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Starting with Darwin, biologists have asked how populations evolve from a

low fitness state that is evolutionarily stable to a high fitness state that is not.

Specifically of interest is the emergence of cooperation and multicellularity

where the fitness of individuals often appears in conflict with that of the

population. Theories of social evolution and evolutionary game theory

have produced a number of fruitful results employing two-state two-body

frameworks. In this study, we depart from this tradition and instead con-

sider a multi-player, multi-state evolutionary game, in which the fitness of

an agent is determined by its relationship to an arbitrary number of other

agents. We show that populations organize themselves in one of four distinct

phases of interdependence depending on one parameter, selection strength.

Some of these phases involve the formation of specialized large-scale

structures. We then describe how the evolution of independence can be

manipulated through various external perturbations.
1. Introduction
Cooperative behaviour, as exemplified by multicellular life, seems to have

evolved at least 25 times independently—once for plants, once or twice for ani-

mals, once for brown algae, and possibly several times for fungi, slime moulds

and red algae [1]. On shorter time scales, the social composition of eukar-

yotes such as Saccharomyces cerevisiae, and biofilm-forming bacteria such as

Pseudomonas aeruginosa can dramatically change in a brief period [2–5]. In a

related context, tumour formation is a rare example of the transition, taking

place in the reverse direction, from a multicellular to an essentially unicellular life-

style. Interestingly, cancer cells end up cooperating by collectively secreting

angiogenic factors, and it seems possible, at least in principle, that there may

even be cheaters (i.e. those who do not secrete the growth factors) among this

collection of cooperating cheaters [6,7].

Evolutionary game theory provides excellent insight into how altruistic and

cooperative behaviour can emerge to maximize the fitness of the group despite

the apparent fitness advantage of cheating individuals [8,9]. In the context of evol-

ution of cooperation, these models typically investigate the outcome of repeated

runs of the prisoner’s dilemma between pairs of agents that have two strategies,

cheating and cooperating. Variants of the model include structured inter-

actions, coupled populations, coevolution, stored reputation, punishment and

preferential or random partner choosing [10–18].

However, real life is more complicated in a number of ways. First, many

actual games are massively multi-player [19–22]. The fitness of an organism

may depend on its simultaneous relationship with multiple players. Second,

biology allows for a much larger variety of internal states beyond cooperating

or defecting. For example, the genetic make-up of an organism may be suitable

for cooperation with only an exclusive few, while some organisms may be

incapable of defecting or cooperating all together. Third, real social evolution

leads to highly organized dependence structures beyond the homogeneous

mixtures or aggregates of cooperator–defector states that we often see in the

majority of evolutionary game models. From biochemical to societal scales,
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reproduction:selection:
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mutation:

Figure 1. Schematic of the model. The evolutionary algorithm is carried out
by assuming that (a) fitness of a node v(xi) is a monotonically increasing
function of edge influx xi ¼ bni,in 2 cni,out, where ni,in and ni,out are
the number of in and out edges for node i. (b) reproduction preserves all
in – out relationships with r fittest nodes replacing the least fittest nodes
and (c) a small number of edges are randomly added/removed every
generation, with probability p� 1.
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life organizes itself in highly complex arrangements of

cliques, communities, cycles and hierarchies.

Without compromising the simplicity and tractability

offered by traditional evolutionary game theory, here we pro-

pose an evolutionary model in which the fitness of an agent is

determined, not by the outcome of a two-player two-state

game, but instead a multi-player multi-state one. Thus, our

focus is not the cooperator–defector ratio in the population,

but rather the large-scale structure of all exchanges; i.e. the

interdependence between agents or groups of agents within a

genetically heterogeneous population. We ask how independent

agents become interdependent through the simple laws of evol-

ution, whether positive selection is a necessary or a sufficient

condition for the formation of interdependence, what kinds of

interdependent structures are stable/unstable, and how these

structures and processes depend on evolutionary parameters.

Accordingly, the present model offers a clear framework for

classifying and categorizing different regimes of interdepen-

dence, as well as allowing for careful control of evolutionary

parameters that may be influencing recent non-intuitive empiri-

cal outcomes [23]. We determine which kinds of external

perturbations promote anti-sociality (e.g. in order to eradicate

biofilms) and which other kinds can inhibit anti-sociality

(e.g. as to suppress or reverse tumor growth) by simulating

the introduction of selfish/altruistic strains into a population

or the administration of anti-sociality/sociality promoting

drugs. We evaluate the success rate of these evolutionary inter-

ventions as a function of the original population structure, drug

dose, fraction of drug-resistant agents and reproduction speed

of the target species.
2. Model
Our multi-state multi-player game can be best visualized as a net-

work of N� 1 agents, connected by directional edges. An edge

from A to B indicates that A contributes to the fitness of B at the

cost of its own. Unlike the typical evolutionary game theoretic

models where the state of a player i is binary (cooperator/

cheater), here the player states ci are characterized by high-

dimensional vectors, i.e.ci¼ fx1, x2,. . ., xNgwith xj [ f0, 1g indi-

cating whether i provides a fitness benefit to j. The evolutionary

dynamics is governed by the following assumptions (figure 1):

(1) The fitness v(xi) of a node i is assumed to be a

monotonically increasing function of received net benefit
xi ¼ bni,in 2 cni,out, where ni,in and ni,out are the number of

in and out edges for node i. The parameter b ¼ b/c quan-

tifies the benefit of an edge (to the receiver) relative to its

cost (to the provider).

(2) Every generation, the r most fit nodes produce offspring

that replace the r least-fit nodes. Reproduction preserves

all edge relationships of the parent, i.e. parents and

offspring connect to the same agents.

(3) There is a small mutation probability p per generation

with which edges are added/removed randomly.

In other words, we have a fitness-based selection rule keep-

ing the number of agents N constant. Our simulation code

is available as an electronic supplement.

Our model has four parameters, kept constant throughout

the course of evolution: population size N, mutation probability

p, number selected for replacement r, and the relative benefit b.

For every run, we keep track of the total number of edges E(t) as

a function of generation number t. E(t) is a measure of the inter-

dependence of the population as well as the average fitness

(the latter follows from kvl ¼
P

ivi=N ¼ (b� 1)E(t)=N,

which can be positive or negative depending on the value of

b). In addition, we study the community structures and genetic

composition within the population, which are defined in terms

of the connectivity matrix C of the network. We use the conven-

tion that Cij¼ 1 if j depends on i, and 0 otherwise, and represent

these by black and white pixels in array plots. Our simula-

tions were run for N ¼ 200, partly due to computational

constraints. Although this might appear small, we note that

the relevant degree of freedom here is the number of edge

slots N2 ¼ 4 � 104, ensuring that the evolutionary transitions

we report are not accidental fluctuations.
3. Results
The evolutionary dynamics and final interdependence states

depend on the values of b and relative selection pressure

r/m, where m ¼ N2p is the expected number of mutations

per generation (which is equal to the number of mutants if

p� 1). We can divide the parameter space into four regimes:

neutral constructive (r� m, b . 1), selective constructive

(O[r] � O[m], b . 1), neutral destructive (r� m, b , 1) and

selective destructive (O[r] � O[m], b , 1). In all cases, the

formation of an edge is beneficial for one of the nodes

and deleterious for the other. However, the value of b deter-

mines the change in average fitness per edge, dkvl/dE ¼
c(b 2 1)/N, and therefore one intuitively expects E(t) to

decrease for b , 1 and increase for b . 1 as long as selection

strength is finite. We will see that this expectation will not

always be satisfied, particularly when b . 1.

Let us start with the straightforward case of b , 1. Here

the formation of an edge is more deleterious to its originator

than beneficial to its target, and the fitness of the population

changes by b 2 c , 0 per edge. Thus, in the long run, only if

the selection is weak (r� m) can such deleterious edges

accumulate, and we get a random interdependence network

with E ¼ N2/2. As expected, increasing r/m causes the net-

work to become sparse and fragmented, and all structure

vanishes as O[r] � O[m].

We now overview the constructive regime b . 1, which

produces distinct phases of complexity (figure 2a–f ).
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Figure 2. Regimes of constructive evolution (b . 1). Plotted is the number of edges E(t) as a function of time (generations) t, as the selection strength is
increased from left to right r ¼ 2, 4, 9, 10, 15, 100 while mutation probability is kept constant N2p ¼ 20. The dashed straight lines indicate the stable
number of edges corresponding to an integer number k of equal-sized ‘bunches’, E ¼ N2(1 2 1/k). The dashed curved line is the outcome of the fully neutral
simulation (r ¼ 0). For all panels, N ¼ 200, b ¼ 1.01.

(a)

(b)

Figure 3. Interdependence and genetic composition. Connectivity matrices (a) and their respective phylogenetic trees (b) show the dramatic difference in the final
organization of the population caused by varying selective strength (left to right, r ¼ 0,2,4,15,100) in the constructive regime (b . 1). The connectivity matrix
element Cij is marked by black if individual i provides fitness to j, and left white if there is no exchange. The tree linkages in the bottom are formed according to
smallest intercluster dissimilarity, defined by the L1 norm. For all panels N ¼ 200, N2p ¼ 20, b ¼ 1.01 is kept constant. We see the onset of ‘bunch’ (anti-
community) formation even in the weak selection limit (compare first two panels). The number and definition of bunches increases with higher selection strength
(fourth panel). In the strong selection limit bunches compete with each other, leading to size heterogeneity (fifth panel).
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The long-term behaviour of E(t), which can be viewed as a

proxy for average fitness as well as interdependence and

complexity, depends non-monotonically on selective pressure

r/m: for small values of r/m, the asymptotic value E(t!1)

decreases with r/m (figure 2a–c). However, if r/m exceeds a

critical point we see sudden transitions between well-defined

discrete levels (figure 2d–f ). As selective pressure is increa-

sed further, we see increasingly larger fluctuations around

these levels.

We describe these asymptotic states in more detail by

connectivity matrices (figure 3a) and phylogenetic trees

(figure 3b) for varying levels of r/m. The phylogenetic

trees are obtained by quantifying the similarity distance

Dij ¼
P

kjCik � C jkj þ
P

kjCki � Ckjj between all pairs of nodes

i and j. In other words, if i and j receive from and provide to

the same nodes, they are considered to be genetically related,

consistent with our reproduction rule (cf. figure 1).

While the destructive b , 1 regime produces either random

or sparse networks, the constructive regime b . 1 can be
summarized in terms of a sequence of complex phases gov-

erned by the value of r/m (figure 4): a transition from

cooperation to competition between individuals (figure 2a–c)

is followed by unstable interactions between individuals and

‘bunches’ (figure 2d), followed by a transition from cooperation

to competition between ‘bunches’ (figure 2e,f). We define a

bunch to be the opposite of a graph theoretical community;

a group of nodes that form denser connections towards other

groups, than they do within (cf. last two panels in figure 3).

Dense outwards connections and sparse intra-connections

are the key qualitative characteristic of a highly specialized

system. For example, nearly all energy spent by a heart

muscle cell is directed at serving other tissues. The same

holds true in a specialized society, e.g. a lawyer dedicates

most of her effort defending non-lawyers. The interdependence

structures we report in the last two panels of figure 3, conform

to these biological and social examples of specialization.

We now move towards an understanding of the control
and manipulation of the evolution of interdependence, which
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is now experimentally possible (albeit with mixed success) in

biomedical and ecological settings. For example, the sociality

of P. aeruginosa can be manipulated by drugs that suppress

the microbe’s production of a common good (iron scavenging

siderophores). As the microbes that are resistant to the drug

will altruistically continue to produce the expensive sidero-

phores, they are taken over by their selfish counterparts

affected by the drug [5,24,25]. As a result, the iron-deficient

population can be easily annihilated by the host’s immune

system [26]. Note that the evolutionary fate of the drug-

resistant group would have been the opposite, had the

drug been an antibiotic instead of a quorum blocker. On

the other hand, there have also been experiments yielding

the exact opposite outcome, where the drug aggravates the

infection instead of impairing it, presumably by levelling

the relative advantage of cheaters [23]. We will use our

model to quantify these mixed outcomes. Social evolution

is complex, and its manipulation and control requires a
detailed quantitative understanding of the evolutionary

outcomes of varying initial states and system parameters.

To manipulate the sociality of a highly interdependent,

b . 1 population, we start with an initial network that has

a given community structure, select a fraction h of the popu-

lation and block a fraction g of their outgoing connections of

those that are selected. Following this perturbation, we track

the evolution of the network and check if our perturbation

causes the entire population to lose all connections (which,

for b . 1, amounts to minimal fitness). If E(t) drops to and

remains at zero we count it as a success and we determine the

fraction of successes for every parameter value. If h� 1,

the perturbation can be interpreted as an external introduc-

tion of a new strain/species, or a novel mutation which

introduces a very small number of selfish individuals in the

population. If h ≃ 1, the perturbation can be interpreted as

a drug or event that inflicts nearly everyone, such as the

quorum blocker discussed earlier. Accordingly, the quantity
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g can be interpreted as the dose of the drug, or the degree of

‘selfishness’ of the newly introduced species/strain.

Figure 5 displays the dependence of success as a function

of h (empty versus closed plot markers correspond to h ¼ 2%

and 98%), initial population structure k (quantifying the

number of bunches) and g. We consider fast reproducing

and slow reproducing species separately, shown in figure 5

(a) and (b), respectively.

It is important to distinguish between two very different

mechanisms that bring the population back to its pre-perturbed

state. The first is determined by the time required for interde-

pendence to evolve anew from E ¼ 0. The original factors

causing the establishment of cooperation in the first place is pre-

sent regardless of our perturbation, and the effect of even the

strongest drug (h ¼ 1, g ¼ 1) is to simply reset the evolutionary

clock. The second mechanism is evolution through the repopu-

lation of the drug-resistant fraction, which happens much

faster, on reproductive time scales. To clearly distinguish

between these two mechanisms, we set p ¼ 0 in figure 5;

using a finite p scales down all the success rates but does not

otherwise change the qualitative dependence on h, g and k.

We observe a number of interesting features in the response

of the population to external perturbations. Forh ≃ 1, we find a

non-monotonic dependence of success rate tob for populations

with few bunches: for slow reproducing populations a moder-

ate dose works as well as, or better than, a strong one. For

larger numbers of bunches, and faster reproduction rates the

non-monotonicity vanishes: the stronger the dose, the better

the outcome. A second remarkable outcome is the degree

to which a few individuals can make a difference: targeting

h ¼ 2% of the population is as effective as targeting h ¼ 98%

of the population provided the drug has a high enough dose.

This is because few selfish individuals, as is the case in tumours

or invasive species, can devastate an entire population. Finally,

we observe a very strong dependence of the success rate on the
initial community structure. With increasing k and r this

difference vanishes.
4. Discussion
The phase diagram for the evolution of interdependence is

shown in figure 4 and compactly summarizes our results.

Figure 4a shows the number of dependences, while Figure 4b
quantifies their structure through ‘bunch modularity’. We

define the latter by exchanging 1$ 0 in the connecti-

vity matrix and determining the community modularity. We

will label regimes of interdependence with A–D and discuss

them in the following subsections. Regimes A/B refer to

cooperation/competition between individuals, while regimes

C/D refer to cooperation/competition between bunches.

4.1. Cooperation between individuals
In the neutral regime (r� m), additions and deletions of

edges are equally likely. Thus, if the population starts fully

independent, E(t) increases until the network is fully ran-

domized with N2/2 edges. This increase is statistically

irreversible and is the analogue of the scenario described in

[27–29]. In the neutral regime, individuals have high fitness

due to the benefits of indirect reciprocity; interdependence

emerges not due to higher fitness but simply due to higher

likelihood. Figure 1a shows the dynamics and final outcome

of nearly neutral evolution. Despite following a similar

trajectory to fully neutral evolution (E(t) � N2(1� e�2pNt),

indicated by the dashed curve in figure 2a–f ), the connec-

tivity matrix shows the onset of community formation; the

interdependence structure and genetic composition of the

population is far from random (cf. figure 3a,b).

As the selection strength is increased (r , m but not r� m),

the fluctuations in E(t) are amplified. This is caused by the
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random formation of nodes for which the number of in-

edges are different than out-edges. However, the system is

self-stabilizing (figure 2a,b); e.g. when the fit defectors repro-

duce, they typically replace their unfit providers, which in

turn reduces their own fitness. Consequently, they are taken

over by the fair and fit nodes that dominate the r� m popu-

lation. In figure 3, third panel, two large reciprocating groups

can be distinguished. They are taken advantage by smaller

scale opportunistic sub-populations. It is also possible to see

a smaller sub-cooperative group sustaining itself within a

larger cooperative group.

4.2. Competition between individuals
As r approaches rc � m/2 from below, the fluctuations in

E(t) become comparable to E(t) itself. Here the selective

competition is just high enough to allow for small coopera-

tive communities to form and grow at a rate much higher

than random chance, but also high enough for cheaters to

spread over their providers in one step, beyond recovery

(figure 1c). Although regime A and B have similar destabiliz-

ing factors, their re-stabilization is very different. The drops

in E(t) in regime A can recover through re-population, over

time scales approximately 1/r. By contrast, regime B exhibits

system-size losses from which the only way to recover is

re-mutation, over longer time scales determined by approxi-

mately 1/m2, as the smallest cooperative group requires

two mutations.

Comparing A to B reveals that higher selection strength in

this case leads to lower fitness; had one mixed the stronger

selected population B with the weaker selected one A, the

former would be driven to extinction. The behaviour of B is

similar to that expected in a classical prisoner’s dilemma,

which emerges from our model as a special case—survival

of the fittest produces the globally least-fit outcome.

4.3. Formation of specialized bunches
As r is increased above the critical point rc � m/2 higher struc-

tures start to form. While the connectivity matrix C is sparse

and random for r just below rc, we start seeing metastable

bunches at r . rc, the number and stability of which increases

with r. The sudden jump in the edge number we see in

figure 2d,e is analogous to that found in [30].

For a very large window of selective strength

O[m] � r , O[N], we see that the system can only maintain

certain discrete values of E. These are the stable configurations

corresponding to an integer number of equal-sized bunches (k)

given by the relation Ek ¼ N2(1 2 1/k), k ¼ 0, 1, 2 , . . . , kmax

(figure 2d). The maximum number of bunches kmax is

determined by the mutation rate, kmax � N/m (i.e. so that in

steady state there is one mutation per bunch per time step).

However, we have observed k transiently increasing to 50%

higher than this value. Note that the degree of interdepen-

dence (and hence the average fitness) in the strong selection

limit well exceeds that in the weak selection limit.

It is interesting that in the limit r, m � 1, we see structures

more complex than bunches. These include hierarchies (smal-

ler bunches within a bunch), cycles (3 or more groups

providing to one other), and hierarchies of cycles (cycles

within a cycle). In this limit, the dynamics of E(t) still exhibits

discrete steps similar to figure 2e, however with more poss-

ible metastable plateaus corresponding to unequal-sized

matrix blocks.
4.4. Competition between bunches
With increasing r the fluctuation in the number of edges around

the stable k starts increasing, and we see destructive competi-

tion similar to that near the phase boundary of B; however,

now the competition is between the bunches rather than the indi-

viduals, which creates significant size differences between them.

These fluctuations can lead to one bunch replacing another, caus-

ing Ek to make large transitions between different values of k.

Despite the apparent noise (figure 2f ) the dependence struc-

ture remains in a highly ordered state with high reciprocity

(figure 3a,b, fifth panel). As r is increased further we see that com-

petition between bunches cause fluctuations comparable to the

size of bunches, i.e. a small bunch can increase in size by spread-

ing over others until another metastable structure re-evolves.
5. Conclusion
We have constructed a simple model that allows us to study

the coevolution of self-replicating interdependent structures,

and reported multiple evolutionary transitions as b and r
are varied. This model is quite general and has very few

assumptions—the fitness function is only assumed to be an

arbitrary increasing function of x and there are only two rel-

evant parameters governing the dynamics (selection strength

r/m and relative benefit b/c) as the population size N does

not make a qualitative difference as long as both Np and r
are much smaller than N. Furthermore, the value b does not

make a qualitative difference apart from whether it is larger

or smaller than unity, and no quantitative difference if j12bj
is smaller than 1/N. Unlike the typical simplified models of

evolutionary game theory, we do not assume that an individ-

ual’s behaviour is the same towards all others (although

some individuals can end up in a state where they give to all

and receive from all). In this respect, the states allowed in

this work are a generalization of the two-state models

common in the literature. Thus, we hope that our model

can serve as a guiding framework for understanding the

emergence of sociality.

Even in this simple case, we observe a number of surprising

and important phenomena. First, we report that even the weak-

est selection strengths (m� r) can produce interdependence

structures that are far from random. Thus, assumptions regard-

ing ‘random interdependence’ invoked by neutral evolutionary

arguments may be too strong [27–29]. Our second observation

is the natural emergence of specialized bunches and multi-scale

structures from the simple laws of evolutionary dynamics. As

we probe the response of the system to various selection

strengths, we see regimes of random interdependence, compe-

tition between nodes, cooperation between nodes (bunches)

and competition between bunches.

Thirdly, we report that the regime b . 1, r . 0 does not

ensure complex interdependence. There exists a ‘dead zone’

within the constructive regime (figure 2c) due to the compe-

tition between agents. This non-monotonic dependence of E
on selection strength can have important implications in medi-

cine. For example, biofilm populations may be induced into a

less virulent non-cooperative state by decreasing the selective

pressure, so that a cooperative film behaving as figure 2e
evolves into an intermediate non-cooperative state behaving

as figure 2c. This may be experimentally verified in P. aeruginosa
by increasing the available iron while keeping their population

constant by limiting their carbon source.
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Another remarkable result is the non-monotonic connec-

tion between anti-social drug dose and the successful

annihilation of cooperativeness. Indeed, the model exhibits

a ‘contagion’ effect which allows the manipulation of a few

individuals to have population-wide effects. It has been

noted that introducing several selfish mutants (or using an

anti-social drug effective on a few individuals) may be far

more effective than manipulating an entire population [23]

and is consistent with experimental observations [5,24,25].

Finally, when mutation rate is set to zero we observe that

the behaviour of E(t) resembles that of classical population

dynamics. The dynamics between providers and receivers

becomes qualitatively similar to that between the predators

and prey of a Lotka–Volterra-type system. Starting from a

randomized connectivity matrix and setting p ¼ 0, it is

common for E(t) to reach a fixed value and oscillate around it.

Owing to its generality and applicability, our model has

room for many natural extensions. For example, the distri-

bution of parameters and fitness functions in a more
realistic model could include spatial, temporal and individual

heterogeneity. Further, the quantities p, b and c can be

dynamic as they are themselves, to an extent, subject to evol-

utionary forces. This can lead to a very interesting set of

potential future studies exploring connections between inter-

dependence and evolvability/efficiency. Another factor not

taken into account here is the possibility of the change in

population size due to statistical fluctuations (e.g. due to

a time-dependent energy input, or infection/predation).

Such extensions would be appropriate to address systems

in ecology, structured biological population, and provide

insight into complicated social trends.

Competing Interests. We declare we have no competing interests.

Funding. This work was funded by the Wyss Institute for Biologically
Inspired Engineering, the Harvard Kavli Institute for Bio-nano
Science and Technology, the MacArthur Foundation and government
support (A.I.) under FA9550-11-C-0028 awarded by the Department
of Defense, Air Force Office of Scientific Research, National Defense
Science and Engineering Graduate Fellowship, 32CFR168a.
0044
References
1. Grosberg R, Strathmann R. 2007 The evolution of
multicellularity: a minor major transition? Annu.
Rev. Ecol. Syst. 38, 621 – 654. (doi:10.1146/annurev.
ecolsys.36.102403.114735)

2. Ratcliff W, Denison R, Borrello M, Travisano M. 2012
Experimental evolution of multicellularity. Proc. Natl
Acad. Sci. USA 109, 1595 – 1600. (doi:10.1073/pnas.
1115323109)

3. Gore J, Youk H, van Oudenaarden A. 2009 Snowdrift
game dynamics and facultative cheating in yeast.
Nature 459, 253 – 256. (doi:10.1038/nature07921)

4. Jiricny N, Diggle SP, West SA, Evans BA, Ballantyne
G, Ross-Gillespie A, Griffin AS. 2010 Fitness
correlates with the extent of cheating in a
bacterium. J. Evol. Biol. 23, 738 – 747. (doi:10.1111/
j.1420-9101.2010.01939.x)

5. Diggle S, Griffin A, Campbell G, West S. 2007
Cooperation and conflict in quorum-sensing
bacterial populations. Nature 450, 411 – 414.
(doi:10.1038/nature06279)

6. Axelrod R, Axelrod D, Pienta K. 2006 Evolution of
cooperation among tumor cells. Proc. Natl Acad. Sci.
USA 103, 13 474 – 13 479. (doi:10.1073/pnas.
0606053103)

7. Nagy J, Victor E, Cropper J. 2007 Why don’t all
whales have cancer? A novel hypothesis resolving
Peto’s paradox. Integr. Comp. Biol. 47, 317 – 328.
(doi:10.1093/icb/icm062)

8. Maynard-Smith J. 1982 Evolution and the theory of
games. Cambridge, UK: Cambridge University Press.

9. Nowak M. 2006 Five rules for the evolution of
cooperation. Science 314, 1560 – 1563. (doi:10.
1126/science.1133755)

10. West S, Griffin A, Gardner A, Diggle S. 2006 Social
evolution theory for microorganisms. Nat. Rev.
Microbiol. 4, 597 – 607. (doi:10.1038/nrmicro1461)
11. Roca C, Cuesta J, Sanchez A. 2009 Evolutionary
game theory: temporal and spatial effects beyond
replicator dynamics. Phys. Life Rev. 6, 208 – 249.
(doi:10.1016/j.plrev.2009.08.001)

12. Szabo G, Fath G. 2007 Evolutionary games on
graphs. Phys. Rep. 446, 97 – 216. (doi:10.1016/j.
physrep.2007.04.004)

13. Perc M, Gomez-Gardenes J, Szolnoki A, Floria L, Moreno
Y. 2012 Evolutionary dynamics of group interactions on
structured populations: a review. J. R. Soc. Interface 10,
997– 1013. (doi:10.1098/rsif.2012.0997)

14. Rand D, Arbesman S, Christakis N. 2011 Dynamic
social networks promote cooperation in experiments
with humans. Proc. Natl Acad. Sci. USA 108,
19 193 – 19 198. (doi:10.1073/pnas.1108243108)

15. Wang Z, Szolnoki A, Perc M. 2013 Interdependent
network reciprocity in evolutionary games. Sci. Rep.
3, 1183 (doi:10.1038/srep01183)

16. Wu B, Zhou D, Fu F, Luo Q, Wang L, Traulsen A.
2010 Evolution of cooperation on stochastic
dynamical networks. PLoS ONE 5, e11187. (doi:10.
1371/journal.pone.0011187)

17. Gross T, Blasius B. 2008 Adaptive coevolutionary
networks: a review. J. R. Soc. Interface 5, 259 – 271.
(doi:10.1098/rsif.2007.1229)

18. Perc M, Szolnoki A. 2010 Coevolutionary games? A
mini review. Biosystems 99, 109 – 125. (doi:10.
1016/j.biosystems.2009.10.003)

19. Broom M. 2003 The use of multiplayer game theory
in the modeling of biological populations.
Comments Theor. Biol. 8, 103 – 123. (doi:10.1080/
08948550302450)

20. Connor R. 2010 Cooperation beyond the dyad: on
simple models and a complex society. Phil.
Trans. R. Soc. B 365, 2687 – 2697. (doi:10.1098/rstb.
2010.0150)
21. Archetti M, Scheuring I. 2012 Review: game theory
of public goods in one-shot social dilemmas
without assortment. J. Theor. Biol. 299, 9 – 20.
(doi:10.1016/j.jtbi.2011.06.018)

22. Gokhale C, Traulsen A. 2014 Evolutionary
multiplayer games. Dyn. Games Appl. 4, 468 – 488.
(doi:10.1007/s13235-014-0106-2)

23. Kohler T, Perron G, Buckling A, van Delden C. 2010
Quorum sensing inhibition selects for virulence and
cooperation in Pseudomonas aeruginosa. PLoS
Pathog. 6, e1000883. (doi:10.1371/journal.ppat.
1000883)

24. Mellbye B, Schuster M. 2011 The sociomicrobiology
of antivirulence drug resistance: a proof of concept.
mBio 2, e00131. (doi:10.1128/mBio.00131-11)

25. Sandoz K, Mitzimberg S, Schuster M. 2007 Social
cheating in Pseudomonas aeruginosa quorum
sensing. Proc. Natl Acad. Sci. USA 104, 15 876 –
15 881. (doi:10.1073/pnas.0705653104)

26. Boyle K, Heilmann S, van Ditmarsch D, Xavier J.
2013 Exploiting social evolution in biofilms. Curr.
Opin. Microbiol. 16, 207 – 212. (doi:10.1016/j.mib.
2013.01.003)

27. Stoltzfus A. 1999 On the possibility of constructive
neutral evolution. J. Mol. Evol. 49, 169 – 181.
(doi:10.1007/PL00006540)

28. Gray M, Lukes J, Archibald J, Keeling P, Doolittle W.
2010 Irremediable complexity?. Science 330,
920 – 921. (doi:10.1126/science.1198594)

29. Vural D, Morrison G, Mahadevan L. 2014 Aging in
complex interdependency networks. Phys. Rev. E.
89, 022811. (doi:10.1103/PhysRevE.89.022811)

30. Jain S, Krishna S. 2001 A model for the emergence
of cooperation, interdependence, and structure in
evolving networks. Proc. Natl Acad. Sci. USA 98,
543 – 547. (doi:10.1073/pnas.98.2.543)

http://dx.doi.org/10.1146/annurev.ecolsys.36.102403.114735
http://dx.doi.org/10.1146/annurev.ecolsys.36.102403.114735
http://dx.doi.org/10.1073/pnas.1115323109
http://dx.doi.org/10.1073/pnas.1115323109
http://dx.doi.org/10.1038/nature07921
http://dx.doi.org/10.1111/j.1420-9101.2010.01939.x
http://dx.doi.org/10.1111/j.1420-9101.2010.01939.x
http://dx.doi.org/10.1038/nature06279
http://dx.doi.org/10.1073/pnas.0606053103
http://dx.doi.org/10.1073/pnas.0606053103
http://dx.doi.org/10.1093/icb/icm062
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1038/nrmicro1461
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1098/rsif.2012.0997
http://dx.doi.org/10.1073/pnas.1108243108
http://dx.doi.org/10.1038/srep01183
http://dx.doi.org/10.1371/journal.pone.0011187
http://dx.doi.org/10.1371/journal.pone.0011187
http://dx.doi.org/10.1098/rsif.2007.1229
http://dx.doi.org/10.1016/j.biosystems.2009.10.003
http://dx.doi.org/10.1016/j.biosystems.2009.10.003
http://dx.doi.org/10.1080/08948550302450
http://dx.doi.org/10.1080/08948550302450
http://dx.doi.org/10.1098/rstb.2010.0150
http://dx.doi.org/10.1098/rstb.2010.0150
http://dx.doi.org/10.1016/j.jtbi.2011.06.018
http://dx.doi.org/10.1007/s13235-014-0106-2
http://dx.doi.org/10.1371/journal.ppat.1000883
http://dx.doi.org/10.1371/journal.ppat.1000883
http://dx.doi.org/10.1128/mBio.00131-11
http://dx.doi.org/10.1073/pnas.0705653104
http://dx.doi.org/10.1016/j.mib.2013.01.003
http://dx.doi.org/10.1016/j.mib.2013.01.003
http://dx.doi.org/10.1007/PL00006540
http://dx.doi.org/10.1126/science.1198594
http://dx.doi.org/10.1103/PhysRevE.89.022811
http://dx.doi.org/10.1073/pnas.98.2.543

	The organization and control of an evolving interdependent population
	Introduction
	Model
	Results
	Discussion
	Cooperation between individuals
	Competition between individuals
	Formation of specialized bunches
	Competition between bunches

	Conclusion
	Competing Interests
	Funding
	References


