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Abstract

Purpose of review—The mid-gestation fetus is capable of regenerative healing with wound 

healing indistinguishable from surrounding skin. This review aims to evaluate the current 

knowledge of how the mid-gestation fetus heals without scar and the implications of these 

findings in efforts to recapitulate the fetal regenerative phenotype in the postnatal environment.

Recent findings—It has been over 30 years since the empirical observation that the fetus heals 

without scar; yet, the underlying mechanisms of this phenomenon have not been elucidated. Fetal 

wound healing is characterized by a distinct growth factor profile, an attenuated inflammatory 

response with an anti-inflammatory cytokine profile, an extracellular matrix rich in type III 

collagen and hyaluronan, attenuated biomechanical stress, and a potential role for stem cells. 

Current therapies to minimize scarring in postnatal wounds have attempted to recapitulate singular 

aspects of the fetal regenerative phenotype and have met with varying degrees of clinical success. 

We now have the molecular tools to more completely comprehend the fundamental mechanisms 

of fetal regenerative wound repair, which has the potential to provide insights into the 

identification of therapeutic targets to minimize the scar formation.

Summary—Successful therapies that help minimize postnatal scar formation can be realized 

through understanding the cellular and molecular mechanisms of fetal regenerative wound 

healing. These insights will have implications not only for cutaneous wound healing, but also 

potentially for any disease process characterized by excessive fibroplasia.
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INTRODUCTION

The economic and social impact of scarring is significant. Each year over 100 million 

patients acquire scars, some of which cause considerable functional or psychosocial 

morbidity [1, 2]. Additionally, there are an estimated 11 million keloid scars and 4 million 

burn scars, 70% of which occur in children [3]. An effective therapy resulting in scarless 

wound healing would have an extraordinary impact across many fields of medicine.

Wound healing is a complex process that normally occurs in the postnatal setting through 

the formation of scar tissue, with regenerative healing limited to the liver and bone [4]. In 

contrast, the fetus is known to heal cutaneous wounds without a scar by regeneration of 

normal dermal architecture including restoration of dermal appendages and neurovasculature 

[5, 6▪]. This regenerative capability occurs in the mid-gestational period and has been 

demonstrated in all mammalian species studied to date, including humans, mice, rats, sheep, 

and monkeys. In each fetal model, this period of regenerative healing is followed by a 

transition period in which wounds heal with an extracellular matrix (ECM) indistinguishable 

from unwounded tissue, but fail to regenerate its dermal appendages [7]. Near the end of 

gestation, there is a progression to the postnatal phenotype with wounds healing with an 

excess of collagen in the ECM, a loss of dermal appendages, and a flattened epidermis in 

what we classify as a scar.

Early studies in the biology of fetal wound healing have focused on the intrauterine wound 

environment. The sterile, nutrient-rich amniotic fluid, which continuously bathes the fetal 

skin, was believed to have an important role in fetal wound phenotype. A number of animal 

studies suggest that fetal regenerative repair is independent of the intrauterine environment. 

For example, wounds in the marsupial model, in absence of amniotic fluid, heal without scar 

formation during the period of development within the maternal pouch [8]. Furthermore, 

studies in wounds created in human mid-gestation fetal skin following xeno-grafting to 

immunocompromised adult mice showed scarless wound healing [9]. Conversely, incisional 

wounds in adult sheep skin engrafted to fetal lambs and returned to the in-utero environment 

were noted to heal with scar formation [10]. These findings suggest an intrinsic property of 

fetal skin that is permissive of scarless wound healing and independent of the in-utero 

environment.

A more complete understanding of the fundamental mechanisms of fetal wound healing will 

identify the therapeutic targets with the capacity to minimize scar formation. This goal has 

obvious implications for cutaneous wound healing, but also has potential for any disease 

characterized by increased fibroplasia, such as intra-abdominal adhesions, keloids, 

scleroderma, pulmonary and renal fibrosis, and hepatic cirrhosis. Current studies have 

focused on the cellular and molecular aspects of fetal wound healing to elucidate the 

mechanisms of fetal regenerative wound healing and can be divided into five major 

categories: growth factors; inflammatory response and cytokines; ECM; mechanical stress; 

and stem cells (Table 1). The purpose of this review is to describe the biologic basis of the 

fetal phenotype in order to apply these physiologic principles to recapitulate the scarless 

wound healing phenotype in postnatal tissue repair.
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GROWTH FACTORS

A variety of growth factor families are believed to play a role in fetal wound healing. Much 

of this research has been centered on transforming growth factor (TGF)-β and its three 

mammalian isoforms (TGF-β1, TGF-β2, and TGF-β3). TGF-β is secreted by many cell types 

involved in tissue repair [11]. In adult wounds, there is a relative increase in the expression 

of TGF-β1 and TGF-β2 compared with TGF-β3. In contrast, fetal wounds express more 

TGF-β3 and decreased levels of TGF-β1 and TGF-β2. Pathologic hypertrophic scars in 

adults have been noted to have even higher levels of TGF-β1. Further, functional inhibition 

of TGF-β1 in adult wounds significantly reduces scarring. Conversely, addition of 

recombinant TGF-β1 to mid-gestation fetal wounds results in the formation of scar tissue 

[12]. These data suggest low levels of TGF-β1 are associated with decreased scarring. 

Additional studies have suggested that, beyond the relative paucity of TGF-β1, elevated 

levels of TGF-β3 and a higher ratio of TGF-β3 to TGF-β1 may also be critical to decreasing 

scar formation [13]. Studies in postnatal wounds have demonstrated reduced scarring with 

addition of recombinant TGF-β3 and increased scarring with attenuation of TGF-β3 levels 

[14]. In addition, treatment of adult fibroblasts with TGF-β3 has demonstrated increased 

migration, a characteristic of fetal fibroblasts [15].

These promising studies in animal models prompted the development of Avotermin, human 

recombinant TGF-β3, as a potential antiscarring therapy. Avotermin was evaluated in 

multiple randomized, double-blinded, placebo-controlled, phase II clinical trials with 

administration immediately prior to and 24h following wounding. It was found to improve 

scar appearance compared with placebo [16▪▪]. Unfortunately, phase III trials of Avotermin 

were terminated as the therapy failed to meet its primary endpoint of decreasing scar 

formation [17]. Interestingly, the recombinant TGF-β3 was administered in the immediate 

perioperative period, with effects on scarring noted months later. This highlights a potential 

critical early window in postnatal wounds that may be amenable to manipulation that will 

provide a permissive environment for scarless wound healing to proceed.

Another TGF-β inhibitor, mannose-6-phosphate (M6P), has also been evaluated as a scar-

reducing therapy. Phase II trials have demonstrated accelerated cutaneous wound closure 

and decreased erythema [18]. Evaluation of M6P as a scar-reducing therapy in applications 

beyond cutaneous wound repair, such as following nerve repair, is currently being evaluated 

[19].

INFLAMMATORY RESPONSE AND CYTOKINES

A hallmark of the fetal regenerative phenotype is an attenuated inflammatory response. This 

is observed in decreased inflammatory cellular infiltrate, as well as a characteristic 

expression of cytokines, the mediators of the inflammatory response.

Inflammatory cells

The infiltration of neutrophils which characterizes the early postnatal wound is greatly 

diminished in fetal wounds [5]. The number of tissue macrophages in the subsequent stages 

of wound healing is also decreased. However, it has been shown that these fetal neutrophils 
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and macrophages respond to appropriate signals in vitro. These data suggest that the 

attenuated inflammatory response is a result of decreased recruitment and not an intrinsic 

deficiency of the cells [20]. In addition, fetal platelets are shown to aggregate poorly and 

produce lower levels of profibrotic growth factors, such as TGF-β1 and platelet-derived 

growth factor (PDGF) [21]. Recent studies have demonstrated a paucity of mast cells in the 

fetal scarless phenotype. Mast cells in mid-gestation fetal wounds are less mature, decreased 

in number, and fail to degranulate in response to injury compared with scar forming wounds 

in late gestation [22].

Cytokines

The attenuated inflammatory response observed in fetal wound repair suggests that 

cytokines, which regulate inflammation, may have a characteristic profile associated with 

the scarless phenotype. Production of proinflammatory cytokines such as interleukin-6 

(IL-6) and interleukin-8 (IL-8) are decreased in fetal skin compared with postnatal skin [23, 

24]. Additionally, fetal fibroblasts stimulated by lipopolysaccharide or PDGF have an 

attenuated IL-6 and IL-8 response compared with adult fibroblasts [25]. This relative paucity 

of proinflammatory cytokines led to the investigation of the role of the anti-inflammatory 

cytokine interleukin-10 (IL-10) in fetal wound healing. IL-10 has been shown to deactivate 

macrophages and neutrophils, as well as diminishing the production of proinflammatory 

cytokines. Early gestation fetal skin, serum, and amniotic fluid express high levels of IL-10, 

whereas neonatal skin demonstrates minimal IL-10 expression [26]. Studies in mid-gestation 

fetal wounds created in transgenic IL-10 knockout mice have elevated levels of IL-6 and 

IL-8, and heal with a scar at a gestational age which normally heals scarlessly (Fig. 1) [27].

Most compellingly, independent laboratories have demonstrated that overexpression of 

IL-10 using viral vectors results in a dose-dependent recapitulation of fetal regenerative 

wound healing (Fig. 2) [25, 26]. This includes a decreased inflammatory cellular infiltrate, a 

characteristic fetal pattern of matrix deposition, a regeneration of dermal appendages, and 

overall wound healing that is indistinguishable from the surrounding skin. Wound repair in 

IL-10-treated postnatal incisional wounds occurred with restoration of normal skin integrity 

by biomechanical testing, which suggests that application of IL-10 may have benefits long 

after the vector and transgene are cleared from the wound[26]. These results suggest that an 

early expression of IL-10 initiates a cascade of events which results in the scarless wound 

healing phenotype. Further, these data support a cytokine hypothesis in which the shift 

toward increased anti-inflammatory cytokine expression relative to corresponding 

proinflammatory cytokine expression is permissive of the recapitulation of the fetal 

regenerative tissue repair.

These promising findings have led to the development of IL-10 as a potential therapeutic 

antiscarring agent, Prevascar, human recombinant IL-10. Following intradermal injection 

immediately preceding incision and an additional injection 24 h later, Prevascar was found 

to improve scar formation at 12 months in a randomized, double-blinded, placebo-controlled 

trial [28]. Further Prevascar trials are ongoing.
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EXTRACELLULAR MATRIX

The characteristic type III collagen and hyaluronan-rich ECM are key components of the 

fetal scarless wound healing phenotype. This distinct ECM facilitates the migration of 

cellular components and also mediates the wound repair process via the interaction of cell-

surface receptors.

Collagen

Both fetal and adult wounds heal with collagen deposition. In fetal wounds, collagen is 

deposited in a fine reticular pattern indistinguishable from the surrounding uninjured tissue. 

In postnatal wounds, collagen is deposited in densely arranged parallel bundles [29]. 

Although all wounds heal with predominantly type I collagen, there is a greater ratio of type 

III collagen to type I collagen deposited in fetal wounds compared with postnatal wounds. 

Type III collagen fibers are smaller compared with type I fibers and may allow a more 

reticular deposition of fibers in the wound [30, 31]. Also, type I collagen is found in more 

rigid tissues, whereas type III is found in more elastic tissue. This association with decreased 

amount of cross-linked collagen fibers may lead to a more flexible wound which may 

contribute to scarless repair. Additionally, in response to profibrotic growth factors such as 

TGF-β1, fetal fibroblasts have a characteristic response in collagen deposition compared 

with postnatal fibroblasts. This suggests fetal fibroblasts are programmed to form a more 

regenerative ECM [15].

Multiple efforts to minimize scarring have been made through the manipulation of collagen. 

Therapeutic efforts have been focused on inhibiting cross-linking in order to render the 

wound more susceptible to remodeling [32]. Unfortunately, these agents have been clinically 

ineffective thus far. There are, however, some reports of small molecular inhibitors of prolyl 

hydroxylase that may have therapeutic value but raise concern over skin integrity once 

healing is complete [33].

Hyaluronan

Fetal wounds have an increased level and prolonged elevation of high molecular weight 

(HMW) hyaluronan. Levels of HMW hyaluronan are increased in the fetus. Fetal tissues 

have increased levels for up to 3 weeks following injury, whereas in adult wounds 

hyaluronan levels are only transiently elevated and low molecular weight hyaluronan 

predominates [7, 34]. Hyaluronan also upregulates both TGF-β3 and type III collagen. 

Additionally, fetal fibroblasts have two-fold to four-fold greater hyaluronan-receptor 

expression, suggesting hyaluronan helps facilitate more rapid fibroblast migration [35]. 

Hyaluronan is also shown to suppress platelet aggregation and their release of growth factors 

in a dose-dependent fashion [36]. In a murine fetal organ culture model, the addition of 

hyaluronan to the late gestation wound resulted in the recapitulation of the scarless 

phenotype of mid-gestation [37]. In the past, hyaluronan has been considered to be a passive 

structural component; however, over the last decade it has been suggested that hyaluronan 

may have a significant role in wound healing by stimulating cell migration, differentiation, 

and proliferation in addition to its role as an integral component of the ECM [38].
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Multiple applications of hyaluronan have been developed to minimize scarring. A 

hyaluronan-rich film, Seprafilm, has been developed to decrease intra-abdominal scarring 

and has been somewhat effective in decreasing intra-abdominal adhesions [39]. Topical 

applications of HMW hyaluronan have also been investigated with promising results [40].

BIOMECHANICAL FORCES

Not all mid-gestation fetal wounds heal without a scar. In contrast to small incisional 

wounds, larger excisional wounds heal with a characteristic scar at gestational ages that heal 

smaller wounds scarlessly. This suggests that biomechanical forces may be in part an 

underlying mechanism of the fetal regenerative phenotype [41]. A part of this explanation 

may come from the myofibroblast, a specialized cell that is known to produce profibrotic 

growth factors and promote rapid wound closure. The larger, scar-forming fetal wound may 

have increased shear forces and mechanical stress. Increased shear force results in 

mechanotransduction, which induces local production of profibrotic growth factors, such as 

TGF-β1 and TGF-β2 [42]. The mechanical stress induces the fibroblasts within the wound 

bed to differentiate into myofibroblasts, acquiring contractile properties through the 

expression of alpha-smooth muscle actin. Myofibroblasts are present in most fetal wounds, 

as early as day 1 following injury. In wounds that heal scarlessly, they are notably absent at 

day 14. In contrast, in wounds of the same gestational age that heal with a scar, 

myofibroblasts are present in abundance [41]. Further, mechanical forces affect scar 

formation through the regulation of cell–matrix interactions via intracellular focal adhesion 

components, such as focal adhesion kinase (FAK). In a recent study, FAK inhibition 

resulted in successful attenuation of inflammatory cell recruitment and decreased resulting 

scar formation [43▪].

The implications of decreasing transduction of profibrogenic mechanical stress are readily 

translated to postnatal wounds in the effort to minimalize scarring. A recent study 

demonstrated the value of offloading strain from the wound using a silicone 

mechanomodulating device applied to the peri-wound area, which resulted in significant 

decrease in fibrosis. Recent reports of phase I trials in patients using this strategy following 

abdominoplasty procedures have shown promise in ameliorating scar formation [44].

STEM CELLS

Multiple pluripotent stem cells have been proposed to play a role in fetal wound healing, 

including epithelial stem cells (ESCs), mesenchymal stem cells (MSCs), and ‘small dot’ 

cells. ESCs are interspersed throughout the basal layers. The slowly proliferating ESCs are 

surrounded by more quickly proliferating basal cells and their suprabasal progeny to form 

epidermal proliferative units. ESCs are also found within the bulge area of hair follicles. The 

stem cells within the bulge area migrate to the epidermis following injury and proceed to 

differentiate into dermal, vascular, and neural components [45]. MSCs have been shown to 

have a role in regenerative healing, including immunomodulation, anti-fibrosis, 

antiapoptosis, and angiogenesis [46▪▪]. Recent studies have shown MSCs to be a potent 

gatekeeper in preventing excessive inflammation. They have demonstrated the ability to 

immunoregulate through multiple independent pathways, including the induction of IL-10 
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secretion by macrophages [47▪]. Further evaluation of MSCs and scarless wound healing 

continues, with the need for more complete characterization of the cell population. ‘Small 

dot’ cells have also been identified to play a role in fetal wound healing. There is a 20-fold 

greater increase of these cells in fetal blood than postnatal blood. A recent study 

transplanting fluorescence-labeled ‘small dot’ cells in a postnatal murine incisional wound 

model showed migration of these cells to the wound bed with a decrease in scarring [48, 

49▪▪]. Further study will help to elucidate the importance of these stem cell populations.

CONCLUSION

Wound healing is a complex process, requiring an orchestrated response of growth factors, 

cytokines, ECM components, modulation of biomechanical stress, and stem cells. The 

components in fetal regenerative healing are tightly regulated, favoring a pro-migratory, 

anti-inflammatory milieu in a characteristic ECM. The evidence suggests that there may be 

an early critical window in postnatal wound healing that may be amenable to manipulation 

to provide a permissive environment for scarless wound healing to proceed. The 

implications for scarless healing go far beyond cutaneous wound healing, with nearly every 

field of medicine affected by excessive scarring. Further research on the molecular 

mechanisms of fetal scarless wound healing has the potential to have therapeutic benefit for 

a wide array of diseases.
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KEY POINTS

• The fetal regenerative phenotype is characterized by a characteristic growth 

factor profile, anti-inflammatory response, extracellular matrix, and distinct 

biomechanical forces.

• Recent studies suggest an early critical window in postnatal wound healing that 

may be amenable to manipulation to provide a permissive environment for 

scarless wound healing to proceed.

• Further studies of pluripotent stem cells are needed to better understand their 

physiologic role and therapeutic potential.

• Understanding the underlying mechanism of fetal regenerative healing has the 

potential to lead to novel therapies to minimize scarring in any pathology 

characterized by excessive fibroplasia.
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FIGURE 1. 
Trichrome staining of normal (a) and IL-10 knockout (b) fetal mouse skin 7 days following 

incisional wound. Normal fetal skin results in minimal cellular infiltrate, normal distribution 

of dermal appendages, and reconstitution of reticular collagen deposition. In contrast, IL-10 

knockout fetal mouse skin grafts from mice of the same gestational age demonstrate 

increased, dense collagen deposition (blue staining) with loss of dermal appendages 

consistent with scar formation. Site of incisional wound is indicated by the arrow. Data from 

[23]. IL-10, interleukin-10.
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FIGURE 2. 
Adenoviral-mediated overexpression of IL-10 results in minimal scar formation. At day 21, 

phosphate buffer solution (PBS)-treated skin shows a well-demarcated scar with dense, 

haphazardly arranged collagen fibers with a loss of dermal appendages (a). In contrast, in 

wounds treated with 1 × 109 plaque forming units Ad-IL-10, no well defined scar is seen, 

collagen is organized in a fine reticular pattern, and there is a normal distribution of dermal 

appendages (c). At day 90, the PBS-treated group shows a remodeled scar that is well 

organized and flattened with the dropout of dermal appendages (b). Ad-IL-10-treated 

wounds exhibit a reconstitution of a normal dermal reticular pattern of collagen deposition 

and dermal elements including hair follicles, with the wound being indistinguishable from 

surrounding unwounded skin (d, 5×).
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Table 1

Comparison of fetal regenerative wound healing profile with postnatal wound healing

Fetal Postnatal

Phenotype Regenerative Scar formation

Growth factors

  bFGF Lower Higher

  PDGF Lower Higher

  VEGF Higher Lower

  TGF-β

    TGF-β1 Low levels High levels

    TGF-β2 Low levels High levels

    TGF-β3 High levels Low levels

Inflammatory response

  Inflammatory cell Minimal High levels leukocytes, macrophages, mast cells infiltrate

  Cytokines

    Proinflammatory: IL-6, IL-8 Low levels High levels

    Anti-inflammatory: IL-10 High levels Low levels

Extracellular matrix

  Collagen

    Histology Fine, reticular weave Thick, rope-like bundles

    Type III collagen High levels Low levels

    Deposition Immediate Delayed

    Cross-linking Low levels High levels

    TGF-β1-stimulated deposition Absent Present

  Hyaluronan

    Expression High levels Low levels

Persistent expression Transient expression

    Molecular weight High Low

    HA receptors (fibroblast) High levels Low levels

  Mechanical force

    Myofibroblast (day 14) Absent Present

  Stem cells

    MSC High levels Lower levels

    Dot cells Present Absent

bFGF, basic fibroblast growth factor; HA, hyaluronan; MSC, mesenchymal stem cell; PDGF, platelet-derived growth factor; TGF, transforming 
growth factor; VEGF, vascular endothelial growth factor.
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