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What effect does the spatial distribution of infected cells have on the effi-

ciency of their removal by immune cells, such as cytotoxic T lymphocytes

(CTL)? If infected cells spread in clusters, CTL may initially be slow to

locate them but subsequently kill more rapidly than in diffuse infections.

We address this question using stochastic, spatially explicit models of CTL

interacting with different patterns of infection. Rather than the effector : tar-

get ratio, we show that the relevant quantity is the ratio of a CTL’s expected

time to locate its next target (search time) to the average time it spends con-

jugated with a target that it is killing (handling time). For inefficient (slow)

CTL, when the search time is always limiting, the critical density of CTL

(that required to control 50% of infections, C*) is independent of the spatial

distribution and derives from simple mass-action kinetics. For more efficient

CTL such that handling time becomes limiting, mass-action underestimates

C*, and the more clustered an infection the greater is C*. If CTL migrate che-

motactically towards targets the converse holds—C* falls, and clustered

infections are controlled most efficiently. Real infections are likely to

spread patchily; this combined with even weak chemotaxis means that ster-

ilizing immunity may be achieved with substantially lower numbers of CTL

than standard models predict.
1. Introduction
CD8þ cytotoxic T lymphocytes (CTL) are key elements of the adaptive immune

system in vertebrates and are critical in resolving or limiting many infections,

including human and simian immunodeficiency viruses (HIV/SIV) [1–4],

hepatitis C [5,6], lymphocytic choriomeningitis virus (LCMV) [7,8], influenza

[9–11] and listeria [12,13]. After encountering and recognizing an infected

cell by binding pathogen-derived peptides presented on MHC class I molecules

on the cell surface, a CTL may lyse the cell directly, or indirectly through the

recruitment of phagocytic cells [14]. CTL may also suppress an infection

through non-lytic, cytokine-mediated mechanisms [15,16].

It has recently become clear that populations of T cells (tissue-resident

memory cells, or Trm) continually survey potential sites of pathogen entry or

reactivation and are able to re-acquire effector function rapidly [17–19]. Cyto-

toxic Trm are likely to be crucial for sterilizing immunity to pathogens such

as HIV that enter through mucosal surfaces and become very difficult to control

once disseminated throughout the body. However, the local densities of CTL

needed to control a given infection are unknown. A model-guided estimate

of this quantity would be useful for establishing the feasibility of vaccines

aimed at inducing tissue-resident CTL memory—if only to assess whether

the required densities are physiologically possible.

For purely CTL-mediated control, the net growth rate of an infection is the

balance between its rate of spread among susceptible cells and the total rate at
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which CTL can kill infected cells. We will use C* to denote the

minimum (or critical) density of CTL required to reduce the

net growth rate of an infection to zero. One approach to

estimating C* is to use in vitro experiments to estimate the

minimum effector : target (E : T) ratio needed for suppression

of infected cell growth [20]. Another means is to begin with

measured microscopic quantities such as tissue-specific rates

of CTL movement or surveillance rates—the number of poten-

tial targets one CTL can survey per unit time. These

parameters can be inferred from intravital microscopy or

in vivo CTL killing assays, described below, and used as

inputs to dynamical models of CTL interacting with infected

cell populations. One such model, used extensively to describe

the within-host dynamics of viral infections, assumes ‘mass-

action’ kinetics in which the rate of loss of infected cells is

linear in both CTL and infected cell numbers. That is, for a

population of infected cells growing at net rate r in the absence

of CTL, and with a CTL population C killing these cells,

dI
dt
¼ rI � kCI: (1:1)

When C is expressed as a proportion of all surveyable cells,

the interpretation of the rate constant k is the mean number of

cells of all types (infected or not) that one CTL surveys per unit

time, multiplied by the probability of recognition and killing of

an infected cell following contact with it [21]. Mass-action has

been shown to describe CTL killing of melanoma cells both

in vitro and in vivo [20]. It also gives reasonable descriptions

of assays in which peptide-pulsed cells are injected intrave-

nously, migrate to the spleen and are killed by peptide-

specific resident CTL. In the studies that enumerated cell popu-

lations in spleens directly, using LCMV [22–25], polyoma virus

[26] and influenza virus [21], k was estimated to be in the range

0.14–4 cells min21. Graw et al. [27] performed longitudinal

sampling of target cells in blood to infer the dynamics of CTL

and targets in the spleen, and estimated k to be between 8 and

35 cells per minute. The reasons underlying this two-orders-

of-magnitude spread are unclear. Differences in k may derive

from differences in CTL motility, in the spatial distribution of

CTL and targets within the spleen and so the numbers of CTL

effectively participating in clearance of targets, and in the

efficiencies of killing following conjugation [21].

Three assumptions underlying equation (1.1) are that (i) CTL

and the cells they survey are well mixed and that encounters of

one CTL with infected cells occur with Poisson statistics;

(ii) CTL perform undirected random walks (i.e. without prefer-

ential motion towards infected cells, referred to as chemotaxis)

and (iii) the time a CTL spends conjugated with an infected

cell, the handling time, can be neglected. The first assumption

holds when infected cells and CTL are scattered diffusely

throughout a tissue. The second is likely to be satisfied in the

splenic CTL killing assays, because levels of inflammation will

be low with peptide-pulsed (uninfected) targets and so substan-

tial chemotactic bias in CTL movement seems unlikely. The third

assumption is expected to be valid when the handling time h is

very short compared with 1/(kI), which is the expected time

taken for a CTL to locate its next infected cell, when these are pre-

sent at spatial frequency I, and/or when E : T is very large so very

few CTL are expected to kill more than once in order to bring an

infection under control.

If these assumptions hold, then with knowledge of the

growth rate r and surveillance rate k, the critical CTL den-

sity is then simply C*¼ r/k. The simple mass-action model
can be extended to explicitly include, for example, the

time taken for CTL to kill infected cells (the handling

time), the dynamics of virus epitope expression on infected

cells and the eclipse phase between infection of a cell and

virus production [28–30]. Closed-form solutions for C*

may not be available in these models, but C* can be

obtained numerically [28].

However, it is not obvious that equation (1.1) or its exten-

sions are appropriate descriptions of CTL interacting with live

replicating intercellular pathogens, for at least two reasons.

First, a mass-action model assumes that infected cells will

appear at random within an infected tissue, but pathogen

transmission from cell to cell likely occurs preferentially over

short ranges and as a consequence infections of relatively

immobile cells will tend to spread in foci (e.g. [31–33]).

Second, CTL may be attracted to areas of infection and cell

death via chemokines, breaking the assumption that CTL per-

form unbiased random walks. So using mass-action models to

describe CTL killing in such situations may lead to incorrect

estimates of critical CTL densities. Assuming we know the

microscopic quantity k, the uncontrolled pathogen growth

rate r, and the handling time h, what impact does the spatial

distribution of targets, and the degree of chemotaxis, have

on the critical density of CTL needed for immunity? Here

we use explicitly spatial stochastic simulations of infections

to address this question.
2. Methods
We developed a stochastic agent-based model (ABM) represent-

ing the behaviour of CTL surveying a tissue containing a

spreading population of infected cells. The ABM was explicitly

spatial and allowed us to vary the patterns of infection spread,

track CTL-target conjugate dynamics and implement chemotaxis

of CTL towards infected cells. The simulator was written in

C/Cþþ and derived in part from the open source software

Scriptbots. It is freely available at https://github.com/udkad/

immunebots.
(a) Overview of the agent-based model
The simulation is set up as a two-dimensional grid of non-

susceptible, susceptible and infected cells. In all simulations,

cells were uniformly placed in a two-dimensional matrix of

320 rows and 320 columns (total cells: 102 400). All cells were

susceptible to viral infection. The grid size corresponds to a

physical area of 3.2 mm by 3.2 mm (�10 mm2) with toroidal

(wrap-around) boundary conditions. This choice of boundary

conditions mirrors a situation in which the simulated infection

site is surrounded by others with similar statistical properties.

All cell types and virions produced by infected cells are

modelled individually as agents with internal variables corre-

sponding to age, time since infection, time since last lytic

event, etc. Susceptible cells are immobile and are infected by

virions upon contact. Infected cells are also immobile, produce

virions and die due to viral cytotoxicity (half-life of approx. 1.4

days) or due to CTL lysis. CTL exhibit three different kinds of

behaviour: (i) searching for cells with a random walk (either

undirected, or with biased movement in response to chemotac-

tic cues), (ii) scanning cells upon contact or (iii) remaining in

conjugates with infected cells after scanning and while lysing

them. Virions travel in a straight line from their parent cell in

a randomly chosen direction until they are cleared (half-life of

approx. 4 h) or infect a susceptible cell. This simplified virion

movement was chosen simply as a means to generate infections

https://github.com/udkad/immunebots
https://github.com/udkad/immunebots
https://github.com/udkad/immunebots


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140289

3
spreading in clusters and not to accurately represent mechan-

isms of intercellular transmission. Upon contact with a

susceptible cell, the virion immediately infects the cell. At 1 s

intervals all agents are updated with information regarding

their current environment, and choose an action based on the

available actions in the current state with probabilities weighted

by the associated rate constants. CTL and virions move

unobstructed on the two-dimensional plane with positions

recorded at floating-point precision, but coarse-grained to a

scale of 1 mm for the detection of contacts. Multiple CTL can

bind unhindered to a single living target, but lysis time remains

unaffected by multiple bindings. A single CTL is assumed to be

able to kill multiple times. Rate constants and other parameters

used for the simulation are detailed in the electronic

supplementary material, table S1.

(b) Controlling the infected cell growth rate
In order to compare the ability of CTL to control different pat-

terns of infection, it was necessary to fix the uncontrolled

growth rate of infected cells. We adjusted the parameters for dif-

fuse and clustered infections to ensure that infected cell numbers

grew exponentially with rate constant r ¼ 1 d– 1 in the absence of

CTL, corresponding to a doubling time of ln(2)/r ≃ 17 h. This is

roughly comparable to the very early rate of growth of SIV infec-

tion in the gut lamina propria in rhesus macaques [28,31]. Setting

the growth rate was straightforward for the case of diffuse infec-

tions, designed to mimic the spatial distribution of target cells

implicit in mass-action infection dynamics; in each short time

interval dt� 1/r every infected cell had a probability rdt of

infecting a susceptible cell chosen at random, regardless of its

physical distance. Modelling the spatial dynamics of virions

was not required in this scenario. For clustered infections, the

growth rate is determined by a combination of the virion pro-

duction rate, speed and rate of clearance. To achieve a net

growth rate r ¼ 1 d21, these parameters were sampled from a

uniform distribution from ranges obtained from the literature

[34–38]. The parameter which most strongly influenced the

rate of growth was the virion production rate. This parameter

was then varied by +5% in steps of 0.005%, and each parameter

set was simulated 1000 times. The infected cell growth rate was

calculated from each simulation, and then linear regression was

used to find the virion production rate which corresponded to

an overall growth rate r ¼ 1. Parameters used for diffuse and

clustered infections are shown in the electronic supplementary

material, table S1.

(c) CTL speed and conjugate dynamics
Two parameters in the ABM govern the CTL surveillance rate

(the rate at which CTL move between surveyable cells, in the

absence of killing): CTL velocity, the straight-line distance

moved in micrometres per second; and the scan time, the

time a CTL spends stationary whilst scanning an uninfected

cell. To achieve a prescribed surveillance rate in the simulation,

100 CTL were placed among uninfected, non-susceptible cells.

Multiple simulations were run with different parameter sets.

For CTL velocity, the simulated range was 1–35 mm min21

[39,40]. Mempel et al. [41] estimated that detachment without

lysis following an encounter with an infected cell takes

approximately 2 min. This is therefore a strong upper bound

on the scanning time. Because the majority of the in vivo pep-

tide-pulsed target killing assays give estimates of the order a

minute for the mean time spent between contacts, we used

CTL scanning times of between 1 and 15 s cell21. Achieving

such a rate of surveillance of the order 1 min required rela-

tively fast-moving CTL with short scan times. We used a

velocity of 7.5 mm min21 and a scan time of 5 s, which trans-

lated to a CTL surveillance rate of 1.1 cells min21. To study
the control of infections at high E : T or search to handling

time (S:H) ratios, CTL speed was reduced to 0.18 mm min21,

which translated to a CTL surveillance rate of 0.022 cells min21.

Finally, CTL may remain attached to infected cells for tens of

minutes [41,42]; in our simulations we used a handling time

of 30 min.
(d) Modelling CTL chemotaxis
Chemotaxis was implemented as follows. Every time the CTL

moves in a new direction, the new direction angle is chosen

either at random from the directions +458 or the direction of

the nearest infected cell. This choice occurs when a CTL comes

to the end of a persistent segment of its motion (default length

of 25 mm), finishes scanning an uninfected cell or lyses an infected

cell. Note that although CTL motion has a persistence length, the

high density of cells means that a CTL ‘step’ is almost always

interrupted by a scan event. The strength of chemotaxis was deter-

mined by the frequency of non-random movements. Frequencies

used in the simulations were 0% (no chemotaxis), 1%, 5% and

20%. CTL under directed motion are attracted to the nearest

living target, which included CTL-target conjugates. Varying

levels of chemotaxis did not influence the cell speed, such that

the surveillance rate k remained constant.
(e) Estimating the critical CTL density C*
In the deterministic case, C* is the CTL density required to reduce

the growth rate of the infection to zero. In the stochastic case, we

define C* as the density of CTL (as a fraction of all scannable

cells) required to drive the virus extinct in 50% of simulations.

For a given C, our estimate of the probability of extinction was

the proportion of 200 simulations in which the infected cell

count fell to zero. Where a clear determination was not possible,

for example when the infected cell frequency fluctuated near

zero, the outcome was determined by the gradient of the time

course of infected cell numbers over the last 12 h of the

simulation—negative implies eventual extinction, positive

implies a successful infection. We used a simple adaptive

search algorithm to identify C* given broadly spaced initial

guesses. The dependence of the probability of extinction on C
was well described with a sigmoid function

Pextinct(C) ¼ 1

1þ e�a(C�C�) : (2:1)

The above equation was then used to estimate the free

parameters C* and the steepness parameter a, using the

Nelder–Mead algorithm in the FME package in R [43].
3. Results
(a) The agent-based model recapitulates deterministic

mass-action models when targets are spread
diffusely

We wanted to assess the effect of spatial structure of infected

cell populations on the ability of CTL to control infections.

The critical CTL density C* predicted by the simplest canoni-

cal ordinary differential equation (ODE) model might be used

as a first guess of the CTL required and serves as a reference

point. With this in mind, we performed a calibration process

to ensure that the average dynamics predicted by the stochas-

tic ABM simulations of diffuse infections (see Methods), in

which CTL and infected cells are well mixed, agreed with

those predicted by simple mass-action models.
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Figure 1. Kinetics of infected cells spreading diffusely and being killed by CTL. Infected cells (vertical axes, logarithmic scale) were seeded in the simulation and
allowed to grow to 1000 cells, appearing at random within the tissue, before CTL were introduced randomly among them, at a time denoted day 0. We varied the
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We compared the simulations to two deterministic

models. The first is the simplest mass-action model (equation

(1.1)) describing CTL killing of target cells T replicating at

uncontrolled rate r

dI
dt
¼ rI � kCI, ¼)I(t) ¼ I(0) exp ((r� kC)t), (3:1)

where I and C are expressed as dimensionless quantities in

the range [0,1]. Recall that we assume 100% efficiency of

killing of targets following contact k is the surveillance rate,

such that 1/k is the mean time for a CTL to move between

one cell of any kind and the next; and 1/(kI) is the search

time, or the expected time for a CTL to locate an infected

cell. The critical CTL density is then C* ¼ r/k; in this

model, densities greater than this guarantee eventual

clearance of the infection.

The second we call the extended mass-action model.

Upon recognition of an infected cell, CTL may remain

attached for tens of minutes [41,42]. An appropriate determi-

nistic model that includes this process is an age-structured

partial differential equation that follows the population den-

sity of CTL and infected cells that have been conjugated for a

time t, X(t,t)

dC(t)
dt
¼ �kC(t)T(t)þ X(t, h), (3:2)

@X(t, t)

@t
þ @X(t, t)

@t
¼ 0, where X(t, 0) ¼ kC(t)T(t) (3:3)

and
dT(t)

dt
¼ rT(t)� kC(t)T(t): (3:4)

The extended mass-action model reduces to the simpler

model when CTL are in excess (high E : T, or equivalently

C0� T(0)) and/or when handling times are short compared
with search times, h� 1/(kT), such that the age structure in

equation (3.3) can be neglected [28].

To perform the comparisons, we prescribed the handling

time (h ¼ 30 min), the infected cell growth rate in the absence

of CTL (r ¼ 1 d– 1), the time taken to scan an uninfected cell

(which was assumed to be negligible and not considered in

either deterministic model) and the surveillance rate (k) as

inputs to the ABM. The infected cell population was allowed

to grow to a size of 1000 cells distributed across a grid of 105

cells in total before CTL were introduced spatially at random

at known densities C. We simulated conjugates persisting for

a fixed handling time h ¼ 30 min.

We found close agreement between the mean timecourse

of diffuse infection simulations and the extended mass-action

model, for all parameter regions (figure 1). As expected, the

simple mass-action model held at high S : H and/or high E :

T but broke down when both conditions were violated. How-

ever, given noise in experimental data, apparently mass-action

dynamics (linear decay of infected cells on log scale) might

superficially appear to hold at low E : T (figure 1, left hand

column), as has been observed experimentally [25].
(b) The influence of the spatial distribution of targets
on efficiency of CTL control

Next we wanted to assess the impact of breaking the assump-

tions of the simple mass-action model on critical CTL

densities. We began by preserving the assumption that CTL

perform undirected random walks, and compared their abil-

ity to control two modes of pathogen spread: one in which

infected cells appear randomly and are uniformly distributed

across the tissue, and a clustered model in which infection
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spreads in foci (see Methods). In both cases, the tissue was

seeded with a single infected cell and the infection was

allowed to grow to different cell numbers IC before introdu-

cing CTL distributed at random across the tissue. For each

value of IC, we performed repeated simulations with different

numbers of CTL (C ) to estimate the probability of extinction

as a function of C. As described in Methods, the critical

density C* was the value of C at which 50% of infections

eventually went extinct.

We used two values of the surveillance rate, k, in order to

explore a wide range of S : H and E : T ratios without compu-

tational expense becoming prohibitive at large numbers

of infected cells. Control at high S : H was explored using

k ≃ 0.02, substantially lower than the values estimated in

in vivo killing assays. However, the parameter k is implicitly

the product of the surveillance rate and the probability of

recognizing a cell as being infected and initiating lysis, so

this value of k may correspond to inefficient (or perhaps

exhausted) CTL. Control at low E : T was explored with k ≃
0.7, a value derived from in vivo measurements of CTL vel-

ocities and which is in line with the estimates from splenic

killing assays. Critical CTL densities were expressed in units

of the basic mass-action estimate C* ¼ r/k, which allowed us

to compare the fold-changes in critical CTL densities for differ-

ent spatial distributions of targets across different values of k.

(i) When search times are much longer than handling times, the
spatial distribution of targets has little impact on the
efficiency of CTL, and mass-action provides good
estimates of C*

At the low surveillance rate k ≃ 0.02, C* for diffuse infections

was close to the mass-action prediction (C* ≃ r/k, or relative

C* ≃ 1) for initial infected population sizes of between 250

and 4000, corresponding to CTL appearing between 5.5 and

8.3 days post infection (figure 2a–e, blue curves). The stochas-

ticity in infection dynamics in this model is reflected in the

sigmoid shape of these curves—extinction is possible even

for CTL densities below the critical level predicted by the

deterministic model.

Strikingly, at this low surveillance rate we found that

breaking the well-mixed assumption and allowing infections

to be clustered had very little impact on extinction probabil-

ities (figure 2a–e, orange curves) with departures only

becoming apparent when E : T fell below 1 (figure 2e).

This insensitivity to spatial structure derives from the

ratio of search to handling times. Recall that mass-action is

expected to hold when the E : T ratio is high and/or the

mean time for a CTL to locate its next target, 1/kI, is greater

than the handling time h. For diffuse infections, even up to

day 8 when 4000 cells are infected out of 105 potential targets

(figure 2e), the search time 1/kI ≃ 830 min is much longer

than the handling time, and so we predict and observe

simple mass-action kinetics with C*¼ r/k, even if E : T falls

below 1 (figure 2a–e, blue curves). Second, if this low level

of k reflects low motility rather than low detection efficiency,

control of clustered infections is likely mediated predomi-

nantly by CTL resident in or near foci of infection. Even

within a large densely packed cluster in which 100% of

cells are infected, at this low k the mean search time is still

1/k ≃ 50 min, compared to a handling time of 30 min. If

CTL and targets within a cluster are well mixed, then if hand-

ling time is comparable to search time, simple mass-action is
expected to hold asymptotically [28], giving C* ≃ r/k (figure

2a–e, orange curves).

We conclude that when CTL perform undirected random

walks and are relatively inefficient such that the mean time to

move between infected cells is greater than or of the order of

the handling time, even within foci of infection, the spatial

distribution of targets has little impact on C* and it lies

close to the simple mass-action prediction.
(ii) With undirected CTL motion, when CTL are sufficiently motile
that handling time becomes limiting, clustered infections are
more difficult to control than diffuse infections

For more rapid surveillance, in diffuse infections C* is given

by mass-action and is independent of I0, while S : H� 1.

Mass-action eventually breaks down when CTL appear so

late that infected cell densities are high and the search time

approaches the handling time (figure 2f– j, blue curves).

The search time 1/kI0 (I0 expressed as a proportion of all sur-

veyable cells) is approximately 140 min at I0 ¼ 1000, 70 min at

I0 ¼ 2000 and 35 min at Ic ¼ 4000, compared to the handling

time of 30 min. At this point, handling time begins to be lim-

iting and C* starts to increase with the infected cell count

(figure 2h–j, blue curves).

For very motile CTL and clustered infections, within foci

the search time is very short (� 1/k ≃ 90 s) and is much less

than the handling time. At low-infected cell numbers, at C*

few CTL are required to kill more than once to bring the

infection under control and the limiting effect of handling

time is only weakly apparent (figure 2f ). However, the low

S : H ratio within clusters means that handling time becomes

limiting at lower infected cell numbers than in the diffuse

case (figure 2g–j, orange curves).

Thus, when CTL move with undirected random walks and

are relatively efficient such that the time taken to move between

adjacent cells is shorter than the handling time, the spatial distri-

bution of infected cells can have a substantial impact on critical

CTL densities. Clustered infections require more CTL to control

than a diffuse infection growing at the same rate, and become

progressively harder to control the later CTL arrive.
(c) CTL chemotaxis reduces C* and the degree of
chemotaxis influences the effect of spatial structure
on the efficiency of clearance

Next we broke another implicit assumption of mass-action

models and allowed different degrees of chemoattraction of

CTL towards their targets. As described in Methods, this was

done by assigning different probabilities that, at each turning

event, a CTL moves in the direction of the nearest infected

cell. This is a rather extreme implementation of chemotaxis

that imposes no range on the influence of chemokine gradients,

and so the probability of a turn being directed was limited to

20% at most. Unsurprisingly, chemotaxis reduces the number

of CTL required for control in general (figure 3). This can be

understood as an effective increase in the surveillance rate k.

For all degrees of chemotactic attraction, the earlier CTL

appear the more substantial the reduction in C* relative to

undirected searches. This is because the sparser the targets

are, the bigger is the fractional reduction in search time provided

by directed motion towards infected cells.
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At low surveillance rates (figure 3a–d) then, as with

undirected motion, C* is insensitive to the spatial distri-

bution of the infection for all levels of chemotaxis (blue

and orange points lie close together). For both clustered

and diffuse infections, S : H . 1 for inefficient CTL (the

shortest search time between infected cells is 80 min even
with highly directed motion, compared to a handling time

of 30 min).

At higher surveillance rates (figure 3e–h), we see more

complex behaviour that arises from the interplay between

the positive effect of chemotaxis and the sequestration of

CTL in conjugates that limits the killing rate. In general, we
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see that when CTL appear early, moderate levels of chemo-

taxis render clustered infections easier to control (figure 3f–g,

left-hand points) but that differences in C* due to spatial

structure shrink again as CTL motion becomes highly

directed (figure 3h). Again, these results can be understood

intuitively. Early in clustered infections, a directed search
strategy substantially reduces the time for each CTL to

locate a cluster. Subsequent location of infected cells is

rapid and limited only by handling time. By contrast, early

in diffuse infections the mean time for a randomly chosen

CTL to locate its first target may be shorter than for a focal

infection, but the identification of subsequent targets requires
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further migration. The net effect at moderate levels of chemo-

taxis is then that small focal infections are easier to control

(figure 3f–g, left-hand points). However, at higher densities

of infected cells (i.e. if CTL appear later) the time to locate

the next target in either scenario becomes dominated by the

handling time. Spatial structure then becomes less important

(figure 3f–g, right-hand points). Finally, when migration is

highly directed (figure 3h), the search time is small compared

with handling time at all infected cell densities and for all

spatial distributions, and so again the critical CTL densities

for diffuse and clustered infections converge (figure 3h). As

above, the fold reduction in C* is greatest the earlier CTL

appear, because the fold increase in the search time is greatest

when targets are sparse.

In summary, in this modelling framework (i) highly

directed motion is an optimal search strategy for all patterns

of infection; (ii) with any level of directed motion, the earlier

CTL arrive at the site the fewer are required to clear the infec-

tion; (iii) in general, at weak to moderate levels of chemotaxis,

the more clustered an infection the easier it is to control; and

(iv) at very high levels of chemotaxis, such that locating

targets is very efficient and handling time is limiting, the

efficiency of clearance becomes insensitive to the spatial dis-

tribution of targets.
4. Discussion
The E : T ratio is typically considered the quantity of interest

for the control of infections, but when considering the impact

of spatial structure, we found that a key parameter was

instead the ratio of the expected time to detect the next

target (the search time) to the handling time, or S : H. Surpris-

ingly, when CTL are inefficient in finding targets even within

clusters (i.e. when S : H . 1) we found that the spatial distri-

bution of targets has minimal impact on critical CTL

densities. In this case, the simple mass-action prediction

C* ¼ r/k derived from microscopic parameters applies.

When CTL are able to locate targets rapidly enough that

handling time becomes limiting, we found (perhaps surpris-

ingly) that the more clustered an infection the more CTL are

needed for control. Chemotaxis towards infected cells

decreased the critical density of CTL, most dramatically

when CTL appear early in infections. Weak chemotaxis

reversed the trend observed in undirected walks, and the

more clustered an infection the fewer CTL are needed to con-

trol it. Finally, strongly directed motion towards infected cells

renders the efficiency of control insensitive to the spatial

structure of an infection.

Clearly, strongly directed motion is an optimal strategy for

locating a given target rapidly. Neutrophils have been seen to

flock rapidly towards foci of infection (see, e.g. [44] and refer-

ences therein); Kastenmuller et al. [45] found strong evidence of

chemokine-driven motion of CTL towards infection sites

within the subcapsular sinus of a lymph node; and chemo-

kines have been shown to drive the attraction of CTL, at

least broadly, to tumour masses [46,47]. There is also evidence

that the gp120 HIV envelope glycoprotein mediates chemoat-

traction of CTL via the CXCR4 chemokine receptor at low

concentrations but there is repulsion at higher concentrations

in vitro, potentially inhibiting CTL activity [48]. However to

our knowledge, only two studies have directly quantified the

statistics, and in particular the directedness, of effector CTL
movement within an infected tissue in vivo. Harris et al. [49]

described CTL motion as a Lévy flight, with persistent seg-

ments of lengths drawn from a heavy-tailed distribution,

linked by turns through uniformly distributed angles. They

observed an increase in CTL speed in the presence of infection

but with random walk statistics unchanged (a phenomenon

known as orthotaxis). However, the spatial distribution of tar-

gets was not characterized, and if CTL and targets are well

mixed it may be difficult to detect a signature of directed

motion on small scales using multiphoton imaging, particu-

larly if it is weak [50–53]. Kelemen et al. [54] compared the

trajectories of antigen-specific and non-specific T cells in the

livers of mice infected with sporozoites of the malaria parasite

and showed a propensity for cells of both types to move

towards infected cells at distances up to 140 mm, or roughly

six to seven hepatocyte widths. Interestingly, they saw a

small but significant increase in the degree of attraction of

antigen-specific over non-specific cells over distances of

40–140 mm but no difference in degrees of attraction at shorter

distances. Again, this may be due to difficulties in detecting

directed motion over such short length scales.

Much of our understanding of T-cell movement patterns

comes from studies of naive T cells in lymph nodes, in the

presence and absence of cognate antigen on dendritic cells

(DC). Chemokines have been shown to attract naive CD8þ

T cells towards DC [55–58], but other analyses have found

little evidence for directed motion in the presence of antigen

[39,59,60] and found that on small scales T cells perform per-

sistent random walks, i.e. linear motion on short scales

punctuated by turns through uniformly distributed angles.

Again, though, directed motion may be undetectable if anti-

gen-presenting cells are present at a high density and

diffusely spread within a lymph node. It has been suggested

that an undirected random walk is an optimal search strategy

for naive T cells in the presence of cognate antigen [39,61],

and a cellular automata model has been used to argue that

directed motion may increase the occlusion of DC by non-

specific T cells and hinder the efficiency of recruitment of

antigen-specific cells into a response [62]. More recently how-

ever, a model of migration using cells with deformable

membranes (the Cellular Potts Model) was used to argue

the converse, showing that weak chemotaxis may indeed

facilitate repertoire scanning [53].

Our analyses are most relevant for infections of relatively

static cell populations in planar environments, such as layers

of epithelial cells, interacting with an initially scattered

population of CTL such as tissue-resident memory cells.

Significant target motility will generate more diffuse patterns

of pathogen spread and so will make the simple mass-action

estimate more appropriate. We speculate that in three dimen-

sions the search time is more likely to be limiting and so the

simple mass-action estimate of C* may again be more appro-

priate, at least for the case of unbiased random walks. A

plausibility argument is that the probability of locating a

given target a finite distance away from a CTL is roughly

equivalent to the drunkard’s walk problem, in which one

estimates the probability that a random walk will eventually

return to its starting point. For random walks with constant

step length, the probability of eventual return to the vicinity

of the origin is 1 in two dimensions, but only approximately

0.34 in three dimensions [63].

In summary, our study shows that the average search time

and the handling time are the key indicators of whether spatial
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structure needs to be considered when making estimates of

critical CTL densities. In particular, we found that in the

absence of chemotaxis and when handling time is not limiting,

the mass-action estimate of C* applies, irrespective of spatial

structure. This also illustrates that the inverse problem of infer-

ring spatial structure from the kinetics of clearance is not well

defined—the accuracy of the mass-action estimate of C* does

not imply spatial homogeneity, and conversely, spatial hetero-

geneity does not imply that the mass-action estimate of C* is

incorrect. Further, our simulations confirm the intuitive result

that chemotactic motion of initially scattered CTL towards

their targets appears to be an optimal strategy. What is striking

is that, at least in planar environments, even weak chemotaxis

can improve the efficiency of control markedly, and most nota-

bly for infections that are clustered. For example, with plausible

parameters for CTL motility and the infection growth rate, a

1% probability that the next turn is directed towards an

infected cell has the potential to reduce critical CTL numbers

roughly threefold over the simple estimates early in infection
(figure 3f ). Since it seems clustering of infected cell popu-

lations is the norm, and that it is likely that CTL experience

at least some degree of chemoattraction towards foci of infec-

tion, then our simulations suggest that a simple mass-action

model derived from two microscopic parameters (uncontrolled

pathogen growth rate and CTL surveillance rate) yields an

upper bound on critical CTL densities; combined with

orthotaxis and non-lytic modes of pathogen suppression, infec-

tions may be controlled with lower numbers of tissue-resident

CTL than predicted with simple models.
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