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Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying
the oceans and producing diverse and important effects on marine ecosystems,
including the production of fatty acids (FAs) by primary producers and their
transfer through food webs. FAs, particularly essential FAs, are necessary for
normal structure and function in animals and influence composition and
trophic structure of marine food webs. To test the effect of ocean acidification
(OA) on the FA composition of fish, we conducted a replicated experiment in
which larvae of the marine fish red drum (Sciaenops ocellatus) were reared
under a climate change scenario of elevated CO, levels (2100 patm) and
under current control levels (400 patm). We found significantly higher
whole-body levels of FAs, including nine of the 11 essential FAs, and altered
relative proportions of FAs in the larvae reared under higher levels of CO,.
Consequences of this effect of OA could include alterations in performance
and survival of fish larvae and transfer of FAs through food webs.

1. Introduction

Anthropogenic CO, in the atmosphere is dissolving into the oceans and acidi-
fying them [1-3]. This decline in pH is expected to be greater in coastal areas
where the effects will be especially important because of the high biodiversity,
presence of areas of special conservation interest (e.g. coral reefs), or importance
to seafood production [2,3]. Ocean acidification (OA) has been demonstrated to
affect fundamental processes of the early stages of fish, such as growth and
survival [4], behaviour [5,6], auditory and olfactory function [7,8], otolith calci-
fication [9], and even cause tissue damage [10]. The effect of OA on the
synthesis or metabolic pathways of important biomolecules is less known.

Fatty acids (FAs) are biomolecules that are structural components of cell mem-
branes, metabolized for energy, or stored for future use. FAs are designated as
X:YwZ, where X is the number of carbon atoms, Y is the number of double
bonds and wZ indicates the position of the first double bond from the methyl
terminus [11,12]. Some FAs can be assembled from precursors, but most animals
cannot synthesize de novo enough of the long-chain (>18 carbon atoms) FAs that
contain multiple double bonds to meet their physiological requirements [12].
These highly unsaturated FAs are manufactured by primary producers, and ani-
mals obtain them almost exclusively from their diet. For that reason, they are
known as essential FAs (EFAs) [11]. Some EFAs (e.g. eicosapentaenoic acid
(EPA, 20:5w3) and arachidonic acid (ARA, 20:4w6)) are precursors of other
important biomolecules, such as eicosanoids and prostaglandins. Moreover,
EFAs are indispensable for the development of neural and retinal tissues and
proper neural functioning in many animals, including humans [13].

Changes in the EFA composition of organisms at lower trophic levels due to
OA are currently under scrutiny [14,15]. For example the majority of primary
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Figure 1. Mean concentrations of FAs (mg FA g_1 dry weight) (a) and mean relative % of FAs (b); in red drum larvae reared under control (red) and high 0,
(blue) conditions. Error bars are 1 s.e.. Asterisks indicate significant differences (see electronic supplementary material, tables S1 and S2) (*p << 0.05; **p << 0.01;

**¥%p < 0.001). (Online version in colour.)

production in the oceans is expected to shift from diatoms to
other microalgae (e.g. Phaeocystis) [16], and as a result EFA pro-
duction in the oceans is expected to decrease [12,16]. Beyond
this shift in availability of EFAs, OA may alter the way that ani-
mals process and store FAs obtained from their diet, which
would have consequences for the animal’s survival and the
transfer of FAs to higher trophic levels [17-18]. We selected
the marine fish red drum (Scigenops ocellatus) as a model species
to conduct the first experiments on the potential effect of OA on
FA composition of fish larvae. Red drum is a species of high
economic importance in aquaculture and recreational fisheries,
inhabiting estuarine and coastal areas on the east coast of North
America, which are endangered by global change and OA [2],
and the species has been the subject of intense research on
the dynamics and ecological significance of variations in FA
composition of eggs and larvae [17-18].

2. Material and methods

(a) Ocean acidification experiment
Two batches of fertilized red drum eggs were collected from
natural spawns from a single tank of broodstock. Each batch

was divided into two treatment levels: control CO, level
(400 patm) and high CO, level (2100 watm), and reared at a con-
stant temperature (27.4 + 0.3°C) and salinity (36.6 & 0.9 ppt).
Both high CO, and control groups (two tanks per group) were
fed equally with the same highly enriched FA diet. At day 23
post-hatching, all the fish surviving in each tank were euthanized
and measured. For each tank, all the fish were then combined,
lyophilized and homogenized, and then three samples were
analysed for FAs composition using gas chromatography [18],
measuring a total of 27 FAs.

(b) Statistical analyses

The number of fish remaining in each tank was compared
between groups using a Mann—-Whitney U-test; fish length dis-
tribution in each tank was compared across treatments using
PERMANOVA, and a t-test was used to compare total FA con-
tent. For each FA, ANOVA or a Wilcoxon signed-rank test was
used on raw or log-transformed FA concentrations and relative
percentages for comparisons of the control and high CO,
groups (see electronic supplementary material, tables S1 and
S2). A redundancy analysis (RDA) was performed on the com-
plete FA composition for control and high CO, groups,
including egg batch as a factor. Statistical analyses were
performed using the R package (www.r-project.org) [19].
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3. Results

There was a significant effect of OA treatment on the number
of fish remaining (Mann-Whitney U-test, p <0.01), with
61.7% more fish in the high CO, group. Mean fish length
was significantly smaller (25.3%) in fish reared under high
CO, conditions (PERMANOVA, Pseudo-F: 26.7; p < 0.001).
Total FA content was significantly higher in the high CO,
group (t-test, to7;: —4.2, p <0.01). Analyses of individual
FAs (expressed as mgg ' dry weight) showed that 19 of
the 27 FAs had significantly higher values under high CO,
(figure 1a; electronic supplementary material, table S1), includ-
ing higher levels for nine of the 11 EFAs. Expressed on a
relative basis (% total FAs), nine FAs were disproportionately
higher under elevated CO,; nine were disproportionately
lower; and nine remained relatively unchanged (figure 1b;
electronic supplementary material, table S2).

The RDA interaction model (model adjusted R? =50%)
showed that CO, level was a significant factor but egg
batch was not (CO, level: F; g: 10.1, p < 0.001; egg batch: F; g:
1.4, p>0.05) (figure 2; electronic supplementary material,
table S3). Only the first RDA axis was significant, explain-
ing 54.3% of the model variance (figure 2; electronic
supplementary material, table S3).

4. Discussion

Our results identify a strong effect of elevated CO, levels
(2100 patm of CO,, predicted for the year 2300 [1]) on the FA
content of larval fish. This agrees with recent work that
shows an increase in total lipid content of cod (Gadus morhua)
larvae under high levels of CO, (4200 patm) [10]. That prior
study reported no differences in the composition of the
lipids, while we found 19 of the 27 FAs analysed to be signifi-
cantly elevated at only 50% of the level of CO, used in the prior
study. Further, the relative amounts of different FAs varied
under elevated CO,, with some FAs increasing significantly
and others decreasing significantly. While OA usually jeopar-
dizes larval survival [4,6], it is worth noting that the increase
in some of these FAs may improve ecological performance of
the larvae as recent studies of red drum larvae have shown
that higher levels of some EFAs are positively correlated with
larval escape performance [17,20]. Three EFAs—DHA, EPA
and ARA—are especially important to larval fish physiology
[11] and were expected to be closely regulated, regardless of
OA. Surprisingly, DHA and ARA increased on a weight
basis, and EPA and ARA decreased on a percentage basis
under OA conditions. These changes could have significant
impacts on physiological functions.

Higher tissue levels of EFAs could potentially result from
increased absorption, synthesis, biotransformation and/or
storage. Some marine fish can manufacture EFAs but their
capacity is limited [11,18,21]. Increased absorption of ingested
EFAs is an unlikely explanation because absorption of other
nutrients would have increased as well, leading to more
growth, but larval growth decreased while tissue levels of
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EFAs increased. Rather, we suggest that red drum larvae
under this stressor deposit a larger portion of the ingested
FAs in tissues. Nevertheless, the mechanism through which
this response to OA operates is unknown.

OA can affect organisms and ecosystems by altering FA
production (e.g. changes in communities of primary producers
[22]) or through effects on uptake of FAs by higher trophic
levels [23]. We showed that storage of many FAs by red
drum larvae increases and that FA proportions differ under
OA. The consequences of these changes in FAs in tissues on
ecological performance of fish larvae and on food web struc-
ture and function need to be explored for a more complete
understanding of the impacts of OA on marine ecosystems.
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