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A detailed understanding of the genetic structure of populations and an accu-

rate interpretation of processes driving contemporary patterns of gene flow are

fundamental to successful spatial conservation management. The field of sea-

scape genetics seeks to incorporate environmental variables and processes into

analyses of population genetic data to improve our understanding of forces

driving genetic divergence in the marine environment. Information about bar-

riers to gene flow (such as ocean currents) is used to define a resistance surface

to predict the spatial genetic structure of populations and explain deviations

from the widely applied isolation-by-distance model. The majority of seascape

approaches to date have been applied to linear coastal systems or at large

spatial scales (more than 250 km), with very few applied to complex systems

at regional spatial scales (less than 100 km). Here, we apply a seascape genetics

approach to a peripheral population of the broadcast-spawning coral Acropora
spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral

reef system off the central coast of Western Australia. We coupled population

genetic data from a panel of microsatellite DNA markers with a biophysical

dispersal model to test whether oceanographic processes could explain pat-

terns of genetic divergence. We identified significant variation in allele

frequencies over distances of less than 10 km, with significant differentiation

occurring between adjacent sites but not between the most geographically dis-

tant ones. Recruitment probabilities between sites based on simulated larval

dispersal were projected into a measure of resistance to connectivity that

was significantly correlated with patterns of genetic divergence, demonstrat-

ing that patterns of spatial genetic structure are a function of restrictions to

gene flow imposed by oceanographic currents. This study advances our

understanding of the role of larval dispersal on the fine-scale genetic structure

of coral populations across a complex island system and applies a methodo-

logical framework that can be tailored to suit a variety of marine organisms

with a range of life-history characteristics.
1. Introduction
The resilience of marine systems to environmental perturbations is strongly

linked to the degree of connectivity between populations through the dispersal

and recruitment of larvae. Understanding both the genetic structure of popu-

lations and processes driving contemporary patterns of gene flow is pivotal

for assessments of ecosystem resilience, and therefore spatial conservation man-

agement. Population genetic structure has traditionally been interpreted using a

model of isolation by distance (IBD), a spatially explicit analysis that tests the fit

of allele frequency variation with geographical distance between sampling

locations [1–3]. Although patterns of IBD have proved to be widespread and

common in nature [4], there is a frequent disconnect between genetic differen-

tiation and geographical distance in the marine environment, particularly for
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highly fecund organisms with a pelagic larval stage [5–8]. In

such cases, population genetic structure fails to reflect any

clear spatial trend, and levels of differentiation can be greater

between adjacent sites than between distant ones [9–13]. IBD

does not account for the possible effects of the environment

on gene flow and therefore can be too simplistic for interpret-

ations of genetic structure for organisms with a high capacity

for dispersal across oceanographically complex systems.

The field of seascape genetics incorporates environmental

variables into the analysis of population genetic data in order

to improve our understanding of processes driving gene flow

in the marine environment [14,15]. As in landscape genetics,

which incorporates physical features to explain patterns of

restricted gene flow across terrestrial systems [16,17], similar

information about barriers to gene flow in the marine

environment is used to define a resistance surface to predict

spatial genetic structure and explain deviations from the

IBD model. This ‘isolation by resistance’ (IBR) pattern may

be particularly evident when an organism’s reproductive

strategy involves a sedentary adult phase and a pelagic

larval stage that is subject to prevailing currents. Complex

ocean circulation can represent significant barriers to dispersal

and can produce patterns of genetic structure that are often dif-

ficult to interpret; however, incorporating oceanographic

mechanisms into the analyses of population genetic data has

placed confounding patterns of genetic patchiness into more

ecologically relevant contexts [18–22].

The majority of seascape approaches to date have been

applied along essentially linear coastlines or at large spatial

scales (more than 250 km) [23–30], with very few applied to

complex systems (like island archipelagos) at smaller spatial

scales (less than 100 km) [18,20,31]. These smaller spatial scales

are generally more relevant to management, so linking gene

flow with the physical environment at this spatial scale should

be a priority, particularly for habitat-forming species such

as reef-building corals, which are in decline globally [32].

Information from such studies can serve as a valuable resource

for local management aimed at enhancing the resilience of

a system through the use of protected area networks that

accurately reflect contemporary source–sink dynamics.

The Houtman Abrolhos Islands (HAI) represents an ideal

opportunity to apply a seascape approach to a coral reef

system with great complexity at a fine scale. The HAI is the

southern-most coral reef system in the Indian Ocean, and is

located at the edge of the continental shelf off the central coast

of Western Australia (between 2881500 and 298000 S) and in a

region of convergence between temperate and tropical waters.

The archipelago comprises a network of 122 low-lying islands

that form three main groups (Wallabi, Easter and Pelsaert) that

together span approximately 70 km north to south. The islands

sit at the edge of the warm, poleward flowing Leeuwin Current

[33], and while the exposed windward side of the islands is

predominantlyalgal covered, the back reef lagoons and channels

are dominated by diverse coral fauna (184 species represent-

ing 42 genera) [34]. Previous population genetic studies on

intertidal gastropods [35–37] and finfish [38] have demonstrated

that the complexities of currents within the system restrict gene

flow and isolate populations, leading to significant and often

complex patterns of spatial genetic structure that can be up to

an order of magnitude greater than among adjacent mainland

populations [39,40]. While existing studies highlight the effects

of the islands on patterns of connectivity [37], they do not

include independent estimates of larval advection.
The aim of this study was to test whether a seascape mod-

elling approach could explain patterns of gene flow across a

complex and isolated high-latitude coral reef system. Specifi-

cally, we coupled population genetic data from a panel of

microsatellite DNA markers with a biophysical dispersal

model to test the relationship between oceanographic cur-

rents and patterns of spatial genetic structure. We chose to

focus our analysis on the broadcast-spawning coral species

Acropora spicifera, which is considered rare throughout the

Indo-Pacific and East Indian Ocean, but dominates coral

assemblages of the HAI at the southern extent of its range

[34]. We had three specific aims: (i) to test for significant

population genetic structure in A. spicifera; (ii) to determine

whether genetic divergences are a function of geographical

distance between sample sites (i.e. IBD); and (iii) to determine

whether genetic divergences are a function of resistance to

connectivity imposed by ocean currents (i.e. IBR).
2. Material and methods
(a) Sample collection, DNA extraction and microsatellite

genotyping
Samples of A. spicifera (n ¼ 395) were collected in October 2013 and

April 2014 from 15 sites across the HAI (figure 1; electronic sup-

plementary material, table S1). Fragments (3–5 cm) of adult

coral colonies were collected along a 200 m transect within each

site from uniform habitats at a depth between 2.5 and 10 m.

Genomic DNA was extracted from samples using a silica-based

method [41]. Samples were amplified across a panel of 10 microsa-

tellites originally developed for Acropora millepora [42,43] and

optimized into four multiplexes using the Qiagen Multiplex PCR

Kit (electronic supplementary material, table S2). PCR products

were analysed on an ABI 3700 sequencer using a GeneScan-500

LIZ internal size standard and scored with manually prepared

bins in GENEMARKER v. 1.90 (SoftGenetics).

(b) Microsatellite analysis
Allelic frequencies, observed and expected heterozygosities, and

inbreeding coefficients were calculated in GENEALEX v. 6.5 [44]

for each sample site and across all loci. Deviations from Hardy–

Weinberg equilibrium (HWE) and tests for linkage disequilibrium

(LD) were calculated using GENEPOP v. 4.0.1 [45], and tests for sig-

nificance were based on 10 000 de-memorization, 10 000 batches

and 10 000 iterations per batch. Tests for evidence of large allele

dropout, stuttering and the presence of null alleles that could

explain deviations from HWE were performed using MICRO-

CHECKER v. 2.2.3 [46]. Significance levels were adjusted using

sequential Bonferroni corrections in all statistical analyses that

included multiple comparisons.

(c) Genetic connectivity
The statistical power of the panel of microsatellites to detect genetic

structure was tested using a simulation approach in POWSIM v. 4.0

[47]. The program uses Fisher’s exact and x2 tests to test the null

hypothesis of genetic homogeneity using the number of loci,

allele frequencies and sample sizes from the current dataset. Simu-

lations were run using a range of combinations of Ne (effective

population size) and t (time since divergence) for FST values ran-

ging from 0.001 to 0.10. The power of the panel of microsatellites

was determined by the proportion of significant tests ( p , 0.05)

across 1000 replicate runs.

Spatial genetic structure was estimated using several

methods. A hierarchal analysis of variance (AMOVA) calculated



113.500 113.750 114.000 114.250 114.500

113.500

–2
9.

00
0

–2
8.

75
0

–2
8.

50
0

–2
8.

25
0

113.750

–2
9.

00
0

–2
8.

75
0

–2
8.

50
0

–2
8.

25
0

114.000

P1

E1

W3W2

W1

W4
W5

Wallabi group

Easter group

Pelsaert group

Geraldton

North Island

E4

E3

E2

E5

P5

P3 P4

P2

114.250 114.500

Figure 1. Sample sites for A. spicifera collected across the HAI, Western Australia. Pale grey areas indicate shallow reef. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151217

3

in ARLEQUIN v. 3.11 [48] was used to identify differences between

island groups (FCT), among sample sites within island groups

(FSC) and among sample sites irrespective of island group

(FST). Tests for significance were based on 10 000 permutations.

Pairwise levels of genetic differentiation between sample

sites were estimated using the indices FST [49], Dest [50] and

G0ST [51], as suggested by Verity & Nichols [52]. Bayesian cluster-

ing analyses were conducted in GENELAND v. 3.2.4 [53] in R

[54]. GENELAND differs from the widely used clustering software

STRUCTURE [55] in that geographical coordinates can be incorpor-

ated as a prior to produce more accurate inferences of population

structure when genetic differentiation is subtle [56]. Analyses

were performed under the spatial and null allele model with

correlated alleles and with K (number of populations) ranging

from 1 to 5. The maximum rate of Poisson process was set to

400 and the maximum number of nuclei to 1200 as suggested

by Guillot et al. [53]. Analyses were based on 100 000 MCMC

iterations and with a thinning of 100. Ten independent runs

were used to determine the appropriate number of K, which

was chosen based on the modal K with the highest posterior

probability. An additional five independent runs were con-

ducted with the K-value held constant (likely number of

groups based on posterior probability of the previous run) to

test for consistency of membership probabilities of each sample

site across multiple runs. Although A. spicifera is the dominant

coral species at the HAI, its relative abundance at each of the

sample sites varied, resulting in considerable differences in num-

bers of samples collected per site. To account for biases

associated with sample size variation on the observed patterns

of genetic differentiation, we randomly subsampled each of the

15 sample sites (14 individuals per site reflecting the smallest

sample size) for 100 sampling iterations, each time performing

an AMOVA (1000 permutations) using the package ‘poppr’

[57] in R, with sample sites nested within island groups and

within clusters identified by GENELAND. We also used the sub-

sampled datasets to generate 100 matrices of genetic ‘pseudo-

distance’ using the package ‘mmod’ [58] in R, and calculated a

coefficient of determination (R2) between the ‘pseudo-distance’

matrices and the actual genetic distances obtained from the

entire dataset.
(d) Oceanographic connectivity
Levels of resistance to connectivity imposed by currents were

determined by simulating the probability of larval dispersal

among sample sites using a fully four-dimensional (three spatial

dimensions þ time), open-source object-oriented biophysical dis-

persal model developed by Kool & Nichol [59]. Coral spawning

in Western Australia occurs predominantly in the Austral

autumn [60], with a secondary smaller spawning event in the

spring [61]. At the HAI, at least 60% of the scleractinian coral

species, including A. spicifera, spawn within a one-week period

in the main autumn event [62]. For the dispersal simulations,

larvae were released following the third full moon of the year for

five consecutive days and were considered eligible for recruitment

following a three-day pre-competency period. Under controlled

settings, 85% of A. spicifera larvae from the HAI settle on day 7

post-spawning [63], therefore a recruitment eligibility window of

day 3 to day 9 was selected for simulated dispersal. Dispersal

tracks were generated for 1000 simulated larvae per sample site

with an exponential mortality rate. Details on model parameters

are described in the electronic supplementary material, table S3.

Larval density maps were generated using the ‘spatial analyst’

tool in ARCGIS v. 10.2 (Environmental Systems Research Institute)

and were based on a circular area with a radius of 2 km around

each raster cell.

A probability matrix describing the likelihood of individuals

recruiting to a destination population (row) from a source popu-

lation (column) was generated based on the proportion of

simulated larvae that occurred within a 1 km zone around each

sample site during the recruitment eligibility window. The matrix

included data from four consecutive spawning events (2009–

2012) to account for inter-annual variability. Values were then

standardized across rows (destination populations) to generate a

migration matrix (M), providing frequencies of recruitment contri-

bution of each source population. The diagonal of this matrix is the

proportion of simulated larvae that self-recruit. The migration

matrix was then projected forward in time, as in the study of

Kool et al. [64], to examine the probability of populations being con-

nected over multiple generations. For details of this method, see

electronic supplementary material S1. Finally, to generate a

measure of distance that could be directly compared with the
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empirical genetic data, a similarity matrix was projected from each

of the two migration matrices using the equation
Pr

k¼1

ffiffiffiffiffiffiffiffiffiffiffi
xikyik
p

[65],

where x and y are larval migration probabilities between pairs of

populations over the r populations. This value was subtracted

from 1 to generate a genetic distance matrix, hereafter referred to

as derived oceanographic resistance (DOR).

(e) Seascape effects on gene flow
We tested the correlations of genetic distance (linearized FST, Dest

and G0ST) with geographical distance (IBD) and DOR (IBR) using

one-tailed Mantel tests (null hypothesis: r � 0) based on 10 000

permutations, using the package ‘ecodist’ [66] in R. To test the sen-

sitivity of these correlations, we recalculated genetic distance by

jack-knifing across all microsatellite loci and re-ran the tests. To

test the influence of variation in sample size on this relationship,

we used the ‘pseudo-distance’ matrices (see §2c) in the Mantel

tests (as above) to determine the proportion of subsampled data-

sets (100 iterations) that returned a p-value less than the alpha

level of 0.05. Finally, we carried out partial Mantel tests of genetic

distance versus DOR while controlling for geographical distance to

partition out the effects of geographical distance on our measures

of DOR. Despite being a widely applied statistical method in evol-

utionary biology [67], there seems to be much debate about the

validity of Mantel tests to test the independence of elements in

two matrices [68–70]. An alternative approach involves fitting

mixed-effects models to account for the correlated structure of

regression on distance matrices (maximum-likelihood population

effects or MLPE model) [71]; however, parameter optimization

is achieved using the restricted/residual maximum-likelihood

procedure, raising doubts about the use of traditional information

criteria such as AIC for model selection [72]. Summaries of

‘variance explained’ such as the R2
b-value [73] have been proposed

as suitable alternative statistics for model evaluation; however,

several practical and theoretical issues remain, with an overall

lack of consensus towards this approach [74]. The goal of our

approach was to improve on the IBD model by including a

measure of distance that reflected the physical seascape. As the

IBD model has been traditionally interpreted using a Mantel test,

which is generally more conservative than mixed-effects models

[67], we chose to keep with this approach.
3. Results
(a) Microsatellite analysis
All microsatellite loci were polymorphic, with effective

number of alleles per population ranging from 3.217 to 3.903

(electronic supplementary material, table S1). There was con-

siderable variation in departures from HWE among loci

(electronic supplementary material, table S4), with one locus

(EST_254) showing significant deficits of heterozygosity

across all populations, which suggested the presence of null

alleles. The presence of null alleles was confirmed by MICRO-

CHECKER, so this locus was removed from further analyses.

Heterozygosity at each sample site ranged from 0.500 to

0.640, with six sites showing subtle but significant deviations

from HWE (electronic supplementary material, table S1). Sig-

nificant cases of LD were detected in only eight out of 540

comparisons. Replicate multi-locus genotypes (MLGs) were

detected in 9% (n ¼ 35) of the samples collected, and there

was no instance where an MLG was shared between individ-

uals from different sampling sites or between more than

three individuals within a sampling site. Samples with match-

ing MLGs were considered clones formed via fragmentation

and were removed from the dataset.
(b) Genetic connectivity
Simulations in POWSIM indicated a high statistical power (0.996)

of the panel of microsatellites to resolve population structure at

low levels (FST � 0.005). AMOVA detected no significant het-

erogeneity among island groups (FCT ¼ 0.002, p ¼ 0.081), but

there was significant structure among sites within island

groups (FSC ¼ 0.016, p ¼ 0.001) and among sample sites irre-

spective of island group (FST ¼ 0.019, p ¼ 0.001). The three

measures of genetic differentiation (FST, GST and Dest) were

strongly correlated (0.946 , R , 0.998, p � 0.001) and pro-

duced similar spatial genetic patterns (electronic

supplementary material, figure S1). Pairwise comparisons

ranged from 0.0069 to 0.0483 (FST) and from 20.019 to 0.128

(G0ST) (table 1). Dest-values can be found in electronic sup-

plementary material, table S5. Twelve of the 105 pairwise FST

comparisons were significant (adjusted p � 0.0005), all of

which involved a sampling site from the Pelsaert group.

Bayesian clustering in GENELAND identified K ¼ 3 as the most

likely number of clusters in the dataset (electronic

supplementary material, figure S2). Maps of posterior prob-

abilities showed that the first cluster comprised all Wallabi

and Easter group samples sites, as well as P1 and P2 from

the Pelsaert group (figure 2). The second cluster comprised

P5, and the third cluster comprised P3 and P4. This pattern

was consistent across the five additional independent runs.

This pattern did not appear to be an artefact of differences in

sample size, as AMOVAs based on the subsampled datasets

returned a significant FCT ( p , 0.05) 2% of the time when

sample sites were clustered according to island group and

99% of the time under the GENELAND nested arrangement.

Furthermore, there was a strong relationship between the

‘pseudo-distances’ calculated from the subsampled datasets

and the genetic distance matrix based on the entire dataset

(R2 ¼ 0.74; electronic supplementary material, figure S3).

(c) Oceanographic connectivity
Larval density maps based on simulated particle trajectories

illustrated that the distinct genetic clusters within the Pelsaert

group lay outside the areas of high larval density (figure 3).

In general, larvae that were released from the Wallabi or

Easter groups tended to either track out through channels

between the islands and then move in a southerly direction

along the continental shelf, or track north in the lee of the

islands before moving westward and being diverted south

along the shelf. In both situations, very few simulated

larvae came within recruiting distance of the eastern Pelsaert

sample sites (identified as clusters two and three from the

GENELAND analysis). Probabilities of larval dispersal between

sample sites, which were standardized to compare frequen-

cies of contribution to recruitment at each site, supported a

pattern of restricted larval recruitment to the Pelsaert group

(electronic supplementary material, table S6). Both the

Wallabi and Easter groups contributed very few recruits to

the Pelsaert sample sites, with 92% of successful recruits

to the Pelsaert sample sites originating from within this

island group. The genetic similarity matrix, based on the

standardized dispersal probabilities, identified a strong gen-

etic break between the Wallabi and Pelsaert groups,

particularly with the more eastern Pelsaert sample sites;

however, this pattern became less pronounced when the

migration matrix was projected forward 10 generations

(electronic supplementary material, figure S4).
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Figure 2. Distributions of genetic clusters (K ¼ 3) in GENELAND v. 3.2.4.
Lighter colours indicate higher probabilities of membership to a cluster.
(Online version in colour.)
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(d) Seascape effects on gene flow
Mantel tests revealed a non-significant relationship between

observed genetic distance (linearized G0ST, Dest and FST) and

log-transformed geographical distance (table 2). By contrast,

there was a significant relationship between genetic distance

and DOR. This relationship was significant for all measures

of genetic differentiation at t ¼ 0. Jack-knifing across loci

showed that the results were significant in all cases and cor-

relation coefficients remained relatively stable (electronic

supplementary material, table S7). This relationship did not

appear to be an artefact of differences in sample size, as the

Mantel tests based on the subsampled ‘pseudo-distance’
matrices returned significant results 96% of the time (elec-

tronic supplementary material, figure S5). The correlations

became marginally non-significant when projecting the

matrix forward 10 generations, and partial Mantel tests con-

trolling for the effects of geographical distance yielded

similarly significant relationships between genetic distance

and DOR (table 2).
4. Discussion
The central finding of this study is one of localized genetic

patchiness that can be explained by ocean currents. Gene

flow over regional scales was not constrained by geographi-

cal distance, but by effective distance due to inter-island

currents, which acted to restrict dispersal and isolate local

populations. We linked patterns of genetic divergence to an

oceanographic mechanism and identified an area of the archi-

pelago that appeared to be isolated from the greater larval

pool, and probably reliant on local sources of larvae to main-

tain healthy coral populations. Incorporating oceanographic

data into interpretations of fine-scale genetic structure

improved our understanding of processes driving regional

connectivity across a complex seascape and corroborates the

importance of integrating physical processes when studying

gene flow in marine populations.

Acropora spicifera does not form a single panmictic popu-

lation within the HAI. We identified significant variation in

allele frequencies over distances of less than 10 km and

showed that genetic heterogeneity was patchy, with significant

variation occurring between adjacent sites in the Pelsaert

group, but not between the most geographically distant ones.

This pattern of genetic patchiness is a common finding for

scleractinian corals, which regularly display fine-scale genetic

structure within reefs (less than 10 km) but homogeneity

across vast distances (more than 1000 km) [75–77]. As a

result, geographical distance was a poor predictor of genetic

divergence between sample sites, indicating that the popu-

lation genetic structure of A. spicifera at the HAI is more

complex than under a stepping-stone model of IBD. Significant

patterns of IBD in coral species are generally indicative of

restricted gene flow across large geographical areas [78,79],

so the disconnect between genetic differentiation and geo-

graphical distance reported here was not surprising

considering the small spatial scale of the study.

The population genetic structure of A. spicifera at the HAI

appeared to be a function of restricted gene flow arising from

differences in the source of larval recruits among sites. Currents

have been well documented to be a major force influencing

gene flow in the marine environment [20,24,30,80,81]. Variable

ocean currents and bathymetric complexities can work syner-

gistically to produce fine-scale source–sink dynamics that

isolate local populations and produce high levels of genetic

divergence, particularly across island archipelagos that are

made up of a mosaic of reefs [37]. Populations may be suffi-

ciently isolated for significant genetic subdivision to arise,

but occasional long-distance dispersal (leptokurtic gene flow)

can keep the broader set of populations connected. In this

study, all of the significant between-site genetic divergences

involved the Pelsaert group, and modelled larval transport

from oceanographic data indicated that the distinct genetic

clusters within the Pelsaert group lay outside the areas of

high larval density in a region characterized by a heightened



simulated larval density

(a) (b) (c)

log10 km–2

high: 3
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Figure 3. Kernel density plots showing log-transformed densities per square kilometre of simulated larvae (75% confidence cut) released from all sample sites for
years 2009 – 2012. Plots show simulated larval densities released from (a) Wallabi group, (b) Easter group and (c) Pelsaert group within the defined recruitment
eligibility window. (Online version in colour.)

Table 2. Mantel randomization tests comparing IBD versus IBR across three measures of genetic differentiation (FST, G0ST and Dest). Bold values indicate
significance ( p � 0.05). Partial Mantel tests of IBR, controlling for geographical distance, are also included.

predictor description

FST G0ST Dest

p Mantel r p Mantel r p Mantel r

D (log) log-transformed geographical distance (IBD) 0.072 0.120 0.070 0.132 0.062 0.133

DOR DOR based on transition probabilities (IBR) 0.001 0.377 0.005 0.347 0.005 0.347

DORFP DOR based on forward-projected allele states (IBR) 0.139 0.155 0.089 0.185 0.086 0.184

DORjD (log) DOR, given geographic distance 0.004 0.444 0.011 0.388 0.011 0.387

DORFPjD (log) forward-projected DOR, given geographical distance 0.278 0.091 0.193 0.132 0.191 0.128
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level of local recruitment. It may be the case that the Pelsaert

group is shadowed from the strong and consistent north-to-

south laminar flow of the Leeuwin Current by the northern

island groups, with recruitment along the Pelsaert reefs instead

more influenced by small-scale eddies that act to isolate local

populations and enhance self-recruitment, but with the lepto-

kurtic tail of dispersal maintaining genetic connectivity

across groups over multiple generations. This interpretation

would also explain why other species with a high capacity

for dispersal, such as the pulmonate limpet, Siphonaria kurra-
cheensis, also show significant genetic structure in the Pelsaert

group but not elsewhere in the HAI [36].

Dispersal is a highly stochastic process, and patterns of

genetic patchiness can arise from a number of pre-settlement

processes that influence the spatial distribution of alleles. An

alternative mechanism commonly invoked to explain pat-

terns of local heterogeneity amid large-scale homogeneity,

particularly for broadcast-spawning species, is the variable

reproductive success of adults, where a small number of indi-

viduals contribute a substantial number of recruits to a given
population due to a chance matching of reproduction and

oceanography (sweepstake reproductive success) [82]. The

resulting patterns of genetic patchiness are therefore ephem-

eral, and one generation’s genetic patches will not predict the

genetic patterns in the next generation. We were unable to

test this hypothesis, as we did not collect recruits from mul-

tiple cohorts. While there is likely to be some sweepstake

effects occurring, there is enough temporal stability in the

genetic data that operates over enough generations to show

a significant relationship with the oceanography when aver-

aged over multiple years. Ultimately, more information on

the intra-population dynamics at these sites is needed to

fully test our interpretations; however, the combined evi-

dence from genetic and oceanographic data strongly

suggests that populations of A. spicifera in the more eastern

reefs of the Pelsaert group are effectively isolated from

larvae sourced from elsewhere within the HAI. Conse-

quently, these areas of reef have a limited capacity to

recover from disturbance in comparison with other regions

of the HAI that maintain high levels of connectivity.
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These findings have direct implications for management

decisions and conservation planning. As the spatial arrangement

and zoning of marine protected areas can have important effects

on dispersal dynamics, the accurate identification and sub-

sequent protection of key larval source populations is vital to

help ensure that local populations are maintained. There are cur-

rently four habitat protection areas within the HAI aimed at

conserving marine life, one of which is in the Pelsaert group

and lies immediately adjacent to sample sites P3 and P4 [83].

Based on our analyses, this area probably protects a valuable

larval source population for adjacent reefs in the Pelseart

group. Considering that the HAI represents a stronghold for

this otherwise uncommon coral species, conserving genetically

distinct populations of A. spicifera within the HAI should be a

priority for management.

These results are particularly relevant in light of the

recent ‘marine heatwave’ that struck the coastline of Western

Australia in 2011 and resulted in the first documented case of

large-scale bleaching in the region [84]. The effects of the dis-

turbance at the HAI were patchy, and bleaching varied

widely within each island group and across the archipelago

[85], making it difficult to draw any conclusions about the

effects of this disturbance on the genetic structure of local

coral populations, particularly because the small number of

departures from HWE and LD suggests that populations are

in mutation-drift equilibrium. In conclusion, there is an

urgent need to better understand fine-scale processes driving

larval dispersal and gene flow across coral reef archipelagos,

so that spatial conservation management can be tailored

to accurately reflect patterns of larval transport and contem-

porary source–sink dynamics. This study demonstrates the
utility of combining genetic and oceanographic data at spatial

scales relevant for management by applying a methodologi-

cal framework that can be easily tailored for other marine

organisms with complex life-history characteristics that

include a pelagic larval or propagule stage. It also advances

our understanding of the influence of physical processes on

the fine-scale genetic structure of marine populations within

complex island systems.
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