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The competition for resources among cells, individuals or species is a

fundamental characteristic of evolution. Biological all-pay auctions have

been used to model situations where multiple individuals compete for a

single resource. However, in many situations multiple resources with

various values exist and single reward auctions are not applicable. We gen-

eralize the model to multiple rewards and study the evolution of strategies.

In biological all-pay auctions the bid of an individual corresponds to its

strategy and is equivalent to its payment in the auction. The decreasingly

ordered rewards are distributed according to the decreasingly ordered

bids of the participating individuals. The reproductive success of an individ-

ual is proportional to its fitness given by the sum of the rewards won minus

its payments. Hence, successful bidding strategies spread in the population.

We find that the results for the multiple reward case are very different from

the single reward case. While the mixed strategy equilibrium in the single

reward case with more than two players consists of mostly low-bidding indi-

viduals, we show that the equilibrium can convert to many high-bidding

individuals and a few low-bidding individuals in the multiple reward

case. Some reward values lead to a specialization among the individuals

where one subpopulation competes for the rewards and the other sub-

population largely avoids costly competitions. Whether the mixed strategy

equilibrium is an evolutionarily stable strategy (ESS) depends on the specific

values of the rewards.
1. Introduction
In the struggle for survival, most organisms need to compete for resources. In

these competitions, individuals incur costs corresponding to the energy

invested or the risk of a severe injury during the fight. If the individual wins

the competition, it obtains a reward, for example, gaining access to a territory.

The pay-off of the winning individual is the value of the reward minus the costs

incurred during the competition. However, if many individuals compete for

multiple resources, even the winners of the resources might incur a negative

pay-off as the value of the resource won could be smaller than the total

value of the invested time or energy throughout the competition. We can ask

if there exists an evolutionarily stable strategy (ESS) in such competitions.

The war of attrition was one of the first models to study and predict animal be-

haviour [1,2]. In this game, two individuals compete for a resource. The strategy of

the conflicting animals can correspond to the amount of time each animal is willing

to stay in the fight. The individual that choses to fight longer wins the resource.

Both individuals incur the same costs (proportional to the time in the fight) as

the fight ends as soon as one of the individuals quits. Hence, the costs are equiv-

alent to the strategy value of the loser. In a case study, the model has been used to

predict the contest length of two male dung flies competing for a single female [3].

Over the years many different generalizations [4–6] have been proposed and used

to model struggling firms [7] and forming coalitions in politics [8].

Many of these models have the structure of all-pay auctions [9–11]. The

simplest examples are scotch auctions where two players compete for a single

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2015.1041&domain=pdf&date_stamp=2015-07-15
mailto:jreiter@ist.ac.at
http://orcid.org/
http://orcid.org/0000-0002-0170-7353


available females

competing males

0.7

–0.1 –0.30.1pay-off:

0.9 0.3

v1 = 1 v2 = 0.6

(a)

(b)

Figure 1. Courtship feeding of cedar waxwing modelled by biological auc-
tions. (a) Male cedar waxwing provides a berry to the female during
courting. Courtship feeding is common in many species [15,16]. Photo
taken by Minette Layne (CC). (b) Three males are courting for two females.
Green male offers a nuptial gift of value 0.7, orange male of 0.9 and brown
male of 0.3. The left female (v1 ¼ 1) picks the orange male and the right
female (v2 ¼ 0.6) picks the green male. Such a scenario can be modelled by
biological auctions with multiple rewards. The pay-offs of the males are the
rewards won minus their investments (here the value of the female minus
the value of the nuptial gift). The green male obtains a negative pay-off
of 20.1, the orange male obtains a pay-off of 0.1, and the brown male
ends up without a reward and a pay-off of 20.3.
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reward. The only difference to the war of attrition is that the

costs of each player are identical to their own strategy [9]. There-

fore, scotch auctions model scenarios where the investments

always equal the costs (e.g. courtship feeding). Chatterjee et al.
generalized scotch auctions to biological all-pay auctions as well

as the war of attrition to biological second price all-pay auctions
[12]. In contrast to classical auctions, where only the winning

bidder has to pay, in all-pay auctions all participants have to

pay [13,14]. In biological all-pay auctions, the payment of an

individual is equivalent to its bid; in biological second price

all-pay auctions all individuals other than the winner pay

their own bid, and the winner pays the second-highest bid

[12]. Biological auctions provide a natural generalization from

2 to n player models [10,12].

Biological all-pay auctions have been used to model the

growth competition among plants for sunlight [9] (see [12]

for more examples). Suppose that plants can decide (or

during the course of evolution it has been decided) how

much energy they should invest into growth. These invest-

ments are equivalent to a bidding strategy in the competition

for sunlight and directly translate into their costs (payments).

Clearly, the largest plant will get most (all) of the sunlight

and will shade the other plants. According to this hypothetical

model, the winner (i.e. the largest plant) takes all the sunlight

and all the other plants are left with nothing, although they

might have invested a lot of energy. However, in a more realis-

tic scenario (e.g. plants in a forest), there is not a single winner

but there are multiple winners; some of those may receive more

sunlight than others and the remaining plants may not receive

any direct sunlight.

Thus, a major limitation of the theoretical models of

biological all-pay auctions is that they are only applicable

in competitions for a single resource. In many situations

(e.g. growth competitions, mating fights, courtship feeding

[15,16]), there is not a single resource but multiple resources

(maybe some less valuable than others) which could affect

the bidding (fighting) strategy of the individuals. For example,

consider three males courting for two females, where one of the

females is preferred over the other (figure 1). Each of the males

offers a nuptial gift. The preferred female can pick the male

with the highest-valued nuptial gift and the second female

can pick the male with the second-highest-valued nuptial

gift. The male with the least valued gift will end up without

a female despite his investments to offer a nuptial gift. Such a

scenario cannot be modelled with biological all-pay auctions

with a single resource.

While auctions with multiple resources are well studied in

classical auction theory [8,14] and also highly relevant in

sponsored search auctions on Google and Facebook [17], per-

haps surprisingly, they have not receive much attention in the

evolutionary context. Haigh & Cannings [6] proposed some

generalizations for the war of attrition where the number of

competitors equals the number of resources. But so far,

these models have not been studied in detail. In this work,

we generalize the models of biological all-pay auctions to

allow for multiple resources (thus also multiple winners) in

the same competition. Repeating a single reward auction

models a different type of competition as the same individual

could win all of the rewards, whereas in a multiple reward

auction each individual wins at most one reward. We inves-

tigate whether and how results for multiple and maybe

differently valued resources differ from the classical results

for single resource models.
We study these questions within the framework of

evolutionary game theory [18–21]. We aim to identify evolutio-

narily stable strategies [1,22,23], which correspond to a bidding

recipe in our generalized model of biological all-pay auctions.

Once an ESS is adopted by a population, no mutant using

another strategy can invade the local population by starting as

a small fraction of the population. This stability condition of

strategies and various other conditions have been studied in

many different evolutionary games [18–21,23–31]. For a better

understanding of our model, we also explore the stochastic evol-

utionary game dynamics in finite-sized populations [32–37]. In

this work, we study both infinite populations (for analytical

results) and finite populations (for computer simulation results).

We find that multiple rewards lead to qualitatively very

different ESSs. While in the single reward case, the mixed

strategy equilibrium either has a uniform shape or a negative

exponential shape, in the multiple reward case the mixed



(a)

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0
n = 3

v2 = 0

v2 = 1

v2 = 0
v2 = 0

v2 = 1

strategy (wild-type) strategy (wild-type) strategy (wild-type)

st
ra

te
gy

 (
m

ut
an

t)

(b)

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0
n = 5

v2 = 1

v2 = 0

v2 = 1

st
ra

te
gy

 (
m

ut
an

t)

(c)

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0
n = 10

v2 = 1

v2 = 0

v2 = 0

st
ra

te
gy

 (
m

ut
an

t)

Figure 2. (a – c) Invasion plots for biological all-pay auctions with two rewards. The dark-shaded regions correspond to the regions where a mutant with such a
strategy can invade (derived from Theorem 1). Whether a mutant can invade in a light-shaded region depends on the value of the second reward v2. Note that the
invasion regions become identical to the invasion regions in biological auctions with one reward if v2 ¼ 0. A larger value of v2 decreases the size of the invasion
region; a higher number of auction participants n increases the size of the invasion region. Value of highest reward v1 ¼ 1.
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strategy equilibrium can also be an increasing or a U-shaped

function. The U-shaped mixed equilibria intuitively suggest

the prevalence of two distinct types of bidding strategies in

the population, namely, low- and high-bidding strategies.

This specialization of subpopulations is unique to the multiple

reward case and cannot be found in biological auctions with a

single reward.
2. Results
In the model of biological all-pay auctions with multiple

rewards, in each auction n individuals compete for m rewards

with the values v1 � v2 � � � � � vm (where vj � 0 for

1 � j � m and m � n; figure 1b). Each individual has a fixed

strategy value si (si [ ½0; 1Þ) which corresponds to its bid

in an auction. The highest bidder (i.e. the individual with

the highest strategy value) in an auction receives the highest

reward v1, the second-highest bidder receives v2 and so on.

In general, the j-highest bidder receives reward vj. In the

case of k � 2 individuals with the j-highest bid, it is decided

randomly who receives vj, vjþ1, . . . ,vjþk21. In each auction, a

participating individual incurs costs equivalent to its bid

(strategy value). The pay-off of an individual is the sum of

the rewards won minus its costs (strategy value times the

number of joined auctions) in a particular generation

(figure 1b).

(a) The two strategy case
First we study scenarios with two distinct strategies s1 and s2

(s1 . s2). We assume an infinite population size. The individ-

uals compete for two rewards with value v1 and v2. We

denote by x the frequency of individuals with the smaller

strategy value s2 (we refer to them as s2 strategists). Hence,

1 2 x denotes the frequency of the s1 strategists.

Lemma 2.1. The expected pay-off for the s1 strategists is

pðs1Þ ¼
ðv1 þ v2Þð1� xnÞ

nð1� xÞ � v2xn�1 � s1:

The expected pay-off for the s2 strategists is

pðs2Þ ¼
ðv1 þ v2Þxn�1

n
þ v2xn�2ð1� xÞ � s2:
In an evolutionary process with low mutation rates, we

can assume that most of the time the population is dominated

by a single strategy. Hence, if a mutant is generated, the

mutant strategy either goes extinct or takes over the whole

population before the next mutant is generated. We therefore

consider the class of strategies s0 with the potential to invade

and take over a population which is dominated by the

strategy s (Theorem 1; proofs are given in the electronic

supplementary material).

Theorem 2.2. In biological all-pay auctions with two rewards
(v1 � v2), a population of s strategists is invadable by s0 strategists
if and only if

s0 [ 0, max 0, s� v1 þ v2

n

� �� �

< s, min v1, sþ v1 �
v1 þ v2

n

� �� �
:

In figure 2, we show invasion plots for n ¼ 3, 5 and 10.

We observe that a mutant with strategy s þ d (d! 0) can

always invade a population since v1 � v2 implies that

v1 � ðv1 þ v2Þ=n . 0 (for n . 2). This observation implies

that in biological all-pay auctions with two rewards a pure

ESS cannot exist; if an ESS exists, it must be a mixed one.

Also we see that the regions where a new strategy can invade

a population dominated by another strategy becomes smaller

for larger values of v2 (figure 2). In contrast, for larger values

of n, the invasion regions become larger; for n! 1, each strat-

egy becomes invadable [12]. Note that we ignore strategies

strictly greater than v1 since their pay-off is always negative,

independent of the outcome of the auction. A strategy strictly

greater than v1 implies that skipping the auction ensures a

higher pay-off (zero) than participating in the auction.

We note that in the case of n ¼ 2 and two rewards, our

model simplifies to the biological auction model with one

reward [12] as both individuals would win at least v2 and

only compete for the remaining value of v1 2 v2 [6]. Thus,

our new results are for n . 2.
(b) The mixed strategy case
To study mixed strategies we let I be the strategy defined by

the probabilistic density function p(x). Since there are m
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Figure 3. An additional reward in biological auctions results in a qualitatively different equilibrium. The mixed strategy equilibrium changes with the number of
participants, n, in an auction. (a) Mixed equilibrium functions have a negative exponential shape in biological all-pay auctions with one reward. (b) By contrast, in
biological all-pay auctions with two rewards, the mixed equilibrium functions can also be increasing or U-shaped functions. The U-shaped mixed equilibria suggest
some specialization among the individuals.
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rewards ordered in decreasing values, the probability that a

player bidding s wins reward vj (1 � j � m) is

n� 1
j� 1

� � ðs

0

pðxÞdx
� �n�j

1�
ðs

0

pðxÞdx
� � j�1

:

Summing over all rewards and subtracting the payment,

we obtain for the expected pay-off E(s, I ) of a player bidding

s when all other n 2 1 participants in the auction play

according to I:

Eðs; IÞ ¼
Xm

j¼1

vj
n� 1
j� 1

� �
PðsÞn�jð1� PðsÞÞ j�1 � s, ð2:1Þ

where PðsÞ ¼
Ð s

0 pðxÞdx: Following Chatterjee et al. [12] to

obtain an ESS given by p(x), we use the Bishop–Cannings

theorem [4] which states that for any strategy s in the sup-

port of I, the expected pay-off E(s, I ) has to be constant

[2]. Therefore, for any possible ESS dE(s, I )/ds ¼ 0 must

hold. Note that this condition leads to a non-negative pay-

off for any pure strategy in the support of I if the pure

strategy zero (bids zero, pays nothing) is in the support of

I. Hence, the expected sum of bids per auction (which

equals the sum of payments) is in equilibrium upper

bounded by the sum of reward values per auction. We

differentiate equation (2.1) with respect to s, set E0(s, I ) ¼ 0,

and get that

pðsÞ
Xm

j¼1

vj
n� 1

j� 1

� �
½ðn� jÞPðsÞn�j�1ð1� PðsÞÞ j�1

�ðj� 1ÞPðsÞn�jð1� PðsÞÞ j�2� ¼ 1: ð2:2Þ

For the general case of m, we cannot obtain analytical sol-

utions for p(s). However, in the special case of two rewards v1

and v2 (with v1 � v2), equation (2.1) simplifies to

Eðs, IÞ ¼ ½v1 � ðn� 1Þv2�PðsÞn�1 þ ðn� 1Þv2PðsÞn�2 � s,

ð2:3Þ

and analytical solutions become attainable.

In figure 3b, we show numerical solutions for p(s) of

equation (2.3). These mixed equilibrium solutions correspond

to the density of strategy values in a population where no

individual can increase its benefit by solitary changing to a

different strategy which is also in the support of the mixed

strategy. The results for two rewards are qualitatively very
different to the results for one reward (figure 3a) [12];

even if more individuals compete for the rewards and the

ratio of rewards to participants is identical. The U-shaped

form of the obtained mixed equilibria in the cases of n ¼ 5

and n ¼ 10 suggest that individuals might be able to special-

ize in low or high investments. This observed specialization

helps to explain our initial example of the growth compe-

tition in a forest: a few individuals with similar high

investments, many individuals with low investments, and

rare incidences of plants with an intermediate growth invest-

ment. Although the height achieved differs greatly among

the plants and the high-investing individuals win most

of the rewards, in equilibrium the obtained pay-offs of the

individuals are identical. Two case studies on Chenopodium
album plants report data for the height distribution of many

plants in a fixed area with a very similar pattern as the

analytical results of our model [38,39]. Some plants were

much taller than the majority of the plants. The density func-

tion of the heights in this plant species has a similar U-shaped

form to our mixed equilibria functions (see bottom plots in

Fig. 3 in [39]). As predicted by our results, when more

plants are competing in a small area, fewer plants make

high growth investments and the remaining plants abstain

from high investments to save their energy (cf. our figure 3

and fig. 1 in [38]).

If the mixed equilibrium is also an ESS, then natural

selection is sufficient to prevent any different strategy to suc-

cessfully invade a population that adopted the ESS. We find

significant differences to the single reward case [12]: (i) while

for the single reward case an ESS always exists for n . 2, in

the case of two rewards an ESS is not guaranteed to exist

even if n . 2. (ii) For the single reward case, the mixed equi-

librium either has a uniform shape or a negative exponential

shape (always non-increasing), by contrast, in the case of

multiple rewards, the mixed equilibrium can be a uniform,

an increasing or a U-shaped function (Theorem 2; proofs

are given in the electronic supplementary material). Note

that in the case of v2 ¼ 0, the solutions simplify to the results

for one reward [12]: pðsÞ ¼ 1=v1 (for n ¼ 2) and

pðsÞ ¼ 1=ð2 ffiffiffiffiffiffiffiffi
s v1
p Þ (for n ¼ 3). We note that for n ¼ 2, P(0) ¼ 0

and Pðv1 � v2Þ ¼ 1: In other words, the strategy space is

given by the interval [0, v1 2 v2]. If v1 ¼ v2, no bid should be

made as one always obtains a reward of value v1 independent

of the bid.
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Theorem 2.2. In biological all-pay auctions with two rewards
(v1 � v2), the following assertions hold:

1. For n ¼ 2, the following probability density function is
a mixed equilibrium but not an ESS:

pðsÞ ¼ 1

v1 � v2
: ð2:4Þ

2. For n ¼ 3, the following probability density function is
a mixed equilibrium:

pðsÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

2 þ sðv1 � 2v2Þ
q : ð2:5Þ

Moreover, the mixed equilibrium is also an ESS iff v1 . 2v2.

In addition to our analytical results, we implemented

a Wright–Fisher process [40] to study the evolutionary

dynamics in our model. Our program simulates the evolution

of pure bidding strategies in a population of size N starting

from a population with random strategy values. The repro-

ductive success of an individual is proportional to its

fitness given by the sum of the rewards won minus its pay-

ments in K auctions per generation. Over time, successful

strategies spread in the population. The details of the compu-

ter simulation are given in the Material and methods section.

We observe great agreement between the analytical strategy

distribution and the simulated average strategy distribution

(figure 4). The simulation results are less accurate for strategy

values close to the maximum value v1 which is because of

the limited number of available strategies in the computer

simulations. Nevertheless, the stochastic computer simulation

results confirm the qualitative differences of the results for

biological auctions with one and multiple rewards. In the case

of two rewards, we find that the shape of the mixed equilibrium

is mostly determined by the value of the second reward v2

(figure 4). As described above, for v2! 0, the simulation results

converge to the results of biological auctions with one reward.

In figure 5, we show how our results extend to more

rewards (m) and more auction participants (n). We observe

that the general U-shape of the mixed equilibrium remains

for larger values of m and n. The shape is determined by

the values of the rewards and the ratio m/n. For very small

m/n ratios, the shape of the mixed equilibrium shows

similarities to the single reward case.
We study the evolutionary dynamics in our model via

time-averages over 25 generations of the strategy distribution

in the population. We find that typically two subpopulations

are present: low bidders and high bidders (figure 6). Rarely,

we see intermediate bidding strategies invading these sub-

populations for a few generations until again the low- and

high-bidding subpopulations take over. These results demon-

strate that there is no static equilibrium in the case of a finite

population with pure strategies, similarly as in biological auc-

tions with single rewards [12]. Although we observed a cyclic

behaviour, low and high bidders existed throughout the

simulation and can dominate the population for many gener-

ations (figure 6). By contrast, intermediate strategies only

exist for a small number of generations and are quickly

replaced by superior strategies.
3. Discussion
Most studies on models of competing individuals focus on

one reward. The limitation to competitions with one reward

restricts the applicability of those models and hinders us

from understanding more realistic scenarios. In this work,

we have generalized the model of biological all-pay auctions

to multiple rewards. One might have expected that a general-

ization to multiple rewards does not change the shape of the

ESSs and only results in an increased mean of the distri-

bution. However, as we have shown above, the solutions

for multiple rewards are qualitatively very different from

the solutions for a single reward. While the mixed equilibria

of the bidding strategies in the single reward case have the

form of a negative exponential distribution, this can change

to a U-shaped distribution in the case of multiple rewards.

These qualitatively very different results suggest that

multiple rewards may allow for specialization of the individ-

uals. The evolution of two distinct subpopulations, one that

competes for the rewards and one that largely avoids the

costs of the competitions, may also contribute to a speciation

process. The size and the overlap of these subpopulations

follow from the number of rewards, their values and the

number of individuals competing for those rewards

(figure 5). As we show in figure 6, the sizes of these subpopu-

lations are subject to evolutionary dynamics determined by

selection and mutation. However, the average strategy distri-

bution converges to our analytical results. These evolving
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subpopulations of low bidders and high bidders also reveal a

connection to the two-player and two-strategy Hawk–Dove

game where a similar mixed equilibrium exists [22]. The

hawks compete for the resource and risk being incurred,

whereas the doves abstain from costly conflicts and, at best,

share the resource. If we generalize this strategy space from

hawks and doves to a continuum of bidding strategies, we

obtain the war of attrition and the mixed equilibrium of

high (hawks) and low (doves) bidders changes to a negative

exponential distribution of bidding strategies [2].

A similar pay-off structure is used in sperm competition

games where the strategy and costs correspond to the
amount of ejaculated sperm [41,42]. In contrast to biological

auctions, the reward (male fertilizing the female) is not

always given to the males with the largest number of invested

sperm. In fair and symmetric sperm competition games, the

winning probability is given by the own strategy value

divided by the sum of the strategy values of the competitors

[41]. Another difference is that for each reward (female) a sep-

arate investment has to be made in sperm competition games

whereas in biological auctions one bid is submitted to com-

pete for multiple rewards. In agreement with our results,

the amount of invested sperm of a male per mating decreases

with the number of competing males. In the case of females
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with different reproductive potential, males may actively dis-

criminate between the females (rewards) and use different

strategies to maximize their own reproductive success [42,43].

The effects of supply and demand have been studied in the

context of trading strategies in biological markets [44,45].

Noë & Hammerstein [44] show that trading strategies influence

the selection of specific traits depending on the current demand

and supply (e.g. sexual selection). In our model we show

how a population evolves over time to meet a specific supply

level. We study the effects of a fixed demand (number of par-

ticipants per auction n) and supply (number of rewards m)

on the investing strategy of the individuals. In the future

it would be interesting to study both trading and investing

strategies in the same environment. Such a study might pro-

vide new insights into the evolution of nuptial gifts in

scorpionflies where the strategies of females and males

evolve simultaneously [44,46,47].

Our results for multiple rewards on the expected growth

investments in a competitive environment are very similar to

the height distributions observed in C. album plants when

there are many plants in a small area [38,39]. Models for

single rewards fail to explain these data. We note that there

are many more evolutionary models that try to explain the

height distribution of plants [48,49]. Experimental biologists

found various height distributions for different plant species.

The key difference to the situation we are modelling here

might often be the missing competition among the plants for

sunlight. With only a few plants in a fixed area there is no com-

petition for sunlight and hence our model is not applicable.

However, there might be other kinds of competitions, e.g. for

nutrients or water, where instead of the plant height the root

length could matter. We believe that our model should also

be relevant in various other competitive scenarios which we

have not described here. An interesting direction to explore

might be other trait distributions of species in situations of

competitions for multiple resources like the height distribution

of plants in a forest, which would help to further improve

our model. Additionally, one could consider a structured

population to account for relatedness effects.
4. Material and methods
(a) Stochastic computer simulations
The tool to simulate the biological auctions can be downloaded

from https://github.com/johannesreiter/bioauctions (includ-

ing the Python source code and additional documentation to

execute the program). The program simulates the evolution of

pure bidding strategies in a well-mixed population of constant

size N according to a Wright–Fisher process [33,40]. Other input
parameters are: (i) number of auctions per generation K,

(ii) number of participants per auction n, (iii) number of rewards

m, (iv) reward values v1, . . . , vm, (v) number of discrete strategies

‘ in the interval [0,1] and (vi) the mutation rate u.

Initially, the program creates a population of N individuals

with random strategy values in the interval [0, v1]. We do not

need to consider strategy values greater than v1 since individuals

with such a strategy will incur a negative fitness in any environ-

ment of players and therefore, these strategies cannot be present

in an equilibrium (Bishop–Cannings theorem [2,4]). Note that

strategy zero always obtains a non-negative fitness. For efficiency

reasons, we restricted our simulations from the beginning to the rel-

evant interval. However, our tool does not restrict v1 (except v1 . 0)

and hence various strategy spaces can be considered. In each gen-

eration, all individuals start with the same background fitness. The

program then simulates K auctions and the fitness of the individ-

uals is updated according to the rewards won and the payments

in the auction in which they participated. The strategy values for

the next generation of individuals are chosen proportional to the

fitness values of the current population. Bidding strategies with

higher fitness have a high probability to be chosen for reproduction

and hence are more likely to spread in the population. With a

mutation probability of u, a random strategy in [0, v1] is assigned

to an individual to ensure some diversity in the population.

A well-mixed population is assumed (no population structure or

relatedness effects). After the new generation has been created,

the next round of K auctions is played and based on the achieved

pay-offs in these auctions another generation will be created. The

program simulates the evolution of strategies by sequentially

creating strictly non-overlapping generations of individuals. The

strategy distribution is computed via averaging over the number

of individuals per strategy value over all generations.

To better understand the underlying evolutionary dynamics

of our model, our tool can take snapshots of the strategy distri-

bution over time. In the file settings.py, we can configure

the frequency and the start and end generation of the snapshots.

(b) Mathematical proofs
The detailed proofs are provided in the electronic supplementary

material.
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loaded from https://github.com/johannesreiter/bioauctions.

Authors’ contributions. J.G.R., M.A.N. and K.C. designed the study and
wrote the manuscript. J.G.R. performed mathematical analysis and
computer simulations. A.K., R.G. and K.C. provided input to the
mathematical analysis.

Competing interests. We have no competing interests.

Funding. This work was supported by grants from the John Templeton
Foundation, ERC Start Grant (279307: Graph Games), FWF NFN
Grant (No S11407N23 RiSE/SHiNE), FWF Grant (No P23499N23)
and a Microsoft faculty fellows award.
References
1. Maynard Smith J. 1974 The theory of games
and the evolution of animal conflicts. J. Theor.
Biol. 47, 209 – 221. (doi:10.1016/0022-5193(74)
90110-6)

2. Maynard Smith J. 1982 Evolution and the theory of
games. Cambridge, UK: Cambridge University Press.

3. Parker G, Thompson E. 1980 Dung fly struggles: a
test of the war of attrition. Behav. Ecol. Sociobiol. 7,
37 – 44. (doi:10.1007/BF00302516)
4. Bishop DT, Cannings C. 1978 A generalized war of
attrition. J. Theor. Biol. 70, 85 – 124. (doi:10.1016/
0022-5193(78)90304-1)

5. Bishop DT, Cannings C, Maynard Smith J. 1978 The
war of attrition with random rewards. J. Theor. Biol.
74, 377. (doi:10.1016/0022-5193(78)90220-5)

6. Haigh J, Cannings C. 1989 The n-person war of
attrition. Acta Appl. Math. 14, 59 – 74. (doi:10.
1007/BF00046674)
7. Fudenberg D, Tirole J. 1986 A theory of exit in
duopoly. Econometrica 54, 943 – 960. (doi:10.2307/
1912845)

8. Bulow J, Klemperer P. 1999 The generalized war of
attrition. Am. Econ. Rev. 89, 175 – 189. (doi:10.
1257/aer.89.1.175)

9. Rose MR. 1978 Cheating in evolutionary games.
J. Theor. Biol. 75, 21 – 34. (doi:10.1016/0022-
5193(78)90200-X)

https://github.com/johannesreiter/bioauctions
https://github.com/johannesreiter/bioauctions
https://github.com/johannesreiter/bioauctions
https://github.com/johannesreiter/bioauctions
http://dx.doi.org/10.1016/0022-5193(74)90110-6
http://dx.doi.org/10.1016/0022-5193(74)90110-6
http://dx.doi.org/10.1007/BF00302516
http://dx.doi.org/10.1016/0022-5193(78)90304-1
http://dx.doi.org/10.1016/0022-5193(78)90304-1
http://dx.doi.org/10.1016/0022-5193(78)90220-5
http://dx.doi.org/10.1007/BF00046674
http://dx.doi.org/10.1007/BF00046674
http://dx.doi.org/10.2307/1912845
http://dx.doi.org/10.2307/1912845
http://dx.doi.org/10.1257/aer.89.1.175
http://dx.doi.org/10.1257/aer.89.1.175
http://dx.doi.org/10.1016/0022-5193(78)90200-X
http://dx.doi.org/10.1016/0022-5193(78)90200-X


rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151041

8
10. Haigh J, Rose M. 1980 Evolutionary game auctions.
J. Theor. Biol. 85, 381 – 397. (doi:10.1016/0022-
5193(80)90027-2)

11. Krishna V, Morgan J. 1997 An analysis of the war of
attrition and the all-pay auction. J. Econ. Theory 72,
343 – 362. (doi:10.1006/jeth.1996.2208)

12. Chatterjee K, Reiter JG, Nowak MA. 2012
Evolutionary dynamics of biological auctions. Theor.
Popul. Biol. 81, 69 – 80. (doi:10.1016/j.tpb.2011.
11.003)

13. Baye MR, Kovenock D, de Vries CG. 1996 The all-pay
auction with complete information. Econ. Theory 8,
291 – 305. (doi:10.1007/BF01211819)

14. Krishna V. 2009 Auction theory, 2nd edn. New York,
NY: Academic Press.

15. Gwynne DT. 1984 Courtship feeding increases
female reproductive success in bushcrickets. Nature
307, 361 – 363. (doi:10.1038/307361a0)

16. Helfenstein F, Wagner RH, Danchin E, Rossi J-M.
2003 Functions of courtship feeding in black-legged
kittiwakes: natural and sexual selection. Anim.
Behav. 65, 1027 – 1033. (doi:10.1006/anbe.
2003.2129)

17. Edelman B, Ostrovsky M, Schwarz M. 2007 Internet
advertising and the generalized second price
auction: selling billions of dollars worth of
keywords. Am. Econ. Rev. 97, 242 – 259. (doi:10.
1257/aer.97.1.242)

18. Hofbauer J, Sigmund K. 1988 The theory of
evolution and dynamical systems. Mathematical
Aspects of Selection. Cambridge, UK: Cambridge
University Press.

19. Foster D, Young P. 1990 Stochastic evolutionary
game dynamics. Theor. Popul. Biol. 38, 219 – 232.
(doi:10.1016/0040-5809(90)90011-J)

20. Weibull JW. 1995 Evolutionary game theory.
Cambridge, MA: The MIT press.

21. Nowak MA. 2006 Evolutionary dynamics: exploring
the equations of life. Cambridge, MA: The Belknap
Press of Harvard University Press.

22. Maynard Smith J, Price GR. 1973 The logic of
animal conflict. Nature 246, 15 – 18. (doi:10.1038/
246015a0)

23. Taylor PD, Jonker LB. 1978 Evolutionary
stable strategies and game dynamics. Math.
Biosci. 40, 145 – 156. (doi:10.1016/0025-
5564(78)90077-9)
24. Nowak MA, Sigmund K. 1992 Tit for tat in
heterogeneous populations. Nature 355, 250 – 253.
(doi:10.1038/355250a0)

25. Nowak MA, Sigmund K. 1993 A strategy of win-stay,
lose-shift that outperforms tit-for-tat in the
prisoner’s dilemma game. Nature 364, 56 – 58.
(doi:10.1038/364056a0)

26. Samuelson L. 1998 Evolutionary games and
equilibrium selection. Cambridge, MA: The MIT
Press.

27. Hofbauer J. 2000 From Nash and Brown to Maynard
Smith: equilibria, dynamics and ESS. Selection 1,
81 – 88. (doi:10.1556/Select.1.2000.1-3.8)

28. Nowak MA, Sigmund K. 2004 Evolutionary dynamics
of biological games. Science 303, 793 – 799. (doi:10.
1126/science.1093411)

29. Imhof LA, Fudenberg D, Nowak MA. 2005
Evolutionary cycles of cooperation and defection.
Proc. Natl Acad. Sci. USA 102, 10 797 – 10 800.
(doi:10.1073/pnas.0502589102)

30. Gintis H. 2009 Game theory evolving: a problem-
centered introduction to modeling strategic
interaction, 2nd edn. Princeton, NJ: Princeton
University Press.

31. Zagorsky BM, Reiter JG, Chatterjee K, Nowak MA.
2013 Forgiver triumphs in alternating prisoner’s
dilemma. PLoS ONE 8, pe80814. (doi:10.1371/
journal.pone.0080814)

32. Nowak MA, Sasaki A, Taylor C, Fudenberg D. 2004
Emergence of cooperation and evolutionary stability
in finite populations. Nature 428, 646 – 650.
(doi:10.1038/nature02414)

33. Imhof LA, Nowak MA. 2006 Evolutionary game
dynamics in a Wright – Fisher process. J. Math. Biol.
52, 667 – 681. (doi:10.1007/s00285-005-0369-8)

34. Ohtsuki H, Bordalo P, Nowak MA. 2007 The one-
third law of evolutionary dynamics. J. Theor. Biol.
249, 289 – 295. (doi:10.1016/j.jtbi.2007.07.005)

35. Traulsen A, Nowak MA, Pacheco JM. 2007 Stochastic
payoff evaluation increases the temperature of
selection. J. Theor. Biol. 244, 349 – 356. (doi:10.
1016/j.jtbi.2006.08.008)

36. Fudenberg D, Imhof LA. 2008 Monotone imitation
dynamics in large populations. J. Econ. Theory 140,
229 – 245. (doi:10.1016/j.jet.2007.08.002)

37. Traulsen A, Hauert C, De Silva H, Nowak MA,
Sigmund K. 2009 Exploration dynamics in
evolutionary games. Proc. Natl Acad. Sci. USA 106,
709 – 712. (doi:10.1073/pnas.0808450106)

38. Nagashima H, Terashima I. 1995 Relationships
between height, diameter and weight distributions
of Chenopodium album plants in stands: effects of
dimension and allometry. Ann. Bot. 75, 181 – 188.
(doi:10.1006/anbo.1995.1010)

39. Nagashima H, Terashima I, Katoh S. 1995 Effects of
plant density on frequency distributions of plant
height in Chenopodium album stands: analysis
based on continuous monitoring of height-growth
of individual plants. Ann. Bot. 75, 173 – 180.
(doi:10.1006/anbo.1995.1009)

40. Ewens WJ. 2004 Mathematical population genetics
1: I. Theoretical introduction, 2nd edn. New York,
NY: Springer.

41. Parker G. 1990 Sperm competition games: raffles
and roles. Proc. R. Soc. Lond. B 242, 120 – 126.
(doi:10.1098/rspb.1990.0114)

42. Wedell N, Gage MJ, Parker GA. 2002 Sperm
competition, male prudence and sperm-limited
females. Trends Ecol. Evol. 17, 313 – 320. (doi:10.
1016/S0169-5347(02)02533-8)

43. Wang Q, Millar JG. 1997 Reproductive behavior of
Thyanta pallidovirens (Heteroptera: Pentatomidae).
Ann. Entomol. Soc. Am. 90, 380 – 388. (doi:10.1093/
aesa/90.3.380)
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