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The Lake Malawi haplochromine cichlid flock is one of the largest vertebrate

adaptive radiations. The geographical source of the radiation has been assumed

to be rivers to the south and east of Lake Malawi, where extant representatives

of the flock are now present. Here, we provide mitochondrial DNA evidence

suggesting the sister taxon to the Lake Malawi radiation is within the Great

Ruaha river in Tanzania, north of Lake Malawi. Estimates of the time of diver-

gence between the Lake Malawi flock and this riverine sister taxon range from

2.13 to 6.76 Ma, prior to origins of the current radiation 1.20–4.06 Ma. These

results are congruent with evaluations of 2–3.75 Ma fossil material that suggest

past faunal connections between Lake Malawi and the Ruaha. We propose that

ancestors of the Malawi radiation became isolated within the catchment during

Pliocene rifting that formed both Lake Malawi and the Kipengere/Livingstone

mountain range, before colonizing rivers to the south and east of the lake region

and radiating within the lake basin. Identification of this sister taxon allows

tests of whether standing genetic diversity has predisposed Lake Malawi

cichlids to rapid speciation and adaptive radiation.
1. Introduction
Adaptive radiations make up a high proportion of biodiversity. In many

cases, ancestors or sister species of these flocks have been identified, as with

Galapagos finches [1], Hawaiian silverswords [2] and Canadian three-spined

sticklebacks [3]. Identification of their origins has enabled discussion of

events that initiated adaptive radiation, and allowed tests of whether diversi-

fication has been promoted by novel mutations that have arisen since

colonization, or instead whether adaptation is based primarily on pre-existing

genetic variation [4]. This is an important issue to resolve, because it can explain

why only some colonizing lineages radiate when provided with ecological

opportunity, and how parallel adaptive radiation can take place rapidly in

geographically separated habitats.

The evolutionary origins of cichlid fishes radiations in East African lakes are

largely elusive or speculative [5–8]. This is partly because of incomplete geo-

graphical and genomic sampling of riverine species within and surrounding

lake basins. However, it is also due to intrinsic complexity of cichlid evolutionary

relationships, as radiations may have been seeded by multiple riverine ancestors

[8,9], and rivers can be recolonized by species with lacustrine ancestry [10].

A greater understanding of geographical and phylogenetic ancestry of cichlids

is required to test whether functional genetic variation under divergent selection

within lake radiations is present within riverine ancestors, and whether this vari-

ation has been shared among riverine cichlids through intraspecific gene flow and

interspecific hybridization [9].
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Figure 1. (a) Lake Malawi and surrounding major river systems; (b) Bayesian phylogeny based on 544 mtDNA NADH2 sequences. Numbers above branches indicate
posterior probabilities (black, values greater than 0.7 shown) and maximum-likelihood bootstrap support (blue, values greater than 70% shown). (Online version
in colour.)
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Lake Malawi contains a radiating flock of at least 450 hap-

lochromine species [11]. Early phylogenetic reconstructions

suggested that the lake radiation was monophyletic [12,13].

More recent phylogenies show two species outside the Lake

Malawi catchment also fall within the flock, namely Astatoti-
lapia calliptera and Astatotilapia swynnertoni [5,8]. There have

been indications that these are sister lineages to the radiating

flock [5,8], but the hypothesis has not been well supported

by either nuclear or mitochondrial DNA [5,8,14,15]. There is

evidence that riverine representatives of the flock outside

the catchment have seeded some lacustrine diversity in the

radiation [8,16], but preceding this they may have escaped

from Lake Malawi into neighbouring drainages. Given such

uncertainty, and evidence of recent gene flow across catch-

ment boundaries in A. calliptera [16], there is a need to

further resolve relationships of Malawi endemics to cichlids

in neighbouring drainages.

To date, phylogenetic reconstructions have included

haplochromines from many of the surrounding catchments

(figure 1), including the Zambezi, Lake Chilwa, Ruvuma,

Congo and Lake Rukwa catchments [5,8,13,17]. However,

no published phylogenies have included haplochromines

from the Great Ruaha river [18]. Here, we show phylogenetic

reconstructions including an undescribed taxon Astatotilapia
sp. ‘Ruaha’ from this region which place it as a sister taxon

to the Lake Malawi flock.
2. Material and methods
Genetic samples (fin clips) were collected from riverine haplochro-

mines (electronic supplementary material, table S1; figure 1) and

preserved in 95% ethanol. DNA was isolated using the Promega

Wizard kit. Sequences of the mitochondrial gene NADH2 [7]

were generated and aligned with sequences of other haplochro-

mines and outgroup taxa, using CLUSTALW in DAMBE [19]. This

resulted in an alignment of 1047 bp with 544 sequences (electronic

supplementary material, table S2). Bayesian phylogenies were

generated in MRBAYES v. 3.2.4 [20], using Partitionfinder [21]

models, and two runs of 10 million generations. Resultant trees

were combined after removal of 50% as burn-in. Maximum-

likelihood phylogenetic analysis were conducted in RAXML [22],

Partitionfinder models and 100 bootstrap replicates. We dated

divergence times using a subset of 40 NADH2 sequences (elec-

tronic supplementary material, table S2). Time-calibrated trees

were generated with BEAST v. 1.8.0 [23] using Partitionfinder

models and two sets of calibrations [24,25] employed indepen-

dently (electronic supplementary material, table S3). Random

local clocks were used in runs of 50 million generations, with

20% of trees removed as burn-in. Consensus trees from
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TREEANNOTATOR [23] were viewed in FIGTREE (http://tree.bio.ed.ac.

uk/software/figtree).
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3. Results and discussion
An as yet undescribed representative of the ‘modern haplo-

chromine’ group, Astatotilapia sp. ‘Ruaha’, was present at

three Great Ruaha sites (figure 1). On the basis of mitochon-

drial NADH2 DNA sequences, the species was resolved as an

immediate sister taxon to the radiating flock (figure 1; elec-

tronic supplementary material, figure S1). The results of the

analyses suggest they diverged between 2.13 Ma (95% high-

est posterior density (HPD) 1.52–2.84 Ma; using non-cichlid

fossil derived calibrations from Friedman et al. [24]) and

6.76 Ma (95% HPD 3.76–10.12 Ma; using non-cichlid fossil

derived calibrations from Schwarzer et al. [25]). This divergence

took place before initial divergence of extant representatives of

the Lake Malawi flock estimated at 1.2 Ma (95% HPD 1.52–

2.84 Ma) or 4.06 Ma (95% HPD 2.02–6.59 Ma), from Friedman

et al. [24] and Schwarzer et al. [25] calibrations, respectively. The

Astatotilapia sp. ‘Ruaha’ lineage is geographically separated

from the Malawi catchment by the Livingstone/Kipengere

mountain range. This comprises steep mountainous areas and

high altitude plateau, and it is plausible that both geography

and low temperatures impose barriers to habitat occupancy

and dispersal across the boundary [16]. The range was

formed during Pliocene rifting that initiated formation of

Lake Malawi [26], perhaps driving simultaneous population

division and ecological opportunity for species flock formation.

Close evolutionary relationships between Malawi and

upper Ruaha haplochromines are mirrored by recent observa-

tions from fish fossils of fluviatile deposits of the Chiwondo

beds dated to between 2 and 3.75 Ma [18]. The Chiwondo

fauna includes claroteid catfishes and tigerfish (Hydrocynus)
[18], but geographically the nearest system containing extant

representatives of these non-cichlid families is the Ruaha. It

has been proposed on the basis of these fossils that rivers cur-

rently in Lake Malawi catchment were once extensions of the

Great Ruaha system in pre-rift times [18]. Our results are compa-

tible with this concept and imply further molecular studies may

identify this region as a source of genetic diversity of other

elements of the Malawi fauna. Notably, although the Chiwondo

fauna includes representatives of Cichlidae, it has not been

possible to identify remains to a lower taxonomic level [18].

It has been proposed that the ancestor of the Lake Malawi

haplochromine flock is a riverine haplochromine similar to

Astatotilapia bloyeti or A. calliptera [27]. Our study places speci-

mens assigned to A. bloyeti in a sister clade to Astatotilapia
tweddlei, consistent with previous analyses of both nuclear

and mitochondrial markers [8], and our results suggest both

taxa are more distantly related to Malawi cichlids than
Astatotilapia sp. ‘Ruaha’. Our results also show that A. calliptera
outside the Lake Malawi catchment are part of a geographi-

cally broader ‘Lake Malawi region’ flock. It remains

equivocal whether the species secondarily colonized external

rivers from Lake Malawi, or instead whether there have been

multiple colonizations of A. calliptera from outside the catch-

ment along with maintenance of the ancestral riverine

phenotype [5,8,14]. In either case, given mitochondrial DNA

evidence suggesting that Astatotilapia sp. ‘Ruaha’ is a sister

species to the flock, and fossil evidence of historic connectivity

of the Ruaha and Lake Malawi, it seems plausible that extant

representatives of the Malawi flock are biogeographically

derived from a species with a former distribution that encom-

passed both the Ruaha and Lake Malawi catchments. Further

phylogenetic analyses based on nuclear genome data will

help to provide further resolution of the relationship between

Astatotilapia sp. ‘Ruaha’ and Malawi cichlids. Genome-wide

data will also help to resolve whether A. calliptera occupy a

basal, sister or derived position in the flock, which may force

reconsideration of the biogeographic scenario suggested here.

Recent results show a high proportion of genomic diver-

sity present within Lake Malawi cichlids is also present in

riverine cichlids [9]. It has been proposed that riverine species

may be active transporters of genomic material enabling

rapid adaptation within lacustrine flocks. However, such

situations require introgression among riverine taxa at con-

tact zones, and gene flow across catchment boundaries.

There is support for the concept of intraspecific gene flow

across watersheds within Africa [16], but currently only indir-

ect evidence of interspecific hybridization among river

cichlids [27], and there is no evidence of interspecific hybrid-

ization among riverine haplochromines in the region

surrounding Lake Malawi. A greater understanding of taxo-

nomic and spatial patterns of genetic diversity within and

among potentially ancestral riverine cichlids is required,

including Astatotilapia sp. ‘Ruaha’. This would enable tests

of the importance of active transport of genes through via riv-

erine species and hybridization events for explaining shared

genomic diversity among lacustrine radiations [9].
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