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Variation among parasite strains can affect the progression of disease or the

effectiveness of treatment. What maintains parasite diversity? Here I argue

that competition among parasites within the host is a major cause of vari-

ation among parasites. The competitive environment within the host can

vary depending on the parasite genotypes present. For example, parasite strat-

egies that target specific competitors, such as bacteriocins, are dependent on

the presence and susceptibility of those competitors for success. Accordingly,

which parasite traits are favoured by within-host selection can vary from host

to host. Given the fluctuating fitness landscape across hosts, genotype by gen-

otype (G�G) interactions among parasites should be prevalent. Moreover,

selection should vary in a frequency-dependent manner, as attacking geno-

types select for resistance and genotypes producing public goods select for

cheaters. I review competitive coexistence theory with regard to parasites

and highlight a few key examples where within-host competition promotes

diversity. Finally, I discuss how within-host competition affects host health

and our ability to successfully treat infectious diseases.
1. Introduction
The maintenance of diversity, be it at the species or genotypic level, is a funda-

mental problem in biology. The root of the issue is that, in a given environment,

the fittest type should competitively exclude all others. How diversity is main-

tained, therefore, has been the focus of a rich body of empirical and theoretical

work in ecology and evolutionary biology. Here, I examine how these works

inform our understanding of parasite diversity. I start by describing the com-

plex selective environment faced by parasites, focusing on the varied forms

of competitive interaction that can occur within a single host individual.

Then, I review theoretical treatments of competition and diversity to gain

insights into how diversity can be maintained in the face of competition.

I then highlight a few key systems where within-host competitive interactions

are thought to be crucial in maintaining parasite diversity. Finally, I conclude

by discussing the implications of parasite diversity and within-host competitive

interactions for host health and the treatment of infectious diseases.

Parasite fitness is dependent on both within- and among-host selection

[1]. Within the host, competition with the host’s native microbiota or other co-

infecting parasites is a key determinant of parasite fitness and successful trans-

mission to new hosts. These competitive interactions can be categorized using

classic terms from the fields of ecology and social behaviour [2–4]. Most funda-

mentally, genotypes or species consuming the same resources compete via

exploitative competition (figure 1a). Within the host, pathogen traits that enable

faster use of host resources can allow a pathogen to outgrow others within the

host and to be numerically dominant upon transmission (e.g. [5]). These traits

can be exclusive to the pathogen, such as a greater number of nutrient receptors

or increased replication machinery (e.g. [6,7]). Alternatively, faster growth rate

can be achieved by the release of compounds that enable degradation of host tis-

sues or sequestration of nutrients [8,9]. If these released products can benefit other

members of the community, they can be viewed as public goods, and the
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Figure 1. Mechanisms of within-host competition. Each large circle rep-
resents a host individual either infected with parasite A (smaller grey
circles) alone, parasite B (smaller white circles) alone or simultaneously
infected with both parasites. The relative growth rate of each parasite is indi-
cated by the number of parasites present within each host individual.
(a) When parasites compete through faster or more efficient exploitation
of host resources, within-host selection favours parasites with superior exploit-
ation (here, parasite A). (b) If parasites achieve greater host exploitation
through the release of public goods (smallest black circles), then within-
host selection favours parasites that produce less of the public good (here,
parasite B). (c) When parasites compete over access to host infection sites,
the parasite that occupies a site first (here, parasite A) can interfere with
the attachment of later arriving parasites. (d ) When parasites compete
through the production of alleopathic agents (black lightning bolts),
within-host selection favours parasites that produce costly competitive
toxins (here, parasite A). (e) When parasites compete via the host immune sys-
tems, parasites who benefit when infecting alone by being resistant to the host
immune response they elicit (white lightning bolts) may also benefit via
within-host selection by eliminating immune-sensitive competitors.
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interactions between the producers can be viewed as

cooperation [4,10]. As these public goods increase access to

host resources, producing genotypes will be able to exploit

hosts better than genotypes with lower levels of production

(figure 1b). However, when within the same host, non-

cooperating cheaters that avoid cost of production may have

a competitive advantage.

Competition over limited resources can also select for

strategies that block or attack potential competitors (i.e. inter-

ference competition) [11]. Multiple types of interference

competition have been recognized among parasites. For

example, in a study on acanthocephalan parasites of fish [12],

the number of parasites that can establish within an individual

host is limited by the amount of space left unoccupied by

pre-established parasites (figure 1c). Similarly, microbes in a

biofilm can pre-empt the attachment of other cells, or alterna-

tively, overgrow established layers, depriving them access to
nutrients [13]. More aggressive forms of interference include

contact-dependent killing [14] and allelopathy (i.e. the release

of growth-inhibiting compounds). Examples of allelopathy

abound in the microbial world, as numerous antibiotics and

other secondary metabolites have been found to have inhibi-

tory effects [15]. A key class of allelopathic compounds,

bacteriocins, target even closely related strains of the same

species and are likely a key mechanism maintaining within-

species diversity [16,17]. Critically, allelopathy is only

beneficial in the presence of a susceptible competitor (figure

1d). In the absence of a suitable target, the costs of production

(or even the carriage of production machinery) may lower the

fitness of aggressive mechanisms of interference.

Finally, competition between two parasites within a host

can be mediated by the host immune system [18,19]. In ecology,

this is termed apparent competition, because the negative

effect that two species have on each other (i.e. competition) is

not due to shared resource use, but due to a shared predator

[20]. Under classic apparent competition, increasing density

of one prey species promotes population growth of a shared

predator, thereby increasing predation on a second prey

species. In the case of parasites, the presence of one parasite

can stimulate the host immune system. If the immune response

is non-specific, it may cross-react with other co-infecting para-

site strains or species [2]. This immune-system mediated

competition thereby favours pathogens that can escape the

immune response by hiding from or being immune to its

effects. In fact, the ability to withstand a severe inflammatory

host response can favour the emergence of a parasite that pro-

vokes the immune response and subsequently benefits from

the clearing of less resistant competitors (figure 1e) [21].

How do the complex competitive interactions within the

host balance with among-host selection? Empirical work has

demonstrated that each of the mechanisms described above

can alter parasite within-host reproduction and transmission

success. However, how different mechanisms of within-host

competition affect each other and the full extent to which host

epidemiology influences parasite evolution is still an open ques-

tion [22]. Nevertheless, it is clear that the complex competitive

environment within the host can favour different strategies in

different host individuals: the competitive strategy that is suc-

cessful in one host may depend on the presence of a specific

competitor, and may be costly in the next host due to absence

of that competitor. One result of this complex selective land-

scape is that parasites can evolve adaptive plastic responses to

deal with the varied competitive environments encountered

within hosts [23,24]. Host populations can, however, support

many parasite species, and considerable genetic diversity

within a given parasite species. So how is this diversity main-

tained given that competition often leads to exclusion of one

competitor by another? I next review our understanding of

competitive coexistence in relation to parasites.
2. Effects of competition on parasite diversity
Competitive coexistence requires that each species limits its

own growth more than it limits the growth of another species

[25]. Ecologically, this can be achieved by three main mechan-

isms: niche partitioning, competition–colonization trade-offs

and heterogeneity in the competitive environment. Niche

partitioning is the best understood mechanism of coexistence.

Niches can be described in numerous dimensions involving
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essential resources, abiotic tolerances and susceptibility to

natural enemies. If specialization in a given niche dimension

is costly, then one species will become competitively dom-

inant in each dimension, and species diversity will be

limited by the number of niche dimensions. Thus over evo-

lutionary time, competition is expected to lead to character

displacement among species, lessening competition between

species and thereby stabilizing the community [26]. Accord-

ingly, one predicted outcome of within-host competition

among parasites is specialization of parasites to different

host tissues or different host species [27]. Within a host

species, niche partitioning can occur due to specific immunity

[28]. A successful strain elicits an immune response thereby

limiting its own success, while antigenically different strains

can still invade. Not surprisingly, fewer strains can be main-

tained if there are large intrinsic fitness differences among

strains or if the immune response is cross-reactive (i.e. result-

ing in apparent competition). However, relatively simple

models of strain competitive ability and immune response

can explain the incredible antigenic variation seen within

some human pathogens [28,29].

In the absence of niche partitioning, coexistence can occur

across homogeneous patches via a competition–colonization

trade-off [30,31]. Thus, even if one species is dominant

within a patch, the other can persist by reaching more unoc-

cupied patches. For parasites, host individuals form discrete

patches, and a strain that is inferior in within-host com-

petition may be better able to disperse to competitor-free

hosts. One remarkable example of this trade-off is the mitiga-

tion of a competitive asymmetry between two species of

pigeon lice by the unique ability of the competitively inferior

species to disperse to new hosts by attaching to a fly [32].

Similarly, although the mechanism is not clear, HIV strains

favoured by within-host selection are at a disadvantage in

transmission to new hosts [33]. Additionally, the competition–

colonization trade-off can arise from a trade-off between

within-host competition and persistence outside the host [34].

For example, a parasite that is better at free-living survival

may be slower to recover or grow within the host, and thus

competitively inferior. In support of this idea, a comparative

study of the phages of Escherichia coli found that slower growing

phages were more persistent in the environment, suggesting a

fundamental trade-off between these properties [35]. Further

supporting a trade-off, experimental evolution of an arbovirus

found that higher extracellular survival was associated with

reduced fecundity [36], although such trade-offs are not necess-

arily universal [37] and should be evaluated over both ecological

and evolutionary time scales.

A final category for coexistence requires heterogeneity in the

competitive environment [25,38]. A corollary to the maxim that

species coexistence requires each species to limit its own growth

more than it limits the growth of another species, is that species

can coexist if each species can increase when rare [39]. Even in the

absence of local niche partitioning, negative-frequency depend-

ence can occur if species experience competition on different

spatial scales [40] or if species differ in how they respond com-

petitively to spatial and temporal variation in the environment

(e.g. through a storage effect [41]). Empirical demonstrations of

these mechanisms are less well established than niche partition-

ing or competition–colonization trade-offs; nevertheless, they

suggest that variation in how species experience competition is

an important mechanism of coexistence [42,43]. For parasites,

transient changes in the environment or among hosts can
result in different pathogen genotypes being successful at differ-

ent times or in different places. If this variation dampens

otherwise successful strains and favours strains that were strug-

gling, then it may promote coexistence. Such equalizing effects

are inherent in among-host selection and can be more forceful

when epidemiological feedbacks occur. Additionally, within-

host selection is expected to vary depending on the composition

of the within-host community. For example, parasite traits that

increase the speed of host exploitation will be favoured within

the host, but parasites with these traits may be susceptible to

invasion by parasites that can attack them.

The interplay of strategies favouring faster growth and

strategies depending on attack has been modelled extensively

with regard to bacteriocins. Strains that produce bacteriocins

are able to attack sensitive strains, but they pay a cost of pro-

duction. Thus, producers cannot displace sensitive strains

unless they are sufficiently numerous and toxic, or unless

the competitive interactions are local [44,45]. In order for

both producer and sensitive strains to coexist stably, there

must be underlying spatial heterogeneity in resource avail-

ability [46] or stochastic environmental disturbances that hit

some patches but not others [47]. This spatial heterogeneity

allows sensitive strains to gain an advantage in either low

resource or empty patches. Notably, when more than two

strains are examined, coexistence can occur in the absence

of spatial heterogeneity. Resistant strains can evolve either

from sensitive strains [48] or represent non-producing cheat-

ers [45]. If resistant strains have higher growth rates than

producers (because they are not paying the cost of pro-

duction) and lower growth rates than sensitives (because

they are paying a cost of resistance), then resistant strains

can out-compete producers, but are out-competed by sensitives

in a rock–paper–scissors-like dynamic (RPS). As each strain

can be invaded by another, these non-transitive interactions

can maintain diversity through negative-frequency depend-

ence. Theoretical, as well as experimental, evaluations of this

dynamic show that stability is contingent upon spatial structure

facilitating local interactions [49]. Furthermore, a study using

E. coli strains in mice found that strains could be transmitted

between hosts and replaced each other as predicted by the

RPS model, although coexistence was not achieved in the

relatively small communities of the experimental set-up [50].

How do non-transitive ecological dynamics play out on

an evolutionary timescale? Intriguingly, theory has suggested

that spatial structure coupled with non-transitive pairwise

interactions favours the evolution of competitive restraint

[51,52]. This result can be understood intuitively as more

rapacious competitors more effectively eliminate their subor-

dinate partner (be it Resistant . Producer, P . S or S . R),

placing them more frequently in contact with a partner that

can out-compete them. For example, if a more rapacious

form of the resistant strain arises, say by mutations that

lower the cost of resistance, it will more effectively out-compete

the producer strain. However, the resistant strain will then find

itself more likely to encounter sensitive strains which limit

the spread of the rapacious resistant strain. Thus, restrained

behaviour towards ‘the enemy of my enemy’ is beneficial to

a strain subject to community-level feedbacks. Such feedbacks

favour community coexistence [53]. The importance of spatial

structure and non-transitive interactions on the evolution of

competitive restraint has been experimentally demonstrated

in vitro with E. coli [54]. Furthermore, ecological feedbacks on

community stability extend beyond the three-player game
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[53]. Allowing mutation and recombination leads to the predic-

tion that a diverse number of strains can be maintained, with

each strain producing one or more allelopathic agents [55,56].

This result is consistent with the diversity of bacteriocins

carried among hosts in a natural population of E. coli [57].

In summary, although competition often leads to competi-

tive exclusion, there are numerous mechanisms whereby

coexistence can occur. Importantly, competition is not a transi-

ent effect that quickly becomes minimized due to character

displacement. The patchy structure inherent in the parasite

lifestyle sets the stage for heterogeneity across hosts to favour

coexistence and for competition to act as a continual selective

force on parasite traits. The interplay between ecological

and evolutionary forces in maintaining parasite diversity is

already well recognized with respect to host genetic diversity

[58–60]. Analogously, competitive interactions within the

host can shape the evolution of parasite phenotypes and can

even facilitate the coexistence of multiple parasite types.
 0:20140301
3. Key examples linking within-host competitive
interactions and parasite diversity

Several parasite systems suggest that competitive interactions

within the host are important for the maintenance of parasitic

diversity. Here I will focus on three systems where we have a

strong understanding of the diversifying effect of within-host

competition. Diplostomum trematodes have a complex life

cycle involving two intermediate hosts (snails and fish) and

a definitive bird host. When a snail host is co-infected with

multiple genotypes of D. pseudospathaceum, transmission suc-

cess of each genotype is lower relative to a single genotype

infection. However, when a fish host is exposed to multiple

parasite genotypes simultaneously, the probability of parasite

establishment is higher relative to single genotype exposures

[61]. Thus, exploitative competition in the snail host reduces

diversity, while interactions with the immune system of the

fish host can maintain diversity. Exactly how parasite diver-

sity interacts with the host immunity in this system is still

under investigation, but there is evidence for cross-reactivity

in adaptive immunity as well as specificity in innate im-

munity, a pattern contrary to the standard paradigm [62].

Furthermore in cross-species infections, some strains of

D. pseudospathaceum perform better in mixed exposures than

when infecting a fish alone, while others do worse [63,64].

Therefore, predicting the outcome of competition among

species is dependent on knowing the specific parasite geno-

types present within the host: a strain that is disfavoured in

one host individual may have a fitness advantage in another

due to differences in the parasite community.

Similar genotypic effects are seen in competition among

species of entomopathogenic nematodes. These insect-killing

nematodes (genus Steinernema) are involved in a mutualistic

symbiosis with bacteria in the genus Xenorhabdus. Xenorhabdus
bacteria are known to produce a suite of compounds that

attack the insect immune system and prevent the insect from

being colonized by fungal and other bacterial competitors.

Additionally, Xenorhabdus produce bacteriocins that are effect-

ive at inhibiting the growth of Xenorhabdus genotypes distinct

from the producing genotype. A diversity of bacteriocin phe-

notypes have been isolated from a small geographical area

[65–67] and distributed in a pattern which suggests that

within-insect interactions are important for maintaining this
diversity. Specifically, one bacteriocin phenotype was found

to dominate within an insect host, yet on a larger scale,

consistent with nematode movement, multiple bacteriocin

phenotypes could be detected. Additionally, laboratory-

based co-infections have demonstrated a fitness benefit to the

inhibiting phenotype that is conditional on the presence of a

sensitive competitive partner within the insect host [68]. In

the absence of a sensitive competitor, exploitative competition

seems paramount: parasites that establish an infection faster

are competitively dominant [69]. Thus, the competitive context

determines which traits selection favours. Furthermore, trans-

mission in this system requires a free-living stage. Species

differ in longevity in this stage, which can influence their rela-

tive competitive success (F. Bashey 2011, unpublished data).

Conditions within the host can also influence the size of the

free-living stage, which influences the probability of successful

establishment in a new host [70]. Hence, diverse within-host

competitive environments can select for diverse parasite geno-

types due to both within- and among-host fitness components.

Perhaps the best understood example of within-host com-

petition from a mechanistic basis comes from work on the

opportunistic pathogen Pseudomonas aeruginosa. In response

to low levels of iron in the within-host environment, this

species releases pyoverdin, its primary siderophore or iron

scavenging molecule [71]. Pyoverdin constitutes a public

good: non-producing cells can bind to this molecule and

thereby gain iron. In the absence of competition, increased pyo-

verdin production increases population growth; however, in

the presence of a competitor that produces less pyoverdin, fit-

ness is reduced due to the higher cost of pyoverdin production

[72]. Thus, selection on this trait depends upon the social con-

text. Strains also compete through interference competition.

Pseudomonas produces several types of bacteriocins [73] as

well as possessing the ability to attack neighbouring cells in a

contact-dependent manner [74]. The fitness benefit of bacterio-

cin production has also been shown to be contingent upon the

nature of the competitive environment, depending not just on

the presence of susceptible competitors, but also on the local

density of kin [75]. Moreover, selection on bacteriocin

production shifts depending on the level of pyoverdin pro-

duction of the susceptible strain [76], demonstrating further

the context dependence of within-host fitness. Similarly,

contact-dependent killing has been found to be responsive to

the behaviour of competitors in a tit-for-tat fashion [77].

Although most of this work has been elucidated in an in vitro
setting, multiple competitive phenotypes can be isolated

from a host population [78] or a host individual [79]. Moreover,

receptors for these molecules demonstrate high levels of

diversifying selection [80].
4. Implications of within-host competition
to host health

Parasite growth within the host is a major cause of the negative

effects that parasites have on host health [81,82]. As outlined

above (figure 1), different mechanisms of within-host compe-

tition select for different parasite traits, some of which may

increase or decrease within-host growth. Accordingly, a high

prevalence of multiple infections is predicted to have varied

effects on host health [22,83]. The earliest theoretical treat-

ment of the effect of multiple infections on the evolution of

virulence assumed that pathogens compete within the host
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via exploitative competition. Thus, they predicted that due

to within-host selection for increased growth, pathogen viru-

lence should evolve to be higher in mixed infections relative

to single genotype infections [84,85]. While this prediction

has been upheld in some systems [5], other systems are domin-

ated by different forms of within-host interactions. When

public goods allow greater host exploitation [8,86] or virulent

immuno-provoking forms of apparent competition [87],

mixed infections are predicted to result in lower virulence

due to within-host selection favouring cheats. However, incor-

porating epidemiological feedbacks can change these

predictions [88,89]. Similarly, spiteful forms of interference

competition have been shown to lower virulence [90], but

they can raise virulence depending on the scale of competition

and the kin structure within the host [91]. As models

more explicitly incorporate multiple forms of interactions

within the host into an epidemiological framework [92], we

will further improve our ability to connect knowledge of the

competitive environment to host health outcomes.

Already, understanding within-host competition has

helped to explain strains with puzzling phenotypes. For

example, highly virulent forms of Streptococcus pneumonia
are not transmitted from the host once they invade the

body, yet they persist because they can withstand apparent

competition that occurs in the nasal cavity [93]. Additionally,

coupling selection in the within-host environment with selec-

tion occurring outside the host can provide a more accurate

understanding of how variation in virulence is maintained

in nature [94,95]. Within-host competition has also explained

why some forms of methicillin-resistant Staphylococcus aureus
(MRSA) do not respond to treatment with vancomycin [96].

Unlike other cases where antibiotic resistance occurs after

antibiotic treatment or due to high levels of resistance circu-

lating in the community, some forms of vancomycin

resistance in MRSA appear to occur due to within-host

competition. Specifically, resistant variants were found to

arise spontaneously within hosts due to competition favour-

ing a bacteriocin-producing form that could attack the wild-

type, followed by the evolution of a bacteriocin-resistant

strain. Traits conferring bacteriocin resistance also provided

partial resistance to vancomycin. These examples illustrate

that within-host selection pressures are profound and of

significant clinical relevance.

While clinicians have mainly noted when the presence of

one pathogen species complicates treatment of another [97],

the presence of a competitor can improve the outcome for

the host when interference or apparent competition slows

disease progression [90,98,99]. In fact, the health benefits of

many probiotics are thought to be due in part to their
effectiveness in interference competition [100]. Interest in

using bacteriocins as an alternative to traditional, broad-

spectrum antibiotics is growing [101–103]. Historically, the

narrow killing range of bacteriocins limited their utility;

however, faster diagnostic tests, the ability to engineer bacteri-

ocins to target novel sites [104], and our awareness of the

consequences of using broad-spectrum antibiotics has made

the therapeutic use of bacteriocins more viable.

As within-host competition alters selection on parasite

traits and increases parasite diversity, it is further important

to realize that variation in disease outcomes could be due as

much to the within-host parasite community as due to host

genotypic effects. Indeed, some cases that we have

viewed as parasite interactions with the host genotype (i.e.

Gparasite � Ghost) may in fact be due to differences in the

within-host competitive environment [105]. Critically, vari-

ation in disease that is due to Gparasite � Gparasite may be

more amenable to intervention than variation caused by host

genotypic differences. Capitalizing on within-host selection is

a major tenet of Hamiltonian medicine [106] and understand-

ing how parasite traits influence parasite fitness across spatial

scales is crucial to predicting when novel therapies, such as

targeting virulence factors, will be successful [107,108].

In summary, the lifestyle of pathogens where selection

occurs both within the host and in transmission between

hosts creates opportunities for selection to maintain diverse

pathogen phenotypes. This occurs in two main ways. First,

the rich diversity of competitive strategies that parasites

employ within the host can engender reciprocal selection

between parasites. Parasites more successful at exploiting the

host than competitors can be invaded by attacking or freeload-

ing strategies, which then select for resistance and a restarting

of this cycle. Second, heterogeneity among hosts in the compo-

sition of the within-host competitive environment itself can

favour different parasite traits across hosts. As the relative

costs and benefits of different forms of competition depend

on the identity of the competitors, selection due to competition

can be continual and within-host competition should be

viewed as a potentially major driver of parasite diversity.

Better understanding this driving force on parasite traits will

enable us to more effectively treat infectious diseases.
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