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The immune responses to influenza, a virus that exhibits strain variation, show

complex dynamics where prior immunity shapes the response to the subse-

quent infecting strains. Original antigenic sin (OAS) describes the observation

that antibodies to the first encountered influenza strain, specifically antibodies

to the epitopes on the head of influenza’s main surface glycoprotein, haemag-

glutinin (HA), dominate following infection with new drifted strains. OAS

suggests that responses to the original strain are preferentially boosted.

Recent studies also show limited boosting of the antibodies to conserved

epitopes on the stem of HA, which are attractive targets for a ‘universal vaccine’.

We develop multi-epitope models to explore how pre-existing immunity modu-

lates the immune response to new strains following immunization. Our models

suggest that the masking of antigenic epitopes by antibodies may play an

important role in describing the complex dynamics of OAS and limited boosting

of antibodies to the stem of HA. Analysis of recently published data confirms

model predictions for how pre-existing antibodies to an epitope on HA decrease

the magnitude of boosting of the antibody response to this epitope following

immunization. We explore strategies for boosting of antibodies to conserved

epitopes and generating broadly protective immunity to multiple strains.
1. Introduction
We are rarely immunologically naive—even at the time of birth we have pre-

existing antibodies from our mothers. Prior immunity affects the responses

both to infections and to vaccines. Understanding the rules for how pre-existing

immunity modulates the immune response to subsequent infections is particu-

larly important in the case of infections with influenza A virus which exhibits

strain variation [1,2]. As a result of selection pressure from the immune system

the influenza virus changes its surface antigens, which are the main target of

humoral immunity. This allows hosts to be infected multiple times, each time

with a new strain, over their lifespan, generating complex dynamics at the

within-host (immunological) as well as at the epidemiological level.

Influenza A is one of the best studied examples of viruses with strain variation

and an ideal system to study the effects of prior immunity on subsequent infection

and vaccination. Both the virus and the immune response to it have been exten-

sively characterized at the molecular, immunological and epidemiological

levels [1–10]. Current influenza vaccines focus on the generation of antibodies

to the surface proteins haemagglutinin (HA) and, to a lesser extent, neuramini-

dase. HA dominates the surface of the influenza virus, being four to five times

more abundant than neuraminidase, and is the main target of the antibody

response to influenza [11–13]. HA is a homotrimeric integral membrane glyco-

protein with a distinct head and stem structure [14]. The head of HA has about

five highly variable epitopes, and the stem has fewer epitopes which are relatively

conserved [7]. Eighteen different HA subtypes (H1–H18) have been identified in

the zoonotic reservoir [15–17], and typically one or two of subtypes H1, H2 and
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H3 circulate in the human population at any given time [9]. The

head region of HA changes dramatically between HA

subtypes, and there is little cross-reactivity between antibodies

to different HA heads. The stem region is relatively conserved

between each of two phylogenetic groups (group 1 includes

H1, H2, H5, H6, H8, H9, H11, H12, H13, H16, H17 and

H18; and group 2 includes H3, H4, H7, H10, H14 and H15)

[15–17]. Antibodies to epitopes on the HA stem can be broadly

cross-reactive and able to recognize other subtypes within a

group and even between the two groups [18–24].

Antigenic changes in influenza A are of two types, anti-

genic drift and antigenic shift. Antigenic drift is responsible

for seasonal outbreaks and involves a gradual change in

antibody binding epitopes on the head of HA within a

given subtype [2]. This allows the new viruses to escape

the antibodies generated following infection or vaccination

with prior virus strains. Antigenic shift is responsible for

relatively rare pandemics and involves replacement of the

current circulating HA with a different subtype typically

originating from zoonotic reservoirs [9]. Consequently, anti-

genic shift results in much larger changes to the HA head

region in comparison with antigenic drift. Over the lifespan,

an individual gets infected about a dozen times, predomi-

nantly by drift variants of a given subtype [25] and

occasionally by new subtypes [9].

It was shown that for a given individual, the antibody

response to the first influenza infection is enhanced and dom-

inates following subsequent infections with drifted strains,

and this effect was termed original antigenic sin (OAS)

[26,27]. OAS has been characterized in studies of natural

infections of humans and experimental infections and vaccin-

ations of mice and ferrets [26–33]. In a classic experiment

reporting OAS, ferrets were infected sequentially with three

closely related virus strains of the same HA subtype (i.e.

drifted strains) [30]. Incubating the final immune serum (i.e.

after the third infection) with the first virus removed serum

antibodies to all three viruses, indicating that antibody

responses generated by the first infection dominated the

responses to the subsequent virus strains. In contrast, incu-

bation of the final immune serum with the second (or third)

strain removed all antibodies to the second (or third) strain

but only some of the antibodies to the other two strains. Simi-

larly, in humans, the influenza strains circulating during

childhood determine the predominant antibodies to influenza

through life [25,29,34]. The phenomenon of OAS has been

revisited and elaborated in recent seroepidemiological studies

in humans [25,34,35].

The conventional explanation of OAS is as follows. When

an individual is infected with influenza for the first time, this

results in clonal expansion of the B cells specific for antigenic

epitopes present on this strain. At the beginning of a sub-

sequent infection of the same individual with a drifted

strain, there will be a higher number of B cells specific for

the epitopes shared between the drifted and original strain

in comparison with (naive) B cells specific for new epitopes

on the drifted strain. If we have similar levels of expansion

of responses to old and new epitopes, the final response

will be dominated by B cells and antibodies specific for old

epitopes (i.e. those present on the initial strain) that are

shared and thus boosted by the new strain.

Observations of OAS are based on measurements with

the haemagglutination inhibition (HAI) assay [30,31,35]

which quantify antibodies to the head of HA but not to the
stem [6,36]. In this paper, we consider OAS following sequen-

tial immunizations with two strains of influenza. We define

OAS quantitatively as the fraction of the final antibody to

influenza that is specific for epitopes on the head of HA

from the first strain.

More recently, there has been a focus on antibodies to the

stem of HA, which could provide broadly cross-reactive pro-

tection. Stem-specific antibodies can be measured using a

recently developed ELISA-based competitive inhibition

assay [21]. In accord with the doctrine of OAS, we might

expect to see boosting of antibodies to conserved epitopes

on the stem of HA both following sequential infections or

immunization with drifted or shifted strains, leading to the

generation of broadly protective immunity. However, current

vaccines do not typically generate sufficiently high levels of

stem-specific antibodies to provide broad protection against

different strains and subtypes, and much effort has been

directed towards overcoming this limitation [37–44].

In this paper, we develop mathematical models for the gen-

eration of antibody responses to multiple epitopes on an

antigen. Our models differ from previous models of antibody

responses as they incorporate the masking of epitopes on the

antigen by antibodies as well as steric interference between

antibodies bound to different epitopes. We show that models

with epitope masking allow us to recapitulate key features

for how pre-existing immunity affects the dynamics of the anti-

body response following immunization with new strains. In

particular, it allows us to reconcile the observation of OAS in

the responses to epitopes on the head of HA with a lack of

boosting of antibodies to conserved epitopes on the stem of

HA. Analysis of recent data allows testing of the model predic-

tion regarding how pre-existing immunity to a given epitope

causes a decline in the boosting of the response to that epitope.

Finally, we use the model to explore different strategies for

boosting of antibodies to conserved epitopes on the stem of

HA which could provide strain-transcending immunity and

form the basis for a universal influenza vaccine.
2. Formulation of the multi-epitope model
Here, we formulate a model for the dynamics of antibody

responses to multiple epitopes on an antigen. We first explore

the effects of masking of an epitope by antibodies for the case

of an antigen with a single epitope. We then extend the model

to consider antigens with multiple epitopes. Our hypothesis is

that both masking of epitopes on the antigen by pre-existing anti-

bodies and antibodies generated during the immune response

play a key role in shaping the humoral immune response.

(a) Epitope masking model for one epitope
We begin by considering an antigen, H, with a single epitope.

The simplest model for an antibody response to an antigen

includes B cells specific for the antigen, B, and the antibodies,

A, that they secrete. In accord with clonal selection, B cells are

stimulated and proliferate in a manner dependent on the con-

centration of antigen. B cells secrete antibodies that can bind to

the antigen, and we let Hf and Hb be the concentrations of free

antigen and antigen that is bound to antibody, respectively.

Only free antigen is able to bind to and stimulate specific B

cells. We keep the model of the immune response as simple

as possible with basic clonal expansion modelled as in [45],

a simplified version of antibody secretion from [46], and the
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Figure 1. Primary and recall responses to sequential immunization with an antigen having a single epitope. Primary and recall response without (a,b) and with
(c,d ) epitope masking (EM). Parameters and equations are described in §2a. Initial conditions for primary response are Hf ¼ 103, Hb ¼ 0, B ¼ 1, A ¼ 1. The initial
conditions for the recall responses were the same for the antigen, while values of B cells and antibodies were set to their final values at the end of
previous immunization.
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addition of epitope masking. With these basic assumptions

(which are detailed in the electronic supplementary material),

we have

(free antigen)
dHf

dt
¼ �kAHf � dHHf, (2:1)

(bound antigen)
dHb

dt
¼ kAHf � dHHb, (2:2)

(B cells)
dB
dt
¼ sBHf

fþHf
(2:3)

and (antibodies)
dA
dt
¼ aB� kAHf � dAA: (2:4)

We chose the model parameters to obtain key features

of a typical antibody response. We rescaled the initial values

of antibodies and B cells to unity at the naive state (prior to

primary influenza infection) and set a ¼ dA, so that at equi-

librium in naive or memory states we have B � A. For the

recall responses, the initial values of antibodies and B cells

were set equal to the level of pre-existing immunity shown

on the corresponding figures. The decay rate of free anti-

body dA ¼ 0.1 d21 is taken from the literature [47]. We set

the maximum rate of clonal expansion of B cells during the

generation of antibody responses to s ¼ 1 d21. We assume

that clonal expansion in response to antigen results in

about 103-fold expansion of the specific responses during pri-

mary responses [45,48]. We begin with antigen H(0) ¼ 103

having a decay rate of dH ¼ 0.5 d21 and let the threshold

for stimulation f ¼ 10, which results in proliferation of

B cells for about 10 days. The rate constant of binding of anti-

body to antigen was set to k ¼ 0.01 to have rapid binding

of antibody to antigen compared with the time scale of

the response. See the electronic supplementary material for

further details.
In figure 1, we plot the dynamics of primary and recall

responses following sequential immunization with antigen.

We consider two cases: with and without epitope masking.

We remove epitope masking from the model (2.1)–(2.4) by

allowing both free and bound antigen to stimulate B cells,

i.e. Ḃ ¼ sBH/(f þ H ), where H ¼ Hf þ Hb. In the absence

of epitope masking, secondary immunization results in an

increase in antibody titres that is similar to that observed

during the primary response (figure 1a), and figure 1b shows

that this is maintained for subsequent immunizations. Com-

pared with the case of no masking, epitope masking results

in a diminution of the primary response (compare panels a
and c) and much larger reduction of the boost following sub-

sequent immunizations (compare figure 1b and d). This is

because the masking is greater, and the boost is smaller, as

the amount of antibody prior to immunization increases.

Figure 1d shows that saturation of the response in the model

with epitope masking occurs rapidly, and, for the parameters

chosen, there is little boosting after the secondary response.

The time point at which this saturation occurs depends on the

parameters (particularly, higher s and lower f result in faster

saturation). However, the above-described qualitative features

are relatively robust to changes in the parameters within the

biologically reasonable regime chosen, as indicated earlier (see

electronic supplementary material, figure S1).

We now explore how the magnitude of the response in

the epitope masking model (EMM) depends on two factors:

the dose of antigen and the amount of pre-existing immunity.

In the following discussion, pre-existing immunity equals the

amount of B cells and antibodies (which are in equilibrium

and due to scaling of parameters have similar levels) prior

to immunization. We plot both the final antibody level and

the fold expansion (both measured at day 30 when the

magnitude of the response plateaus). Figure 2 shows
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Figure 2. Response to antigen in the single epitope model. We plot how the final amount of antibodies (a) and the fold boosting (b) depend on the antigen dose
for different levels of pre-existing immunity (initial value of B(0) ¼ A(0) as indicated in the legend of panel a). Dashed vertical line at f indicates the level of
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Figure 3. Two-epitope masking model with steric interference.
Scheme shows the different states of an antigen with epitopes X and Y.
The naive state XY has both epitopes accessible. Antibody binding to one
epitope results in masking of that epitope and, depending on its proximity
to the second epitope, interferes with the binding of antibody (and B cells) to
the second epitope. The parameter b describes the extent to which binding
of antibodies to one epitope prevents the binding of antibodies to another
epitope and ranges between zero (no steric interference) and one (complete
steric interference). (Online version in colour.)
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how the antibody response depends on the antigen dose

(x-axis) for different levels of pre-existing immunity (different

lines). When we start in the ‘naive’ state (B(0) ¼ A(0) ¼ 1) an

amount of antigen H(0) . f is needed to stimulate B cells and

elicit a response, and the magnitude of the response increases

with increasing antigen dose.

Pre-existing immunity has two effects: starting with a

higher number of B cells (and antibodies) increases the mag-

nitude of the response, but the increase in the antibodies they

produce masks the antigen and leads to a decrease in the

magnitude of the secondary response. If we have a high

level of pre-existing immunity (B cells and antibody), then

more antigen is needed (H(0)� f ) to overcome the masking

effect and boost the immune response.

(b) Epitope masking model for multiple epitopes
We now extend the EMM for one epitope by incorporating a

second epitope and by including steric interference between

the antibody responses to the different epitopes.

Let us consider an antigen HXY with two epitopes X
and Y. We let BX and AX represent B cells and antibodies

specific for epitope X (and similarly BY and AY for epitope

Y ). The free antigen is HXY, and there are three additional

states for antigen bound to antibodies: HOY, HXO and HOO

representing antigen with antibodies bound to X, Y or both

epitopes, respectively. The parameter b is a measure of the

degree of steric interference and describes the extent to

which binding of antibodies to one epitope prevents the bind-

ing of antibodies to another epitope and ranges between zero

and one. If the epitopes are widely separated spatially, then

b ¼ 0, and if the epitopes are in very close proximity such

that binding of antibody to one epitope sterically inhibits

binding to the adjacent epitope, then b ¼ 1. A schematic for

the potential antigen states is shown in figure 3 and gives

rise to the following equations:

dHXY

dt
¼ �kHXY(AX þ AY)� dhHXY, (2:5)

dHOY

dt
¼ kHXYAX � (1� b)kHOYAY � dhHOY, (2:6)

dHXO

dt
¼ kHXYAY � (1� b)kHXOAX � dhHXO, (2:7)

dHOO

dt
¼ (1� b)k(HXOAX þHOYAY)� dhHOO, (2:8)
dBX

dt
¼ sBX(HXY þ (1� b)HXO)

fþ (HXY þ (1� b)HXO)
, (2:9)

dBY

dt
¼ sBY(HXY þ (1� b)HOY)

fþ (HXY þ (1� b)HOY)
, (2:10)

dAX

dt
¼ aBX � k(HXY þ (1� b)HXO)AX � daAX (2:11)

and

dAY

dt
¼ aBY � k(HXY þ (1� b)HOY)AY � daAY: (2:12)

In figure 4, we plot how the amount of pre-existing immunity

to epitope X affects the extent of boosting, measured by the

fold increase in antibodies to this epitope as well as to epitope

Y. We examine how this depends on the antigen dose and the

degree of steric interference b.

The fold boosting of antibody responses to epitope X
and epitope Y are shown for three different values of b in

figure 4. The pre-existing antibody AX masks epitope X causing

a reduction in the boosting of antibodies to this epitope with

an increase in the level of pre-existing antibody. This effect

is largely independent of b (top row). In the absence of

steric interference (i.e. b ¼ 0), binding of antibodies to epitope

X does not mask epitope Y, and in this case, the antibody
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response to epitope Y is independent of the antibody to X
and depends only on the antigen dose. When the value of

b increases, antibody to epitope X also masks epitope Y,

lowering the boosting of responses to this epitope. In the

limit when there is complete interference (b ¼ 1), the extent

of boosting of the antibody response to epitope Y becomes

identical to the extent of boosting of the antibody response to

epitope X.
3. Application to influenza
Here, we adapt our multi-epitope model to explore how pre-

existing antibodies to the major surface protein of influenza

HA affect the antibody response following immunization

with a new HA. We consider situations where the HA used

for immunization is from a drift variant or from a new

strain arising from antigenic shift. The simplest model to

account for the features specific to the antibody response to

HA requires three epitopes: to explore OAS we need

(at least) two epitopes X and Y on the head of HA; and to

understand the lack of boosting to the stem requires an

additional epitope S on the stem of HA. We model sterical

interference for the antibody binding to the head epitopes

with parameter b described in §2b. This assumption is sup-

ported by a number of experimental studies [12,49,50]. In
contrast to epitopes on the head of HA that are in close prox-

imity, the epitope on the stem of HA is sufficiently far from

the epitopes on the head to preclude interference between anti-

bodies binding to the stem and head epitopes. The scheme

showing the transitions between the different states of an anti-

gen with epitopes X, Y and S, corresponding equations and

additional influenza-specific assumptions are in the electronic

supplementary material.

The final amount of antibody is determined by precursor fre-

quencies of specific B cells and the amount of their expansion.

The extent of expansion depends on the amount of the antigen

(epitope) that is available for stimulation, and this can be

modulated (decreased) if the epitope is masked by antibodies.

In the case of immunization with HA from a shifted

strain, the head region changes dramatically, and there will

be little or no pre-existing immunity to the epitopes X and

Y on the head. However, there will be antibodies to the con-

served epitope S on the stem of HA, provided the antigenic

shift is to a virus from the same phylogenetic group. Conse-

quently, there will be a larger fold increase of antibodies to

the (new) head epitopes and less expansion of antibodies

to the stem epitopes owing to masking. In the electronic

supplementary material, figure S3a shows how the fold

expansion of antibodies to the head and stem epitopes of

HA from the shifted strain depends on the level of pre-

existing immunity to the stem epitope (AS on x-axis) and
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antigen dose (on y-axis). The final amount of antibodies to

the epitopes depends on both the initial level of immunity

as well as the boosting (electronic supplementary material,

figure S4a).

Seasonal antigenic drift is characterized by changes in one

or a few amino acids at one of the epitopes (Y ) on the head of

HA. In this case, we begin with prior immunity to an

unchanged epitope on the head and the conserved stem epi-

tope. Consequently, we have epitope masking reducing the

boosting of responses to the X and S epitopes. In this anti-

genic drift scenario, antibodies binding to the conserved X
epitope on the head will also sterically block the ability of

antibodies and B cells to bind to the new Y epitope, and

this will lead to much reduced boosting of the response to

this new head epitope in contrast with the scenario for

antigenic shift as shown in the electronic supplementary

material, figure S3b. The final amount of antibody to the

different epitopes is a product of the initial level of immunity

and the fold boosting as shown in the electronic supplementary

material, figure S4b.

In both shift and drift, we see similarly limited boosting of

responses to the conserved stem epitope because the epitope is

masked by antibodies from pre-existing immunity (compare

right panels on electronic supplementary material, figure S3).

Boosting of responses to head epitopes shared between orig-

inal and drifted strains is affected by epitope masking in a

more complex way, and we use the model to dissect the role

of different factors that contribute to OAS. In this paper, we

consider OAS following sequential immunizations with two

strains of influenza. We define OAS quantitatively as the frac-

tion of the final antibody to influenza that is specific for

epitopes on the head of HA from the first strain. Three differ-

ent factors contribute to the extent of OAS. First, we begin the

recall response to a drifted strain with a larger number of B

cells specific for shared epitopes compared with new epitopes,

and this is the basis for the conventional explanation of OAS

(however, as mentioned in §1, this conventional explanation

fails to account for the lack of boosting of antibodies to the

stem of HA). Second, the EMM predicts that the amount of

boosting in response to a given epitope will be smaller if we

start from a higher level of pre-existing antibody to that epi-

tope. This lowers the magnitude of OAS. Third, steric

interference between the antibodies to the head epitopes

(high b) results in a similar decrease in boosting for both old

and new epitopes. As shown in figure 5 in the case of no epi-

tope masking, increasing the initial level of antibody (AX) to

the shared epitope (X ) rapidly leads to high levels of OAS

(OAS! 1) and this is shown by the thick dashed line. If we

add epitope masking, then the level of OAS depends on the

level of steric interference (b). In the absence of steric interfer-

ence (b ¼ 0), epitope masking leads to a lower level of OAS.

Increasing the level of steric interference (b! 1) increases

the level of OAS towards the high level observed in the

absence of epitope masking.
4. Model predictions
We focus on two key predictions of the EMM.

First, the EMM predicts how the boosting of the antibody

response to an epitope depends on the amount of pre-existing

immunity to that epitope. If we keep the antigen dose for

boosting fixed, then we see that increasing the amount of
pre-existing immunity leads to a lower fold boosting (see

figure 2b and electronic supplementary material, figure S5).

Electronic supplementary material, figure S5 shows that

when there is sufficient antigen to cause a significant boost

in immunity, the log fold expansion will decrease approx-

imately linearly with the log of the pre-existing immunity

to that epitope.

Second, the model predicts the outcome when the amount

of pre-vaccination immunity (B cells and antibodies) is kept

constant and we change the antigen dose. In these circum-

stances, the model predicts (figure 2b) that there is a threshold

for an antigen dose below which there is almost no boosting

and this level increases as the level of pre-vaccination immunity

to that epitope increases. When the antigen dose exceeds this

threshold, there is a rapid increase in antibody boosting in

response to an increase in antigen dose.

In §§5 and 6, we describe preliminary tests for these pre-

dictions by reanalysis of existing data and then consider the

implications of our predictions for vaccination.
5. Preliminary tests of the model predictions
We first test our prediction for how the level of pre-vaccination

immunity (specific B cells and antibodies) to an epitope affects

the boosting of the response to that epitope (see electronic

supplementary material, figure S5). We analysed recently pub-

lished data for vaccination of humans: one group has been

vaccinated with the 2012/2013 trivalent influenza vaccine

(TIV) which included HA from the pandemic H1N1 strain;

another group received HA from inactivated H5N1 avian influ-

enza virus [42]. In this study, they used assays that allowed

independent measurement of the antibodies to the stem and

head of HA.

In the 2012/2013 TIV vaccination part of the study, head-

and stem-specific antibody responses were quantified by an

ELISA-based competitive blocking assay using the compe-

tition between different dilutions of unlabelled polyclonal
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serum antibodies and head (15-2G04)- or stem (SF70)-specific

monoclonal antibodies (mAb) as described in [42]. Fifty per-

cent blocking-dilution (BD50) values for binding of head- and

stem-specific mAbs were measured before (day 0) and after

(day 30) vaccination (figure 6a,b). Note that the antibody

titre in figure 6 is on a log scale. As described in [42], we

see considerable variation in the magnitude of the immunity

and the extent of boosting of antibodies to both head and

stem, and on average, head-specific antibodies were boosted

more (eightfold) than stem-specific antibodies (threefold).

Our model predicts that when the antigen dose is fixed (as

in this study) the fold expansion of antibodies to a given epi-

tope will be determined by the pre-vaccination level of

antibodies to that epitope, and this will be the case for both

head and stem epitopes. We tested this prediction by re-plot-

ting the experimental data (figure 6c). We see that the

boosting of the antibody response to both the head (circles)

and stem (triangles) of HA declines with an increase in the cor-

responding pre-vaccination antibody titre. Interestingly, we see

a similar relationship (linear on a log–log plot) to the one

predicted in electronic supplementary material, figure S5,

and the pre-existing antibody titre explains just over half of

the variation in the magnitude of boosting (R2 ¼ 0.55).

This study also followed both prime and boost vaccin-

ation with inactivated H5N1 avian influenza virus [42].

They measured head- and stem-specific antibodies using

ELISA assays against chimeric HAs that contained just the
relevant head or stem. We focus on the data obtained follow-

ing the boost as different individuals in the prime received

HA from different strains of H5N1 (Vietnam and Indonesia

strains), but all individuals received a boost with the Indo-

nesia strain, and in all cases head-specific antibodies were

measured by binding to the head of HA from the Indonesia

strain. The experimental data are plotted in figure 6d–e. As is

the case with the H1N1 vaccination, we see considerable vari-

ation in the magnitude of the immunity and boosting to both

head and stem of HA, and on average, antibodies to the epitope

on the head were boosted more than the antibodies specific for

the epitope on the stem. In accord with the predictions of our

model, we find that the log fold expansion decreases linearly

with an increase in the log pre-vaccination antibody

(figure 6f). We can add data to figure 6f for the expansion of

stem antibodies (but not head, see above) following the

prime vaccination, and this too follows the same pattern

(electronic supplementary material, figure S6).

The second prediction of our model relates how the level of

boosting depends on antigen dose. Interestingly, H5N1 vaccin-

ation led to much higher boosting of stem-specific antibody

than 2012/2013 TIV [42]. We would like to point out the differ-

ence in the doses of antigen in 2012/2013 TIV and H5N1

vaccines (15 versus 90 mg per dose, respectively). As electronic

supplementary material, figure S5 shows, the antigen dose is a

critical parameter, having a higher dose of antigen (six times

higher in H5N1 vaccine in comparison with H1N1 strain in
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TIV) can overcome antibody masking, and this leads to a

higher boost of stem-specific cross-reactive responses.
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6. Implication for vaccination
Strain variation is a key feature of influenza that allows new

strains of the virus to evade immunity generated both by natur-

al infection and immunization to prior strains. There is

substantial interest in developing a more broadly protective

vaccine against influenza by targeting conserved epitopes on

HA. Several HA stem epitopes elicit broadly cross-reactive

antibodies that are able to recognize all subtypes within the

corresponding phylogenetic group [18–24]. Passive transfer of

these cross-reactive stem-specific antibodies can provide pro-

tection to mice and ferrets [21,39,40], suggesting that at least

in principle, stem-specific antibodies could be considered as a

basis for a universal vaccine in humans. Several approaches

have been proposed for generating and maintaining sufficiently

high titres of these cross-reactive stem-specific antibodies.

One approach uses primary DNA immunization with HA

from the H1N1 strain in the seasonal vaccine, followed by

boosting with the same seasonal vaccine [37]. This strategy gen-

erated neutralizing antibodies that were protective in mice and

ferrets to homologous and heterologous H1N1 strains. Immune

sera from these mice also neutralized other group 1 influenza

viruses such as H2N2 and H5N1 [37]. A second approach

used immunization of HA-nanoparticles containing HA from

H1N1 and generated much higher responses to both matched

and unmatched H1N1 strains than immunization with TIV;

this approach also showed greater control of viral load follow-

ing challenge in ferrets [38]. A third strategy was to use

sequential vaccinations with chimeric HA that have a conserved

stem region but head regions from different subtypes [39–41].

For example, mice were given DNA immunization with cH9/

1 (chimeric HA with H9 head and H1 stem) and boosted with

the soluble cH6/1 HA followed by the cH5/1 HA [39]. These

immunized mice could control lethal challenges with different

HA subtypes from the same phylogenetic group, group 1

(e.g. H1N1), but not from group 2 (e.g. H3N2) which has a

different stem from that in the immunizing chimeric HAs.

While these approaches show that stem-specific antibodies

can be generated by vaccination, the rules for boosting of

stem-specific antibodies are unclear. For example, some studies

[39–41] suggest a key role is having different HA heads in the

prime vaccination and subsequent boosts, whereas other studies

successfully boosted cross-reactive stem-specific antibodies

using a homologous HA boost [37,38]. Our models predict

that using the same or different HA head is not a critical

factor in the boosting of stem-specific antibodies following

immunization with HA (compare right panels in electronic

supplementary material, figure S3), and we have identified the

two key parameters (pre-existing immunity and the antigen

dose) for boosting cross-reactive stem-specific immunity.
7. Future studies
In this study, we have intentionally used simple phenomeno-

logical models because, in the absence of detailed information

on the terms and parameters, simpler models frequently gener-

ate more robust qualitative results than complex models [51,52].

In application to influenza, we consider the immune response

following immunization with HA, which is simplified to have
three epitopes (two on the head of HA and one conserved epi-

tope on the stem of HA), and B cells and antibodies specific

for these epitopes. This relatively simple model has the advan-

tage of allowing us to (i) propose hypotheses to explain the

key features of antibody responses to influenza following anti-

genic drift and shift; and (ii) propose experiments that allow

the model and these hypotheses to be experimentally tested.

The next step will be to include additional complexities to

the model. These would include but not be restricted

to incorporating subpopulations of B cells such as short

and long-lived plasma cells, CD4 T cell-dependent affinity

maturation, realistic numbers of epitopes (typically five on the

head of the HA molecule and one or two on the stem [7,53])

and their immunodominance hierarchy. Spatial consider-

ations are also likely to play a role and can be incorporated by

including the structure of germinal centres in lymph nodes.

Cross-reactivity in antibody responses to changed epitopes

could be modelled in different ways, such as incorporating par-

tially cross-reactive antibodies which have weaker binding for a

changed epitope. Including these additional features into our

model will result in a much more complex model and will

need to be done in concert with experiments that estimate the

many additional parameters of the models. Additional sub-

populations of B cells and T-helper cells have been modelled

in [46], albeit for the response to a single epitope. Affinity matur-

ation has been modelled by Kepler & Perelson [54]. The

interactions between cells and antigen in germinal centres and

how they regulate affinity maturation have been modelled by

Zhang et al. [55], who explored how a number of factors, includ-

ing epitope masking by antibodies, affect affinity maturation.

However, to the best of our knowledge, our paper is the first

to explore the effect of epitope masking on the magnitude of

the secondary responses. Another extension would be to

include factors such as target cell limitation, innate immunity

and T cell immunity in the response to live influenza infections

[56–58]. Finally, in this paper, we focus on the rules of boosting

of antibody responses and do not consider the longevity of

humoral memory [47,59] which needs to be explicitly incorpor-

ated in order to have a predictive model for the longevity of

immunological memory following vaccination. While some of

our preliminary studies suggest that the main qualitative con-

clusions of our model are robust to incorporation of these

additional complexities, much remains to be done.

The proposed model is consistent with the experimental

data and provides one explanation for the differential boost-

ing of antibodies to the head and stem of HA. Developing

alternative models and discriminating between the different

models will be the next step. This will require modelling in

concert with experiments. Experimental studies will be

needed to estimate key parameters of the models (such as

the extent of steric interference in the binding of antibodies

to different epitopes on HA and the rate constants for pro-

liferation and differentiation of B cells during immune

responses) as well as to test predictions, thus allowing us to

discriminate between alternative models.
8. Conclusion
In this study, we used mathematical models to explore how pre-

existing immunity affects the dynamics of antibody responses

to influenza. Our models suggest that the masking of epitopes

by antibody binding may play a key role in the dynamics of
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recall responses. We are able to recapitulate and explain the key

features for boosting of immunity following immunization

with antigenically drifted or shifted strains of influenza and

reconcile the observation of OAS with a lack of boosting of anti-

bodies to conserved epitopes on the stem of HA. We tested

the predictions of the model by reanalysis of existing experi-

mental data that measured responses to both the head and

stem epitopes on HA. Finally, the models allow us to explore

strategies for boosting of antibodies to conserved epitopes

on the stem of HA which may provide strain-transcending

immunity and thus set the framework for generating broadly

protective universal influenza vaccines.
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