunomodulatory and gut barrier 
functions. These and several others have been used 
commercially in the management of human illnesses 
e.g., IBD and antibiotic associated diarrhea. The 
fundamental concept of using these organisms in 
the treatment armamentarium is mimicking the 
physiological health promoting functions of the 
“good” bacteria. Addition of a prebiotic could possibly 
augment the effect of the probiotics. Prebiotics are 
defined as food ingredients that contain non-digestible 
oligosaccharides (e.g., galactooligosaccharides and 
inulin); and a probiotic and prebiotic are together 
called a synbiotic. The gut bacteria selectively ferment 
these fibers resulting in the synthesis of SCFAs, which 
in turn imparts the pro-health effects (vide supra). A 
detailed discussion on pro- and prebiotics is out of the 
scope of this review since it deals predominantly on a 
normal gut microbiota. Nevertheless, we believe that 
even though dietary fibers and healthy gut microbiota 
are known to promote health, use of synbiotics for 
maintenance of health needs to be studied with much 
robustness before using them commercially as health 
promoters[157,158].
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