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From within-host interactions to
epidemiological competition: a general
model for multiple infections

Mircea T. Sofonea, Samuel Alizon† and Yannis Michalakis†

Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM), 911 Avenue Agropolis, B.P. 64501,
34394 Montpellier Cedex 5, France

Many hosts are infected by several parasite genotypes at a time. In these co-

infected hosts, parasites can interact in various ways thus creating diverse

within-host dynamics, making it difficult to predict the expression and the

evolution of virulence. Moreover, multiple infections generate a combinator-

ial diversity of cotransmission routes at the host population level, which

complicates the epidemiology and may lead to non-trivial outcomes. We

introduce a new model for multiple infections, which allows any number

of parasite genotypes to infect hosts and potentially coexist in the

population. In our model, parasites affect one another’s within-host growth

through density-dependent interactions and by means of public goods and

spite. These within-host interactions determine virulence, recovery and trans-

mission rates, which are then integrated in a transmission network. We use

analytical solutions and numerical simulations to investigate epidemiological

feedbacks in host populations infected by several parasite genotypes. Finally,

we discuss general perspectives on multiple infections.
1. Introduction
There is increasing evidence that multiple parasite strains or species infecting

the same host is a common context of parasitism in the wild [1–4]. These co-

infections occur for several host–parasite interactions that range from bacteria

infected by bacteriophage viruses to animals or plants infected by viruses, bac-

teria or worms [5,6]. In addition to being a major concern in public health,

human and veterinary medicine and phytopathology, co-infections are also a

challenging subject for ecology and evolution. In a co-infected host, the different

strains or species of parasites (hereafter referred to as ‘genotypes’) can interact

in various ways [7–9]. For instance, some symbiont bacteria produce sidero-

phores that harvest iron for the whole microbiota [10], whereas others

produce bacteriocins that break down the bacterial cell envelope [11]. Such pro-

cesses generate diverse within-host dynamics that make it difficult to predict

the evolution or even sometimes the expression of the ‘overall virulence’

[12,13], i.e. the additional host mortality rate in the co-infected host. Moreover,

considering multiple infections at the host population level generates a combi-

natorial diversity of (co)transmission routes, which complicates the

epidemiology. This can lead to non-trivial outcomes of epidemics involving

multiple genotypes.

The unpredictable outcome of the within-host interactions between parasites

and the combinatorial complexity of the cotransmissions are probably the two

main reasons why the vast majority of epidemiological models still lean on clas-

sical SIR (susceptible, infected, removed) models [14,15] which consider only

one parasite genotype infecting a population of hosts. Models allowing for sev-

eral genotypes are often restricted to two strains [16,17] or arbitrarily choose

between a superinfection pattern [16,18] and a co-infection pattern [12,17,19].

In superinfections, parasite genotypes cannot coexist within the host and one

always outcompetes the others. In co-infections, within-host coexistence is

made possible but these models usually rely on strong assumptions such as
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no within-host interactions [19], fixed relatedness [20] or

epidemiological equivalence between genotypes [21].

Physiological and epidemiological observations render

the state of the art of modelling multiple infections unsatisfy-

ing. For instance, it is obvious that dividing the reality

between co-infections (always coexistence) and superinfec-

tion (never coexistence) is oversimplifying. In several

pathogens, for instance, coexistence can be only transitory

and one of the genotypes can eventually exclude the others,

as shown in the case of rodent malaria [22]. Furthermore,

arbitrarily limiting the number of genotypes per host to

two is oversimplifying, as shown, for example, in the case

of human malaria [3]. A final unsatisfying model limitation

is that parasites only interact through one type of process.

Yet, it is known that bacteria, for instance, can simultaneously

compete for host resources, produce public goods (PGs) and

spite [23].

Here, we develop a new model for multiple infections,

which captures many kinds of within-host outcomes, while

allowing for an arbitrary number of parasite genotypes. We

based our approach on nesting the within-host parasite

growth into the between-host epidemiology. Nested models

have already been investigated in epidemiology to study mul-

tiple infections, either by modelling exploitation competition

through host resource use [24], or immune cell infection

dynamics by viruses [25,26]. However, existing nested models

(reviewed in [27]) often ignore several within-host processes,

such as within-host parasite interactions, and force the outcome

of infection (superinfection or co-infection). By explicitly allow-

ing parasite genotypes to affect one another’s within-host

growth in more than one way, through the production of

PGs, spite, competition for host resources or interactions with

the host immune system, we do not need to make assumptions

such as superinfection or co-infection. Such states appear as out-

comes of the within-host interactions. We then use these within-

host outcomes to define infection, recovery and death rates,

allowing for partial cotransmission (i.e. we do not impose con-

straints on which genotype combination an infected host

transmits) and numerically simulate epidemics.

We show that relaxing assumptions commonly made

leads to rich and complex behaviour of the epidemics,

because of epidemiological feedbacks. Such feedbacks could

not be captured by previous models based solely on

within-host dynamics [20] because they failed to integrate

the between-host level. Here, we also propose a methodology

to capture these feedbacks when estimating the basic repro-

duction number, that is the number of secondary infections

caused by an infected host in a fully susceptible host

population during its entire period of infectiousness [28].
2. Within-host dynamics
The first challenging step is to model the within-host growth of

an arbitrary number of unrelated genotypes by taking into

account several processes. Indeed, current models typically,

though not always, only involve a single process and/or

at most two genotypes. To this end, we assume that the

parasite load of each genotype follows a quadratic ordinary

differential equation (ODE) inspired by the classical frame-

work of population dynamics [29]. Besides constant basic

growth and density-dependent feedback, we allow the instan-

taneous parasite growth to be affected by molecules they
produce: PGs and spite. We present the equations and main

assumptions before solving the system at steady state.

We consider an arbitrary number n [ Nw of parasite gen-

otypes which are not necessarily related nor from the same

species (all the notations used thereafter are summarized in

the electronic supplementary material, appendix A). Each

genotype is defined by a set of within-host traits, which

are assumed to be constant (no plasticity). We denote

G :¼ [[1; n]] the set of parasite genotypes (where : ¼ means

‘equals by definition’). We wish to model the variation with

continuous time t t [ Rþ of the parasite load vector

x :¼ (Xk(t))k[G in a host co-infected by all n genotypes.

(a) Public production dynamics
Parasites such as symbiotic bacteria can produce and secrete

molecules in the (within-host) environment [13]. Because

any genotype can be affected by molecules produced by

another genotype, we refer to these as public productions

(PPs). PP can have positive effects on the growth of the recei-

ver. This is the case for siderophores [30] and more generally,

what we refer to as PGs [9]. PPs can also be detrimental to the

receiver as in the case of bacteriocins [11] and we refer to this

as spite [31]. We assume each genotype can produce at most

one type of PG and one type of spite, implying there are 2n
concentrations of molecules that also vary with time, respect-

ively, g :¼ (Gk(t))k[G for PG and z :¼ (Zk(t))k[G for spite. We

assume that PPs are produced by the parasites at a constant

rate, independently of the current PPs, and are cleared in a

non-specific but concentration-dependent way at a standard

rate y . Overall, the dynamics of the PP concentrations follow

d

dt
g ¼ y (U:x� g)

and
d

dt
z ¼ y (V:x� z),

9>>=>>; (2:1)

where U :¼ diag(ui)i[G and V :¼ diag(vi)i[G are the diagonal

matrices of PP production rates standardized by y .

(b) Parasite load dynamics
PGs increase parasite growth rate, while spite molecules

decrease it. We assume that these effects linearly depend on

the molecule concentrations, which are spatially homo-

geneous. One type of PP can have different effects

depending on the genotype of the receiver. We can define

the matrix of PG effects on growth rate G :¼ (gk,j)(k,j)[G2 ,

where gk,j . 0 is the effect of the PG type produced by geno-

type j on the growth of genotype k. Likewise, S :¼ (sk,j)(k,j)[G2

is the matrix of spite effects on growth rate, where sk,j . 0 is

the effect (in absolute value) of the spite type produced by

genotype j on the growth rate of genotype k if k = j. We

assume a genotype is not affected by its own spite type

(that is sk,k ¼ 0).

In addition to these within-host secreted PPs, we group

all the other genotype-to-genotype interactions into

H :¼ (hk,j)(k,j)[G2 called the matrix of density-dependent

effects, where hk,j [ R is the density-dependent effect of gen-

otype j on the growth rate of genotype k. These density-

dependent effects could reflect competition for host

resources, indirect interactions through the elicitation of the

host immune system or any other within-host process

through which parasites could interact. Note that G, S and

H are not necessarily symmetrical.
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Figure 1. Within-host flow diagram for two different genotypes i and k.
Plain arrows represent PP flows, while dotted-ended arrows represent PP
clearance flows. Dotted arrows and dashed arrows are per capita growth
rate modulation effects generated by genotype i parasites and by genotype
k parasites, respectively. PGs (Gi and Gk) increase the growth of all genotypes
(Xi and Xk), while spite (Zi and Zk) only harms the other genotype.
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Finally, with @: ¼ (@k)k[G being the basic growth rate

vector, the parasite load vector x satisfies the following

ordinary nonlinear differential equation:

d

dt
x ¼ (@þ G:g� S:zþH:x)� x, (2:2)

where � denotes the HADAMARD (element-wise) matrix pro-

duct. As the basic growth rate takes place in the only linear

term of equation (2.2), it actually captures not only the rate

at which a parasite genotype would grow at first if isolated

but also the cost of PG and spite production.

The within-host dynamics are summarized in figure 1.

Note that the total number of parameters for this part of

the model is 3n2 þ 2n þ 1.

(c) Steady state
These within-host dynamics are complex and, as explained in

the next section, we will often need to summarize them using

their steady state. We denote by .̂ a steady-state value of a

variable. The steady-state vectors x̂, ĝ and ẑ cancel out in

equations (2.1), thus leading to two equalities

ĝ ¼ U:x̂

and ẑ ¼ V:x̂:

)
(2:3)

Therefore, a within-host equilibrium is fully determined by

the parasite load vector x̂:

If we assume, for the moment, that the values of x̂ are

non-zero, setting equation (2.2) to 0 and using equation

(2.3), it is straightforward that the only steady-state parasite

load vectors are the ones that satisfy

M:x̂ ¼ @, (2:4)

where M is the constant matrix sum

M :¼ G:U� S:VþH, (2:5)

thereafter called stationary interaction matrix.

Usually, and for random sets of parameter values, M is

not singular. This implies that x̂ is unique and analytically

found as

x̂ ¼ �M�1:@: (2:6)
In the special case where the determinant of M is 0,

equation (2.4) has an infinite number of solutions and

there is no other option than to numerically integrate the

within-host system (equations (2.1) and (2.2)).

Let us now relax our assumption of non-zero values of x̂:

This makes sense when a particular genotype did not

take part in the host inoculation, implying that its parasite

load is always equal to 0. We then consider a partial combi-

nation of genotypes, that is to say any proper subset i of G.

The rows of equation (2.2) associated with the genotypes

that do not belong to i are tautological at steady state

and therefore are removed. The new set of equations we

obtain satisfies the assumption of non-zero steady-state

values. The solution of equation (2.6), restricted to the rows

that belong to i, is the unique steady-state parasite load

associated to the partial combination of genotypes i which

we denote bxi (see proof in the electronic supplementary

material, appendix B.1).
3. Linking the within- and between-host levels
To eventually make inferences at the between-host level, we

need to somehow simplify the within-host dynamics. In

this part, we introduce the class concept, which gives an epi-

demiological meaning to partial genotype combinations. We

also nest within-host outcomes into the between-host

dynamics based on the assumption that the within-host

steady state is quickly reached. Put differently, we impose a

time-scale separation between the two levels. This assump-

tion is commonly used in nested models [27]. Note that we

identify a case where it cannot be satisfied (when there is

unlimited within-host growth) and present a way of handling

this situation via what we call ultrainfection.

(a) Host and inoculum classes
We define a class as any combination of genotypes. As there

are G genotypes, there are ‘ Gð Þ classes, which is the power

set of G. Mathematically, a class is any element i of ‘ Gð Þ.
We call susceptible a host infected by no genotype (the class

of which is the empty set ;). We call singly infected host a

host infected by only one genotype and co-infected host a

host infected by at least two different genotypes. We call

rank of a given class i the number of genotypes that belong

to i, that is ij j For computational purposes, it is useful to

order these classes which is why we introduce a binary lab-

elling operator in the electronic supplementary material,

appendix C.1.

Once a host is infected by a genotype combination, it may

transmit any subset of its co-infecting genotypes. We call

inoculum a combination of genotypes transmitted by an

infected host. The set of all possible inocula is also ‘ Gð Þ We

assume that hosts infected by the same genotype combi-

nation are identical in every point. We also make no

difference between inocula containing the same genotype

combination, even if they originate from hosts infected by

different genotype combinations.

(b) Ultrainfection and constraints on susceptible and
single-infection classes

The susceptible state is unstable if parasites grow in a

singly infected host, i.e. if @k . 0, which we will assume
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from now on (the proof is shown in the electronic sup-

plementary material, appendix C.3, and involves the

expression of the within-host jacobian matrix calculated

in electronic supplementary material, appendix C.2). As a

consequence, no infection can end by the extinction of all

genotypes: either the within-host dynamics reach a steady

state or at least one parasite load goes to infinity.

In order to avoid the latter case (because it is not compa-

tible with the time-scale separation assumption), we invoke

two modelling assumptions from the between-host

dynamics, namely

(i) the infected host death rate is proportional to the total

parasite load; and

(ii) the size of the host population is constant.

Following these assumptions, if a host is infected by an

inoculum that causes an infinite within-host parasite

growth, its death rate is infinite (i); it thus dies instan-

taneously upon infection and is replaced by a susceptible

host (ii). To picture this, one can think of a singly infected

host that would become infected by another parasite geno-

type which facilitates the growth of the first genotype, and

vice versa, such that both parasite loads increase endlessly.

If we assume that this process is much faster than the trans-

mission process and that very high parasite loads eventually

lead to host death, the host will die before infecting another

host and is thus epidemiologically irrelevant. We call this

case ultrainfection as it cannot be considered within the

superinfection–co-infection framework.

The drawback of allowing ultrainfection is that some

parameter sets might result in genotypes that do not reach

a steady state in any class, such that the between-host

dynamics would be in fact governed by an effective

number of genotypes n0 smaller than n. To avoid these

‘shadow genotypes’, one solution is to force the steady state

in single infections to be both positive and stable. When a

susceptible is infected by only one genotype, let us say k,

the infected steady-state parasite load is then dx{k},k and its

value is given by equation (2.6) applied for n ¼ 1,

dx{k},k ¼ �
@k

hk,k þ gk,kuk
¼: xW

k: (3:1)

Given that @k . 0, the single-infection parasite load is positive

and stable if and only if (for the proof of the stability, see

electronic supplementary material, appendix C.4)

hk,k ,�gk,kuk: (3:2)

As the effect of PG on self and its production rate are both

assumed to be positive, this implies that the self-

density-dependent effect is negative (hk,k , 0). One can

interpret 1/hk,k as the carrying capacity. Inequality (3.2)

will be checked for all parameter sets used thereafter.
(c) Biological and epidemiological co-infection classes
When at least two genotypes co-infect the same host, finding

the steady state reached by the system is a mathematical

challenge for several reasons:

(i) the number of possible steady states is an exponential

function of the class rank,

(ii) the stability of a steady state cannot be analytically

deduced from the parameters in the general case,
(iii) several steady states can be biologically meaningful at

the same time, i.e. positive and stable (found with

numerically computed eigenvalues), and

(iv) the nonlinearity of the system causes unpredictability

of the output given the initial conditions.

This leaves us with no other option than to numerically simu-

late higher rank infection events as follows.

First, we have to withdraw from the analysis all the host

classes for which the associated (unique) steady state is not

biologically meaningful. We thus say that an infected class

is biological if its associated steady state is both positive and

stable. Even though it is unstable and zero valued, the sus-

ceptible class is considered as a biological class too. We

denote the set of biological classes by B , ‘ Gð Þ Note that

the set of inocula arising from hosts that belong to B can be

greater than B itself. For instance, let k be a genotype

absent from class i and let i < fkg be a biological class. If gen-

otype k is such that it stabilizes the within-host dynamics in a

host of class i < fkg (by limiting the growth of highly spite-

producing genotypes for example), i may not be a biological

host class even though i is a possible inoculum because it can

be produced by biological class i < fkg hosts.

A class may be biologically meaningful but epidemiologi-

cally meaningless if no infection event leads to it. For this

reason, we define the infection operator f which has two

arguments, the receiver host class r and the inoculum class

p. f(r, p) is the output class, that is the class into which a

host from class r turns if it is infected by class p inoculum.

In terms of system dynamics theory, f(r, p) is the class associ-

ated to the potentially new steady state the within-host

system reaches after the perturbation corresponding to the

inoculation. We show in the electronic supplementary

material, appendix C.6, that non-steady-state attractors can

be avoided if the self-density-dependent effects hk,k are nega-

tive and strong enough and if PP rates uk and vk are small

enough. Note that f(r, p) can be the empty set because ultra-

infection is allowed for co-infected classes.

A biological infected class i is said to be epidemiological if it

can appear during an epidemic, that is if there is at least one

infection event involving two biological classes that leads to

it. More formally, class i is epidemiological if there is a

couple of biological classes (r, d) [ B2, r being the receiver

host class and d the donor host class, such that there exists

an inoculum class p of d that satisfies f(r, p) ¼ i. As an excep-

tion, the susceptible class is also epidemiological. The set

of epidemiological classes is denoted by E (and Ew if the

susceptible class is excluded).

If a class is not epidemiological, then there is no infection

event to renew these hosts that inevitably recover or die, even

if initially present. After some time, this non-epidemiological

compartment has completely vanished with no other conse-

quence than having delayed an initial input of susceptibles.

For this reason, we only consider epidemiological classes in

the between-host dynamics of our model.

For formal definitions of B, f and E, see the electronic

supplementary material, appendix C.5.
4. Between-host dynamics
In this part, we use the steady-state parasite loads and

the previously introduced class system to define the
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compartments and the flow rates of a deterministic between-

host dynamical system. This system is conceived as an

extended SIS (susceptible, infected, susceptible) model with

sequential recovery in a randomly mixed host population of

constant size, which is a common framework in modelling

of infectious diseases [12]. However, unlike previous

models where transmission is also sequential (that is only

one genotype at a time) [21], this model allows for partial

cotransmission, that is the possibility for any host class to

transmit any subset of genotypes it is co-infected with. A con-

sequence of this is that suceptibles can directly turn into co-

infected hosts. Assuming also that the overall transmission

rate is constant, the appropriate infection rate for partial

cotransmission is given hereafter.

(a) Infected hosts dynamics
Due to the time-scale separation, infected hosts from the same

class have the same parasite load. Each host class is then con-

sidered as a compartment characterized by its proper time-

dependent density Ii. Note that the index-set notation is ana-

logous to the one used in Andreasen et al. [32] for cross-

immunity. These host class densities (at most 2n) define the

density vector y :¼ (Ii)i[E:

Infection events are due to uniformly random encounters

between two hosts of different classes. The donor host

can infect the receiver host with any class of inoculum it

may generate (any non-empty subset of its class), indepen-

dently of the parasite genotypes the receiver is already

infected by.

Recovery is allowed for every infected host class but only

sequentially, which means that a given host can only recover

from one parasite genotype at a time. Moreover, it does not

provide any immunization. The between-host part of our

model can therefore be seen as a generalization to multiple

infections of the classical SIS model [33].

Given all these assumptions, the density of any infected

host i satisfies the following autonomous quadratic ODE,

where br;d;i are infection rates, ud;i recovery rates and mi

death rates:

dIi

dt
¼

X
(r,d)[(En{i})�Ew

br,d,iIrId þ
X
d[E

ud,iId

�
X

(d,‘)[Ew�(En{i})
bi,d,‘‘‘‘‘Id þ

X
‘‘‘‘‘[En{i}

ui,‘‘‘‘‘ þ mi

0@ 1AIi, (4:1)

the five right side terms, respectively, correspond to

(i) the infection input flow, by which donor hosts d infect

receiver hosts r which become hosts i,

(ii) the recovery input flow, by which hosts d lose one

genotype and become hosts i,

(iii) the infection output flow, by which donor hosts d

infect receiver hosts i which become hosts ‘‘‘‘‘,

(iv) the recovery output flow, by which hosts i lose one

genotype and become hosts ‘‘‘‘‘, and

(v) the death output flow, by where hosts i die.

(b) Susceptible host dynamics
We assume a constant host population size (s8 . 0). Suscep-

tible hosts density may decrease through infection and may
increase through recovery or replacement of dead infected

hosts. Overall, S satisfies the following ODE:

dS
dt
¼
X

d[Ew

mdId þ
X

(r,d)[Ew2

br,d,;IrId þ
X

d[Ew

ud,;Id

�
X

(d,‘‘‘‘‘)[Ew2

b;,d,‘‘‘‘‘IdS, (4:2)

where the second term corresponds to the ultrainfection

input flow.

(c) Modelling the epidemiological events
Making explicit the infection, recovery and death rates used

in equations (4.1) and (4.2) is the key step of the nesting

[27]. Here, we include the within-host outcome into

between-host dynamics through the dependance of the epi-

demiological events on the steady-state parasite loads. From

now on, xi;k denotes the within-host steady-state parasite

load of genotype k in host class i (the hat is omitted to

avoid confusion with between-host steady state).

We use constants to characterize the scaling rate of each

event type, that is transmission-infection (b), recovery (u) and

death (m). b, u and m are the only epidemiological parameters.

(i) Infection rates
We assume that all infected hosts have the same overall trans-

mission rate, equal to b, the constant transmission factor. This

is motivated by two reasons. The first one is that the inocu-

lum dose cannot affect the outcome of the infection because

of the within-host dynamics determinism; further, we

assume that the total parasite load does not affect the contact

rate of infected hosts with other hosts. The second reason to

keep the transmission rate constant is to make sure that if

higher parasite loads, leading to higher host death rate, are

selected, this will be because of within-host competition

and not because of a transmission advantage. We thus

avoid imposing a trade-off relationship between virulence

and transmission. We model transmission by independent

random drawing of each genotype within each inoculum,

using frequencies (that is, relative parasite loads) as proxies

for probabilities of being drawn.

The rate at which a receiver host r turns into a host i

through infection by a donor d is given by

br,d,i :¼ b
X

p[‘(d)
f(r,p)¼i

jpj
Y
k[p

xd,kP
‘[d

xd,‘

Y
k[dnp

1� xd,kP
‘[d

xd,‘

0B@
1CA, (4:3)

where b is the constant transmission factor,
P

p[‘ðdÞ
fðr;pÞ¼i

is the

sum over all possible inocula of host d that turn host r into

host i, jpj is the rank of the inoculum class (number of geno-

types),
Q

k[p

xd,k=
P

‘[dxd,‘ is the product of genotype

frequencies in d over all genotypes of p, andQ
k[dnp

ð1� xd,k=
P
‘[d

xd,‘Þ is conversely the product of the comp-

lementary frequencies over the remaining genotypes of d.

Importantly, br,d,i is an infection rate and not a trans-

mission rate, as it quantifies the flow between two host

compartments due to infection. In models that consider

only one kind of host that can be infected, S, and only one

kind of infected host (I ), there is only one infection rate, b



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140303

6
(and bSI is the infection flow) [15]. This infection rate is then

also the transmission rate because there is only one host class

that can be infected (S) and because infection always leads to

the same host class (I ). The infection rate–transmission rate

equality still holds in more complex models with several

infected host types if genotypes are transmitted one at a

time [21,34]. In our model of transmission, however, donor

hosts can cotransmit any subset of their co-infecting genotype

combination, whereas receiver hosts may not be affected by

such contacts or may be affected differently according to

within-host parameters. Infection flows are thus unpredict-

able here because they depend, through the infection

operator f, on the outcomes of the within-host dynamics,

which determine how steady-state parasite loads are affected

by contamination of new genotypes. Because ODEs (4.1) and

(4.2) only describe flows between compartments, br,d,i refers

to infection rates and not to more intuitive transmission rates.

Nonetheless, it is possible to make an interpretation of the

transmission process based on the definition of br,d,i. To do so,

one should consider that transmission is a process that does not

depend on the outcome of the contamination (which becomes

an infection event only if the receiver host class changes). In

other words, if we denote by bd, the overall transmission rate

of infected host class d, br,d,i gives bd when ignoring the con-

dition f(r, p) ¼ i under the sum or when assuming that all

the inocula classes p of d are epidemiological.

In the case where we assume that all the inocula classes of

the donor host class d are epidemiological, f (;, p) ¼ p for all

p [ ‘(d)w and bd is measured as the overall transmission rate

to a susceptible, that is bd ¼
P

p[‘(d)w

b;,d,p.

Subsequently, it is possible to define the rate at

which a given genotype k is transmitted by hosts from class

d. We denote this rate bd,k. We show in the electronic

supplementary material, appendix D.1, that

8 d [ Ew, bd ¼ b, (4:4)

as expected, but also that

8 d [ Ew, 8k [ d, bd,k ¼ b
xd,kP

‘[d

xd,‘
2� xd,kP

‘[d

xd,‘

0B@
1CA: (4:5)

As a consequence, the transmission rate of a host does not

depend either on the total parasite load nor on the number of

infecting genotypes. For a given genotype, a higher parasite

load confers no transmission advantage in single infections

for a given genotype but it does confer an advantage in co-

infections because the probability of being transmitted

increases with its frequency. Transmission rates of co-infected

hosts thus reflect the outcome of the within-host dynamics.
(ii) Recovery rates
Recovery rates are the rate at which hosts d turn into hosts i

through recovery,

ud,i :¼ u
X
k[d

f(;,dn{k})¼i

1, (4:6)

where u is the constant recovery factor, and
P

k[d
fð;;dnfkgÞ¼i

1 is

the number of genotypes that make class d hosts to reach

class i through a recovery event. Note that the condition

f ;; dnfkgð Þ ¼ i implies that i is an epidemiological class.
For a given couple of host classes (d, i) [ Ew � E, recov-

ery is thus interpreted as a constant rate u multiplied by the

number of ways a class d host can recover and turn into a

class i host. This is also the number of genotypes the recovery

from which leads the parasite loads to the steady-state bxi.

This number is greater than one if and only if several geno-

types cannot survive in the co-infection without the

presence of each other.

The total recovery rate of a given infected host class d is jdjuas

recovering from a genotype always leads to another host class.

(iii) Death rates
The death rates are given as the sum over all parasite loads

times a constant death factor,

mi :¼ m
X
k[d

xd,k: (4:7)

Death rates are assumed to be linear functions of the total

parasite load: the higher the parasite load a host carries, the

more rapidly it dies. Total parasite load can therefore be

used as a proxy for virulence.

(d) Synthesis
The following master equation captures the between-host

dynamics:

d

dt
y ¼ F:(y� y)� (C:y)� yþ (J�Q� D):y, (4:8)

where F is the infection input flow matrix, C is the infection

output flow matrix, J is the recovery input flow matrix, Q is

the recovery output flow matrix and D is the death matrix.

There is no general expression for these matrices because

their structure depends on the way classes are ordered.

For an explicit definition of these matrices according to the

labelling we use for computing the model, see the electronic

supplementary material, appendix D.2.

Although equation (4.8) cannot be solved analytically, it is

a useful expression of the between-host dynamics that allows

for fast computing.

Between-host dynamics are summarized in figure 2.
5. Basic reproduction numbers and
epidemiological feedback

The basic reproduction number, denoted by R0, is the

most widely used parameter in epidemiological modelling

[14,34,35]. R0 is defined as the expected number of secondary

infections produced by a single infected individual during its

entire period of infectiousness in a fully susceptible population

[28,36,37]. Hence, it is often interpreted as the fitness of the

parasite [15,38,39] or as the inverse of the minimum proportion

of vaccinated hosts required to eradicate an infectious disease

[37]. More generally, R0 corresponds to the epidemiological

threshold above which the endemic state is always reached

(i.e. when R0 . 1).

The latest and most general method to determine the basic

reproduction number relies on the asymptotic instability of the

disease-free equilibrium [40,41], that is to say R0 greater than 1

if and only if the between-host steady state where all hosts are

susceptibles is unstable. This method, called ‘next-generation’,

is usually convenient because it does not require finding the
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Figure 2. Between-host flow diagram focused on host class i, represented here as a set of five out of n ¼ 10 genotypes. Not all the flows involving Ii are shown
but each type of event is shown at least once. The rates are given as they appear in the ODE satisfied by Ii . The matrix through which each flow is introduced into
the master equation is shown in brackets. The solid filled triangle-ended arrows stand for infection flows and are joined by dashed lines that indicate the donor. The
solid hollow square-ended arrows stand for recovery flows. While a host can be infected by several genotypes simultaneously, it recovers only from one genotype at
a time. The dot-ended arrow followed by a dotted arrow represents the death flow that leads to the susceptible compartment, as a consequence of the constant
population size assumption.
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infected steady-state densities. On the other hand, it may not

provide any information on the proportion of susceptible or

infected hosts at the infected steady state. According to the

instability of the ‘disease-free equilibrium’, the ‘next-gener-

ation basic reproduction number’ of our model is

RI
0¼bsW max

i[Ew
( ij juþmxi,†)�1

X
p[‘(i)
f(;,p)¼i

jpj
Y
k[p

xi,k

xi,†

Y
k[dnp

1�xi,k

xi,†

� �0BB@
1CCA,

(5:1)

where † stands for the sum over the given index (see proof in

electronic supplementary material, appendix E.1).

Other methods calculate R0 via the positivity condition

of the infected steady-state density [42,43]. In this case R0

is simply the inverse of the proportion of the remaining sus-

ceptibles [44]. If we call J the sum of the infected hosts

densities, we have Ŝþ Ĵ ¼ sW, which gives the following

‘endemic basic reproduction number’

Ĵ . 0, RII
0 :¼ sW

Ŝ
. 1: (5:2)

This quantity can be written in our model as a function of

the steady-state marginal arithmetic means of infection,

recovery and death rates, as

RII
0 ¼
jEwjb;,†,†sW

u†,; þ m†

, (5:3)

where the marginal arithmetic means over one and two

indices are, respectively, denoted by y†,j :¼
P

i
yi,j fi and

y†,† :¼
P

j
y†,j fj (see proof in the electronic supplementary

material, appendix E.2).

These two basic reproduction numbers share two impor-

tant features.
First, like the basic reproduction number of simple models

(such as SIS and SIR), they are the ratio of a transmission factor

in a fully susceptible host population over a sum of recovery

and death rates. This is classically interpreted as the expected

number of secondary infected hosts at the beginning of an

epidemic, where there is only one infected host (as the trans-

mission rate is multiplied by the infected host life expectancy).

Second, R0 . 1 means that there is at least one infected

compartment that is non-zero at steady state. This does not

provide any information, however, on which host class and

parasite genotype is involved in the endemic.

However, unlike the next-generation basic reproduction

number (RI
0), the rates involved in the endemic basic repro-

duction number (RII
0 ) are arithmetic means that depend on

the distribution of host class frequencies at steady state.

Therefore, it is possible for RII
0 to show complex behaviours

when epidemiological parameters vary.

Because between-host dynamics are nonlinear, changes in

epidemiological parameters that determine the rates of epide-

miological events can cause non-trivial modifications of the

steady state. These are often referred to as epidemiological

feedbacks [13]. We prove in the electronic supplementary

material, appendix E.3, that the endemic basic reproduction

number can capture these while the next-generation basic

reproduction number cannot. This is also illustrated in

figure 3.

Our simulations in figure 3 show that RII
0 is a nonlinear

function of intermediate values of b (even after averaging

over hundreds of parameter sets), confirming that it captures

epidemiological feedbacks. Moreover, individual parameter

combinations (dotted lines) often exhibit local minima of

RII
0 . Therefore, any increase or decrease in b starting from

this minimum will increase the steady-state total prevalence

of infection. This means that public health interventions

that decrease transmission could increase disease spread or,

conversely, that factors increasing contact rate between
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Figure 3. Apprehending epidemiological feedbacks through the endemic
basic reproduction number. Considering five parasite genotypes (n ¼ 5),
300 within-host parameter sets were randomly generated (see below) and
200 epidemic simulations were ran with each parameter set by varying
the transmission factor b from 0 to 50. The constant recovery and death
factors were fixed (m ¼ 5 and u ¼ 3). The initial density of infected
hosts was set to 1023s8, equally distributed to all the epidemiological
host classes. Both basic reproduction numbers were calculated according to
equations (5.1) and (5.2) for each run. RII

0 was also numerically derived
twice with respect to b. Over all parameter sets and all values of b, the
standard deviation of j@2RII

0=@b
2j is about 0.11 and the maximum is

about 3.94. The figure shows the mean of RI
0 (thin solid line) and RII

0
(thick solid line) as a function of b over the 300 parameter sets, along
their standard deviation (respectively, the light grey area and the dark
grey area). The RII

0 of three particular parameter sets (dotted lines) are
also given as examples of strong epidemiological feedbacks. The within-
host parameters were drawn in the standard uniform distribution U(0,1),
excepted for hij, i = j, drawn in U(21, 1) and hi,i was calculated as
�@i=xW

i � gi,i ui with xW

i drawn in U(0, 1). The standard clearing rate y

was fixed to 1.
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hosts could slow down disease spread. This unexpected effect

is correlated with genotypic diversity, as the median of

min(dRII
0 =db) is 23.33 � 1022 for the n ¼ 5 results shown

in figure 3 and 21.05 � 1025 in similar simulations done

for n ¼ 2 (not shown).

To understand the phenomenon that leads to the nonlinea-

rities in RII
0 , it helps to consider the case of two genotypes that

can co-infect the same host. When b is hardly large enough

for RII
0 (and RI

0) to be greater than one, the genotype with

the lowest parasite load in single infections is the only one

that becomes endemic. The second genotype is epidemio-

logically cleared because it kills hosts faster, such that its

proper basic reproduction number is lower than one (recall

that transmission does not increase with parasite load in

single infection). When b is large enough to compensate for

the higher death rate induced by the second genotype, this gen-

otype also spreads in the host population. Susceptible hosts are

turned into singly infected hosts at first, but as the two geno-

types can co-infect the same host, both singly infected host

classes infect one another and become co-infected hosts. Non-

linearities can then appear if the total parasite load of the co-

infected host is greater than the parasite load of the singly

infected. Indeed, some of the singly infected hosts become

co-infected and then die more rapidly than if they had

remained singly infected, so the basic reproduction number

RII
0 decreases, even if b has increased. Note that our model

shows coexistence of parasite genotypes not over the evol-

utionary time scale between singly infected hosts, as shown

in previous sutdies [25,45], but over the epidemic time scale

with the persistence of co-infected hosts.

An analoguous reasoning can be done in the case of

superinfection. As above, the genotype with the highest
parasite load in single infections spreads in the population

already infected by the first genotype only if b is large

enough so it compensates the higher death rate of its singly

infected hosts. Nonlinearities can then appear if the second

genotype superinfects the first-genotype-infected hosts.

Some of the latter hosts become infected by the second geno-

type and die more rapidly than if they had remained infected

by the first genotype. Again RII
0 decreases, even though b

has increased.

If nonlinearity is possible for only two genotypes, it is

even more favoured for a higher number of genotypes

because the infection patterns can be a combination of super-

infections and co-infections, thus multiplying the sources

of nonlinearity.
6. Discussion
There is a crying lack of general models for multiple infec-

tions. The few exceptions that allow for more than two

parasite genotypes rely on very stringent assumptions

[19,21]. Here, we introduce a novel model with many poten-

tialities. Above all, it can include any number of unrelated

different parasite genotypes, whereas the vast majority of

existing models are restricted to a single monomorphic para-

site, or few related parasites. Our model also brings new

features to infectious diseases modelling.

The first feature is the explicit modelling of diverse

within-host dynamics, where the host plays the role of an iso-

lated constant ecosystem in which parasites grow. As in

population dynamics [29] and multispecies ecological

models [46,47], the growth rate of each parasite genotype is

affected by its own density and the density of the other gen-

otypes. PPs (PGs and spite) are also taken into account

through their own proper dynamics. Along with parasite-

load-dependent effects, PPs enrich the diversity of within-

host dynamics and outcomes. Although PGs and spite have

already been integrated in within-host dynamics [10,20,48],

they have never been included together and linked with an

epidemiological model, while it is known that some parasites

can produce both PGs and spite with epidemiological conse-

quences [23]. Our model can also integrate additional

interactions, especially competition for host resources, host

immune response and cross-immunity through the parasite-

load-dependent effects.

Nested dynamics have already been tackled [12,27], but

have never been generalized to several within-host inter-

actions and for more than two parasite genotypes. This

flexibility generates a great diversity of infection patterns

which increases exponentially, as the number of parasite

combinations, with the number of considered genotypes.

In particular, linking the two levels allows us to identify a

biological scenario that the superinfection and the co-infection

hypotheses fail to capture. This occurs when genotype com-

binations are unstable and cause unlimited growth. Indeed,

while several genotypes can grow inside the host (as in co-

infections), the host may vanish at the host population level

(as in superinfections) because of infinite death rate. We call

such a pattern ultrainfection.

A second new feature is the set of definitions of bio-

logical and epidemiological classes for hosts and inocula.

These definitions allow us to build functions to go beyond

the classical superinfection–co-infection dichotomy [18,19]
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which has proved to be problematic [26]. A final original

feature of the between-host part of the model allows for

partial cotransmission, that is an infected host can infect

another host with any subset of its co-infecting genotypes

combination, unlike the other multiple infection models

that assume sequential or all-or-nothing transmission (but

see [49]).

Epidemiological feedbacks drive between-host outcomes

[34] and selective pressures [13]. Despite the complexity

of our model, we show that it is possible to capture these

feedbacks through the endemic basic reproduction number

(see also [36]). As shown in figure 3, in some situations,

the basic reproduction number, and thus disease prevalence,

can increase even if the transmission factor decreases,

because of the multiplicity of genotypes. This effect is

missed by methods that are based on the next-generation

basic reproduction number [50] because it is equal to the

endemic basic reproduction number when only one geno-

type is considered (see the electronic supplementary

material, appendix E.4). Overlooking parasite genotypic

diversity can therefore have major consequences, as quaran-

tine measures could, for instance, increase disease spread

instead of preventing it. Overall, we argue that accounting

for parasite genotypic diversity and using the endemic

basic reproduction number to study epidemiological feed-

backs is key to controlling infectious diseases.

As this is the first analysis of this multi-strain multiple

infection model, we had to make some simplifying assump-

tions. Some of these, such as the time-scale separation, are

constitutive of the model but others could be alleviated or

modified. In particular, the assumptions linking within-host

steady-state variables (population sizes) to epidemiological

parameters (transmission rate, virulence and recovery rate)

can be changed without affecting the between-host master

equation. This is important as these assumptions are likely

to depend on the biological system considered. Here, we

assumed the transmission rate to be constant, which has the

advantage that the only selective pressure allowing the
persistence of virulent parasites has to come from the

within-host level. Further extensions of this model could con-

sider a link between parasite load and transmission rate.

However, earlier models have shown that further assump-

tions would then be needed because if both virulence and

transmission rates are linear functions of parasite load, natu-

ral selection will always favour the strains with the highest

possible level of virulence [51]. One possibility could be to

focus on a biological system where these relationships have

been parametrized, such as HIV in humans [52], myxomato-

sis in rabbits [53], Ophryocystis elektroscirrha in monarch

butterflies [54] or the cauliflower mosaic virus in turnips [55].

The between-host dynamics used here are also based

on simplifying assumptions that may not be suitable for

all host–parasite systems: time-scale separation, random

mixing, host homogeneity, lack of immunization and con-

stant population size, range from the strongest and hardest

to adapt from the given equations to the weakest and easy

to relax.

Finally, a direct application of this model has to do

with parameter inference. Indeed, for many diseases, we

have detailed epidemiological data on the prevalence of

co-infections that include combinatorial diversity (for

instance in the case of human papillomavirus [56]). Such

data, possibly combined with information on within-host

processes, could allow us to compare between models and

estimate parameters.

Overall, our model opens new perspectives for investi-

gating the evolution of parasite traits such as virulence and

PGs and spite production rates in multiple infections owing

to its capacity for handling the combinatorial complexity of

cotransmissions and epidemiological feedbacks.
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