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The contrast sensitivity function (CSF), a measure of
visual sensitivity to a wide range of spatial frequencies,
has been widely used as the gain profile of the front-end
filter of the visual system to predict how we perceive
spatial patterns. However, the CSF itself is determined by
the gain profile and other processing inefficiencies of the
visual system; it may be problematic to use the CSF as
the gain profile in observer models. Here, we applied the
external noise paradigm and the perceptual template
model (PTM) to characterize several major properties of
the visual system. With the external noise normalized
gain profile, nonlinearity, and internal additive and
multiplicative noises, the PTM accounted for 92.8% of
the variance in the experiment data measured in a wide
range of conditions and revealed the major processing
components that determine the CSF. Unlike the CSF, the
external noise normalized gain profile of the visual
system is relatively flat across a wide range of spatial
frequencies. The results may have major implications for
understanding normal and abnormal spatial vision.

Introduction

Ever since the discovery that the visual system
consists of channels tuned to stimulus properties such
as orientation and spatial frequency, multichannel
models have been developed to predict human perfor-
mance in visual perception (De Valois & De Valois,
1990; Graham, 2001), including pattern detection
(Watson, 1983, 2000; Watson & Ahumada, 2005),
pattern identification (Petrov, Dosher, & Lu, 2005),
pattern masking (Legge & Foley, 1980; Watson &
Solomon, 1997), letter identification (Chung, Legge, &
Tjan, 2002; Chung & Tjan, 2009; Watson & Ahumada,

2008), and face recognition (Kwon & Legge, 2011). In
most of these multichannel linear amplifier models
(Pelli, 1981), input images are first processed by a bank
of spatial frequency channels with the gain of each
channel equal to the observer’s contrast sensitivity at
the channel’s center spatial frequency. Then additive
internal noise with equal variance is added to the
output of each channel before task-relevant decision
(Figure 1).

Although these multichannel linear amplifier mod-
els (LAM) have provided good accounts of human
performance in many tasks, there are three potential
issues. First, equating the gain profile of the channels
to the CSF of the observer may be problematic. The
CSF measures the reciprocal of contrast threshold as a
function of the spatial frequency of narrow-band
stimuli. It is determined by the gain, nonlinearity, and
internal noises in each of the spatial frequency
channels (Lu & Dosher, 1998, 2008, 2014; Pelli &
Farell, 1999) and may not be equal to the overall gain
profile of the visual system if there is nonlinearity in
the system and/or the magnitude of internal noise
varies with spatial frequency. Indeed, it has been
shown that, in high contrast conditions, the perceived
contrast of gratings with equal physical contrast does
not depend on their spatial frequencies, suggesting
that the gain of the visual system is more or less the
same across spatial frequencies (Banks, Geisler, &
Bennett, 1987; Georgeson & Sullivan, 1975). Many
studies have found that the shape of the CSF strongly
depends on the magnitude of the external noise
superimposed on the grating stimuli, indicating that
the CSF may not be a simple function of the gain of
the visual system (McAnany & Alexander, 2010; Oruc
& Landy, 2009; Rovamo, Franssila, & Nasanen, 1992;
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Tjan, Chung, & Legge, 2002; Xu, Lu, Qiu, & Zhou,
2006). Second, the properties of the additive internal
noise have not been fully tested and specified in the
multichannel LAM. In some models, the additive
noise is assumed to have the same amplitude across all
spatial frequency channels (Chung et al., 2002;
Rovamo, Luntinen, & Nasanen, 1993; Watson &
Ahumada, 2008). However, many studies have found
that the level of additive noise varied across spatial
frequencies (Chen et al., 2014; Xu et al., 2006). Both
Ahumada and Watson (1985) and Kwon and Legge
(2011) showed that the multichannel LAM is mathe-
matically equivalent to another model that has a flat
gain profile but spatial-frequency dependent additive
internal noise. Finally, there are also many known
nonlinearities in the visual system, including nonlinear
transducer function and/or multiplicative noise (Bur-
gess & Colborne, 1988; Eckstein, Ahumada, &
Watson, 1997; Lu & Dosher, 1998, 2008, 2014; Pelli,
1985), that have not been incorporated into the
multichannel LAM. Without fully specifying the gain,
nonlinearity, and internal noises, the multichannel
model may account for human behavior at one
performance level but not in more extended conditions
that include a wide range of stimulus contrasts,
external noises, and performance levels (Lu & Dosher,
2008, 2014; Watson & Ahumada, 2005).

In the current study, we applied the external noise
method and the perceptual template model (PTM) (Lu
& Dosher, 1998, 2008, 2014) to fully constrain the
external noise normalized gain, nonlinearity, and

internal additive and multiplicative noises of each
channel in a multichannel observer model for spatial
vision. As shown in Figure 2, in this model, the input
images are processed by a bank of spatial frequency
channels, each of which consists of a perceptual
template, a nonlinear transducer, and additive and
multiplicative noises, and the outputs of all the channels
are combined in task relevant decision. Instead of using
the CSF as the gain profile of visual system, the PTM
specifies the gain of the visual system as the external
noise normalized gain, defined as the output of the
perceptual template to the signal stimulus relative to its
output to external noise. Full contrast psychometric
functions were measured with a 10-letter identification
task in four or five spatial frequency and two external
noise conditions (zero and high). We then applied the
PTM to extract the external noise normalized gain,
nonlinear transducer function, and internal additive and
multiplicative noises in all spatial frequency conditions.
The result is a multichannel PTM of spatial vision that
can account for human behavior in a wide range of
stimulus conditions and performance levels.

Method

Observers

The first author (S1) and four other observers (S2–
S5), aged 23 to 37 years, participated in the study. All

Figure 1. A multichannel linear amplifier model for spatial vision. The input image is analyzed by a bank of spatial frequency channels

with their gains equal to the contrast sensitivities of the observer. A constant internal additive noise is added to the output of each

channel before task-relevant decision.
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had normal or corrected-to-normal vision. All observ-
ers except S1 were naı̈ve to the purpose of the study.
The study was approved by the institutional review
board of human subjects research of the Ohio State
University. Written informed consent was obtained
before the experiment.

Apparatus

All programs used in this study were written in
Matlab (The Mathworks Corp., Natick, MA) with
Psychtoolbox 3 (Kleiner, Brainard, & Pelli, 2007) and
run on a PC computer. Stimuli were displayed on a
gamma-corrected Apple Studio Display 17-in. CRT
monitor with a mean luminance of 30 cd/m2, 1024 ·
768 pixel resolution, and a vertical refresh rate of 85
Hz. The native bit depth of the CRT is 8 bit per RGB
channel. A special circuit was used to combine the R
and B channels of the computer graphics card to
achieve 14-bit grayscale resolution (Li & Lu, 2012; Li,
Lu, Xu, Jin, & Zhou, 2003). Observers viewed the
stimuli binocularly at a distance of 1.7 m, at which each
pixel on the display subtended 0.01048 · 0.01048. The
CRT monitor was the only lighting source in the room.
The background luminance was presented on the
monitor throughout the experiment.

Stimuli

The 10 Sloan letters, C, D, H, K, N, O, R, S, V, and
Z (Pelli, Robson, & Wilkins, 1988), were used as
stimuli. Filtered letters were generated by centering
each 256 · 256 pixel white (RGB value 255) letter in a
512 · 512 pixel black (RGB value 0) background and
filtering the image with a raised cosine filter (Chung et
al., 2002):

hð f Þ ¼
1þ cos

logð f Þ�logð f0Þ
logð fcut�offÞ�logð f0Þ

p
� �

2
; ð1Þ

where f denotes radial spatial frequency, f0¼ 3 cycles per
object is the center frequency of the filter, and fcut-off was
chosen such that the full bandwidth at half height was 1
octave. The pixel intensity of each filtered image was
normalized by the maximum absolute intensity of the
image such that, after normalization, the maximum
absolute Michelson contrast of the image is 1.0. Stimuli
with different contrasts were obtained by scaling the
intensities of the normalized images and then adding the
background luminance. To create letter stimuli with
different spatial frequencies, the filtered image were then
resized to 68, 38, 1.58, 0.758, and 0.3758 to obtain letters
at 1, 2, 4, 8 and 16 cycles/8 (c/8), respectively.

The size of the external noise images was identical to
that of the letter image. The size of the noise elements

Figure 2. The multichannel PTM. The input images are analyzed by a bank of spatial frequency channels. The output of each channel is

modulated by its external noise normalized gain and goes through a nonlinear transducer. Multiplicative noise and additive noises are

added before task-relevant decision.
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was scaled with the letter size to maintain 18 · 18 noise
elements per image so that the spectra of the letters and
the external noise maintained a constant relationship
across different spatial frequency conditions (Figure 3).
The Michelson contrast of each noise element of every
external noise image was independently sampled from a
Gaussian distribution with mean zero and a standard
deviation of zero and 0.2 in the zero and high external
noise conditions, respectively. Background luminance
was added to all external noise images.

The stimuli in each trial consisted of one letter frame
and four external noise frames. These five image frames
were presented in a temporal order: noise, noise, letter,
noise, noise. Each of these frames lasted for three CRT
refreshes (at a rate of 85 Hz) or 35.3 ms.

Design and procedure

Observers were tested in a letter identification task in
four (S3–S5) or five (S1 and S2) spatial frequency and
two external noise conditions using the method of
constant stimuli. The psychometric function in each
condition was sampled at seven signal contrast levels
predetermined for each observer based on pilot tests.
Each daily session consisted of 1,400 trials and
measured psychometric functions in one spatial fre-
quency and two external noise conditions. Within a
session, trials in different letter contrast and external
noise conditions were mixed randomly. S1 and S2 ran
five sessions (1, 2, 4, 8, and 16 c/8). S3, S4, and S5 ran

four sessions (1, 2, 4, and 8 c/8). The order of test was
randomized across observers.

Each trial began with the presentation of a 259-ms
crosshairs, followed by a 129-ms blank screen, and
177-ms stimulus presentation. A response screen with
all 10 letters was shown 500 ms after stimulus
presentation.1 The letters presented on the response
screen matched the average RMS contrast of the test
letters. Observers were instructed to use the keyboard
to type or mouse to select the letter they saw. No
feedback was provided. A new trial started 500 ms
after the response.

Model

A stochastic perceptual template model (Dosher &
Lu, 2000) was developed to account for human
performance in the experimental task. The model can
take the actual images used in the experiment as its
input and generates behavioral responses.

The letter stimuli and external noise images used in
our experiment are described by cLLi,k (x, y) and
cNNm,k(x, y), where x and y are the spatial
coordinates in the display, cL and cN represent the
contrasts of the letter and external noise images,
Li,k(x, y) represents the ith (i ¼ 1, 2, . . .10) letter at
100% contrast in the kth (k ¼ 1, 2, 3, 4, 5 for S1 and
S2, and k ¼ 1, 2, 3, 4 for S3–S5) spatial frequency
condition, and Nm,k (x, y) represents the external noise
sample generated from the standard normal distri-

Figure 3. (a) Ten filtered letters. (b) Illustration of noise masked letter N in different spatial frequency conditions. (c) The average

magnitude spectra of letters and external noise in different spatial frequency conditions.
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bution (with standard deviation¼ 1.0) in the mth (m¼
1, 2, 3, and 4) frame.

In constructing the stochastic PTM, we assume that
the imperfect human template can be modeled as a
perfect template with a lower efficiency, that is, the
template Ti,k(x, y) for letter i in the kth spatial
frequency condition has a similar shape as the letter
stimulus but with lower efficiency ak, i.e., Ti,k(x, y) ¼
akLi,k(x, y). The assumption is necessary for us to
model the overlap between different letter templates
and the correlations between the outputs of the
templates.

In each trial, four external noise images, cNNm,k(x, y)
(m ¼ 1, 2, 3, and 4), are processed by the 10 letter
templates. The output of the jth template to the
external noise images can be expressed as:

Nj;k ¼ cN
X4

m¼1

X
x

X
y

Nm;kðx; yÞTj;kðx; yÞ

¼ akcN
X4

m¼1

X
x

X
y

Nm;kðx; yÞLj;kðx; yÞ; ð2aÞ

We first normalize the template gains to the external
noise images so that after template matching, the
expected average total energy (over 10 templates) of
four frames of external noise images (with contrast ¼
1.0) is 1.0:

E
a2
k

10

X10

j¼1

X4

m¼1

X
x

X
y

Nm;kðx; yÞLj;kðx; yÞ

2
4

3
5

2
2
64

3
75

¼ 1:0;

ð2bÞ
where E() is the expected value operator. This allows us
to compare the impact of external noise in different
spatial frequency conditions and obtain:

ak¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E 1
10

X10

j¼1

X4

m¼1

X
x

X
y
Nm;kðx;yÞLj;kðx;yÞ

h i2
� �s :

ð2cÞ

Because human performance is determined by the
relative efficiency of the templates in processing letters
and external noise images (Lu & Dosher, 1998, 2008),
without losing generality, we define the external noise
normalized gain bk of the perceptual templates to the
letters as the coefficient relative to their gain to external
noise. So the letter stimulus cLLi,k(x, y) in the kth
spatial frequency condition is processed by 10 letter
templates with an external noise normalized gain of bk.
The output of the jth template Tj,k(x, y) can be
expressed as:

Si j;k ¼ bkcL

X
x

X
y

Li;kðx; yÞTj;kðx; yÞ

¼ bkakcL

X
x

X
y

Li;kðx; yÞLj;kðx; yÞ: ð2dÞ

Summing its outputs to both the letter and external
noise stimuli, the output of the jth template is
therefore:

Oi j;k ¼ Si j;k þNj;k: ð3Þ

The output of each template goes through a
nonlinear transducer function, which raises its input to
ck power while keeping the sign of the input,

Ui j;k ¼ signðOi j;kÞjOi j;kjck : ð4Þ

Next, internal multiplicative noise, with its standard
deviation proportional to the amplitude of Uij,k, and
internal additive noise, are added to the output of the
transducer:

Vi j;k ¼ Ui j;k þNmul;kjUi j;kjGð0; 1Þ þNadd;kGð0; 1Þ;
ð5Þ

where Nmul,k is the proportional constant for multipli-
cative noise, Nadd,k is the standard deviation of the
additive noise in the kth spatial frequency condition,
and G(0,1) is a Gaussian random variable with mean of
zero and standard deviation of one.

Finally, the outputs of all 10 templates are submitted
to a decision process. The model responds with the
letter associated with the template that has the
maximum response:

Ri;k ¼ argmax
j
ðVi j;kÞ: ð6Þ

The response is correct if Ri,k ¼ i.
In each spatial frequency condition, the stochastic

PTM has four parameters, bk, ck, Nmul,k, and Nadd,k . If
we set Nmul,k to zero and ck to one, the PTM reduces to
the LAM (Legge, Kersten, & Burgess, 1987; Pelli &
Farell, 1999).

Model fit and comparison

The stochastic PTM was implemented in MATLAB.
Its performance was simulated with the exact letter
images used in the experiment for each observer and
external noise images generated with the same proce-
dure used in our experiment.2 For each set of PTM
parameters, we generated model predictions of all the
experimental conditions (70 for S1 and S2; 56 for S3,
S4, and S5) based on 10,000 simulated trials in each
condition.
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A maximum likelihood procedure (Watson, 1979)
was used to search for the best fitting parameters, with
the likelihood defined as:

likelihood ¼P
i

Ni!

Ki!ðNi � KiÞ!
PKi

i ð1� PiÞNi�Ki ;

ð7Þ
where i indexes experiment conditions, Ni and Ki are
the numbers of total and correct trials, respectively, and
Pi is percent correct predicted by the model.

A v2 test was used to compare nested models
(Watson, 1979):

v2ðdfÞ ¼ 2log
maxlikelihoodfull

maxlikelihoodreduced

� �
; ð8Þ

where df¼kfull� kreduced, and the ks are the numbers of
parameters in the full and reduced models.

Results

A total of 10 (5 Spatial Frequencies · 2 External
Noises) psychometric functions were obtained for
each of S1 and S2, and eight were obtained for each
of S3, S4, and S5 (Figure 4). We modeled the
psychometric functions with the stochastic PTM. For

each observer, PTM parameters, including internal
additive noise Nadd,k, internal multiplicative noise
Nmul,k, external noise normalized gain bk, and
nonlinearity ck, were estimated from the best fitting
model for the data in each spatial frequency
condition.

Two versions of the PTM models were used to fit all
psychometric functions obtained for each observer. The
full PTM has independent sets of Nadd,k, Nmul,k, bk, and
ck in different spatial frequency conditions, and
therefore 20 parameters for S1 and S2, and 16
parameters for S3, S4, and S5. Many studies in the
literatures suggest that the nonlinearities of the visual
system, Nmul,k and ck, may be invariant across spatial
frequencies (Chen et al., 2014; Hou et al., 2010; Lu &
Dosher, 1998, 2008, 2014). So we constructed a reduced
PTM, in which both Nmul,k and ck are the same across
all the spatial frequency conditions. This model has 12
parameters for S1 and S2, and 10 parameters for S3,
S4, and S5.

Both the full and reduced PTM provided excellent
fits to the psychometric functions. The average r2 of the
full and reduced PTM was 0.929 6 0.009 (mean 6 SD)
and 0.928 6 0.009, respectively. A v2 test showed no
significant difference between the full and reduced
models (p . 0.05 for all observers). Results of
individual observers are listed in Table 1.

Figure 4. Psychometric functions for the five observers (columns) in different spatial frequency conditions (rows: low to high). Open

and filled circles represent data in the zero and high external noise conditions. Solid curves are the predictions of the best fitting PTM.

r
2 of the best fitting PTM are noted for each observer.
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We also fit the LAM to the data. The average r2

was 0.797 6 0.033. Because the LAM is a reduced
version of the PTM with Nmul,k ¼ 0 and ck ¼ 1, a v2

test was used to compare the fits of the LAM and the
reduced PTM. The results showed that the reduced
PTM was superior to the LAM in accounting for the
variance of our data (p , 0.001 for all observers;
Table 1).

The parameters of the best fitting PTM are plotted
as functions of spatial frequency in Figure 5.3

Averaged across observers, Nadd,k increased dramat-
ically, from 1.06 · 10�4 at 1 c/8 to 3.10 · 10�2 at 8 c/8,

whereas bk decreased only by about 14.2% (from
0.529 at 1 c/8 to 0.454 at 8 c/8). Averaged across
observers, Nmul,k and ck were 0.016 6 0.010 and 2.49
6 0.24, respectively. The estimated ck is within the
2.11 to 3.04 range found in pattern masking (Legge
& Foley, 1980) and comparable to the 2.05 to 2.45
range found in external noise experiments (Lu &
Dosher, 2008).

Contrast thresholds at 55% percent correct were
extracted from the best fitting PTM and plotted in
Figure 6. The CSF in the zero external noise condition
showed a typical low-pass profile. A dramatic loss of

Observer S1 S2 S3 S4 S5

r
2 full PTM 0.942 0.918 0.922 0.931 0.933

reduced PTM 0.938 0.919 0.921 0.929 0.932

LAM 0.814 0.781 0.755 0.843 0.790

�log(likelihood) full PTM 271 335 252 210 235

reduced PTM 278 336 253 211 236

LAM 488 604 492 302 468

v2 test reduced vs. full PTM v2 (8) ¼ 14.1 v2 (8) ¼ 1.55 v2 (6) ¼ 0.294 v2 (6) ¼ 2.20 v2 (6) ¼ 3.00

p ¼ 0.077 p ¼ 0.992 p . 0.999 p ¼ 0.900 p ¼ 0.809

LAM vs. reduced PTM v2 (2) ¼ 419 v2 (2) ¼ 535 v2 (2) ¼ 479 v2 (2) ¼ 182 v2 (2) ¼ 464

p , 0.001 p , 0.001 p , 0.001 p , 0.001 p , 0.001

Table 1. Goodness of fit of the full PTM, reduced PTM, and LAM

Figure 5. Parameters of the best fitting reduced PTM of the five observers, plotted as functions of spatial frequency.
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sensitivity was induced by adding external noise. The
CSFs in the high external noise condition are quite flat.
The result is consistent with previous findings that CSF
in high external noise doesn’t vary with spatial
frequency (McAnany & Alexander, 2010; Oruc &
Landy, 2009; Rovamo et al., 1992; Tjan et al., 2002; Xu
et al., 2006).

It is worth noting that, the shape of the CSF in the
zero external noise condition is very similar to the
inverted Nadd,k curve and the shape of the CSF in the
high external noise condition is similar to the gain
profile of visual channels (bk). We calculated the
correlations between the CSFs and PTM parameters,
and plotted them in Figure 7. Internal additive noise
Nadd,k correlated negatively with CSFs in both the

zero (r¼�0.950, p , 0.001) and high (r¼�0.474, p¼
0.026) external noise conditions, with better correla-
tion in the zero than high external noise condition
(Steiger’s Z-test, Meng, Rosenthal, & Rubin, 1992, p
, 0.001). There were significant positive correlations
between the external noise normalized gain bk and
CSFs in both the zero (r ¼ 0.515, p ¼ 0.014) and high
external noise conditions (r ¼ 0.947, p , 0.001), with
better correlation in the high than zero external noise
condition (Steiger’s Z-test, p , 0.001). The result
suggested that the CSF in the zero noise condition
was mainly determined by Nadd,k while the CSF in
the high external noise condition was mainly
determined by bk.

Figure 6. CSFs at 55% percent correct. Empty and solid circles denote data from zero and high external noise conditions,

respectively.

Figure 7. Correlations between the CSFs and PTM parameters. Data from all observers were pooled together.
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Discussion

Using a letter identification task, we measured full
contrast psychometric functions in zero and high
external noise conditions over a wide range of spatial
frequency conditions. The comprehensive dataset in
combination with the stochastic PTM allowed us to fully
characterize the properties of each spatial frequency
channel: external noise normalized gain, nonlinear
transducer, additive and multiplicative noises (Lu &
Dosher, 1998, 2008, 2014). The result is a fully specified
multichannel PTM for spatial vision (Figure 2).4

We did not investigate channel interactions because
our stimuli were designed to target individual spatial
frequency channels. However, interactions between
spatial frequency channels have been reported in many
studies (Albrecht & De Valois, 1981; Bauman & Bonds,
1991; De Valois & Tootell, 1983; Georgeson, 1980;
Greenlee & Magnussen, 1988; Klein, Stromeyer, &
Ganz, 1974; Movshon, Thompson, & Tolhurst, 1978;
Tolhurst, 1972; Tolhurst & Barfield, 1978). Future
studies with more complex stimuli are necessary to
specify channel interactions.

Because the nonlinear transducer and multiplicative
noise did not vary with spatial frequency, the shapes of
the CSF in the zero and high external noise conditions
were mostly determined by the profile of internal
additive noise and external noise normalized gain,
respectively. However, as shown by the model com-
parison results between the PTM and LAM, the
nonlinear transducer and multiplicative noise played
essential roles in accounting for the experiment data. In
fact, they determine the slope of the psychometric
functions, and are important in modeling CSFs at
multiple performance levels (Chen et al., 2014; Lu &
Dosher, 1998, 2008, 2014). Without specifications of
the nonlinearities and internal noises of the visual
system, previous spatial vision models can only account
for human performance in a limited range of perfor-
mance levels (Chung et al., 2002; Rovamo et al., 1993;
Watson & Ahumada, 2008). In contrast, the multi-
channel PTM can be used to account for human
behavior over a wide range of stimulus conditions and
performance levels.

Using filtered letters with a fixed object frequency
bandwidth, we found that the external noise nor-
malized gain is relatively flat over a range of spatial
frequencies with a slight drop at the highest spatial
frequency. Our finding is consistent with the finding
by Parish and Sperling that the signal to noise ratio
for band-limited letters is independent of viewing
distance (Parish & Sperling, 1991). Majaj, Pelli,
Kurshan, and Palomares (2002) found that for band-
limited (filtered) letters with different sizes, the
frequency of the channel used for identification scales
proportionally with the letter’s center frequency.

They also found that, for letters with sharp edges,
channel frequency scales less proportionally with the
letter’s stroke frequency. The results provide a
potential explanation of Pelli, Burns, Farell, and
Moore-Page (2006)’s finding that the efficiency for
(sharp-edged) letter identification is highest for small
letters and gradually decreases as letter size increases.
We attribute the difference between Pelli et al.
(2006)’s finding and ours to the differences of
stimulus properties. It would be interesting to apply
the PTM analysis to measure external noise nor-
malized gain profile for broadband letters in the
future.

In the PTM, the external noise normalized gain of
each spatial frequency channel is specified relative to its
gain to external noise (Lu & Dosher, 1998, 2008, 2014).
The advantage of this definition is that all the variables
in the model are referenced to external noise, which can
be specified physically, and the model can be used to
predict human performance based on specification of
the input stimuli in physical units, as implemented in
the stochastic PTM. However, it must be noted that the
external noise normalized gain profile derived in this
paper is different from other direct measures of the gain
of the visual system, i.e., optical or neural modulation
transfer function. The optical modulation transfer
function (MTF) of the eye describes the quality of
retinal images (Artal, 1990; Artal & Navarro, 1994;
Campbell & Green, 1965; Campbell & Gubisch, 1966;
Thibos, Hong, Bradley, & Cheng, 2002; Watson, 2013;
Williams, Brainard, McMahon, & Navarro, 1994). The
resolution of the visual system is much lower than the
limit set by the optics of the eye (Applegate, 2000;
Schwiegerling, 2000). Rovamo et al. (1993) proposed a
neural MTF whose gain profile is proportional to
spatial frequency to account for the additional loss in
perception. Watson and Ahumada (2008) derived the
neural MTF by dividing the CSF by the optical MTF.
However, there has been no direct measure of the
neural MTF. In fact, even if the optical and neural
MTF are specified, we still can’t directly use them to
predict human performance without additional speci-
fications of the nonlinearities and internal noises of the
visual system (Chung et al., 2002; Lu & Dosher, 2014;
Rovamo et al., 1993; Watson & Ahumada, 2008).

In the current study, we did not measure the optical
MTF of our observers. In order to explore how much
the optical MTF could affect our results, we considered
a typical optical MTF for fovea detection (Navarro,
Williams, & Artal, 1993):

MTFð f Þ ¼ ð1� CÞe�Af þ Ce�Bf; ð9Þ
where f is the radial spatial frequency in c/8, A¼ 0.172,
B ¼ 0.037, and C ¼ 0.22.

To incorporate the optical MTF into the stochastic
PTM, we first filtered the letter and external noise
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images with the MTF:

L*
i;kðx; yÞ ¼ F�1 FðLi;kðx; yÞÞ·MTFð f Þ

	 

; ð10aÞ

N*
m;kðx; yÞ ¼ F�1 FðNm;kðx; yÞÞ·MTFð f Þ

	 

; ð10bÞ

where F and F�1 represent Fourier and inverse
Fourier transformations, and * indicates the results of
applying the optical MTF. We then replaced Li, j(x,y)
and Nm,k(x,y) in Equation 2 with these filtered stimuli
L*
i;k(x,y) and N*

m;k(x,y) and refitted the reduced
stochastic PTM to the data.

The reduced PTM provided excellent fits to the
empirical psychometric functions. The average r2 of
the reduced PTM was 0.927 6 0.010. N*

add;k and b*
k of

the best fitting reduced stochastic PTM are shown in
Figure 8. The MTF changed the profile of internal
additive noise. There was still a significant negative
correlation between N*

add;k and the CSF in the zero
external noise condition (r ¼�0.862, p , 0.001), but
only a marginal correlation between N*

add;k and the
CSF in the high external noise condition (r¼�0.400, p
¼ 0.065).

Importantly, the MTF had only a very small effect
on external noise normalized gain. b*

k and bk are
essentially the same (r ¼ 0.997, p , 0.001, the slope
of the linear regression between b*

k and bk was 0.975).
This is because the optical MTF attenuated the
letters and external noise images with essentially the
same factors: It attenuated the outputs of the
templates to the letters by a factor of 0.877, 0.772,
0.605, 0.388, and 0.191 in the 1, 2, 4, 8, and 16 c/8
spatial frequency conditions, and their outputs to the
external noise stimuli by 0.880, 0.774, 0.608, 0.393,
and 0.197, respectively. There were significant posi-
tive correlations between template gain b*

k and CSF
in both the zero (r ¼ 0.499, p ¼ 0.018) and high
external noise (r ¼ 0.940, p , 0.001) conditions, with
better correlation in the high than zero external noise

condition (Steiger’s Z-test, p , 0.001). So with
consideration of the optical MTF, the conclusion still
holds that the CSF in zero and high noise conditions
is mostly determined by internal additive noise and
the external noise normalized gain, respectively.

The multichannel LAM has been used to generate
predictions of what people perceive in spatial vision. A
typical example is illustrated in Figure 9, in which the
CSFs of a normal adult and an infant (Figure 9a) are
used as the gain profiles to generate predictions of their
perception of a duck—the infant is postulated to
perceive a blurrier image (Figure 9d) because of the
stronger reduction of contrast sensitivity in high spatial
frequencies compared to a normal adult (Figure 9c).
The multichannel PTM postulates that, spatial vision is
not limited only by attenuation of high spatial
frequency information, but also by both increased
additive internal noise and decreased gain at high
spatial frequencies (Figure 9e). What can an infant with
a poor CSF see compared to an adult? She may not
necessarily perceive a blurry image. If her gain profile
was relatively flat as we showed in adults, the infant
would perceive a noisier image (Figure 9f). Adopting
the approach developed in this paper to infant vision
would allow us to test this prediction.

The CSF, which measures how visual sensitivity
varies as a function of stimulus spatial frequency,
provides a comprehensive evaluation of many spatial
vision deficits (Ginsburg, 1981, 2003; Hess, 1981). For
example, patients might have poor vision despite
normal or near to normal visual acuity (Wilensky &
Hawkins, 2001), whereas amblyopes who are deemed
‘‘treated’’ based on the criterion of remediated visual
acuity still showed lowered contrast sensitivity at high
spatial frequencies (Huang, Tao, Zhou, & Lu, 2007).
The method developed in this paper would allow us to
decompose the CSF into different components and
therefore reveal underlying mechanisms of various
visual deficits.

Figure 8. N*
add;k and b*

k of the best fitting reduced PTM.
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Footnotes

1 The 500-ms interval was long enough to eliminate
potential backward masking effect of the response
screen (Breitmeyer, 1984; Lu, Jeon, & Dosher, 2004).

2 We fit the model in two different ways. We first
used the actual letter and external noise images in the
experiment, with 400 external noise images (100 Trials
· 4 Images per Trial) per condition. The stochastic
PTM gave a good fit (average r2¼ 0.921 6 0.015).
Because 100 samples of external images is too few to
represent the overall statistical property of the external
noise, we then used 40,000 (10,000 Trials · 4 Images
per Trial) regenerated external noise image samples per
condition to obtain more stable performance of the
model. The procedure gave us more generalizable
estimates of the model parameters.

3 Per one reviewer’s request, we investigated
potential trade-offs between Nmul and c in the curve-
fitting procedure. We found that the cost function,
�log(likelihood), varies with Nmul and c almost
independently, with very little trade-offs between them.

4 Although we used a multiplicative noise formula-
tion in this paper, the PTM is mathematically
equivalent to a contrast-gain control model (Dao, Lu,
& Dosher, 2006; Lu & Dosher, 2008).
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