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Microbial communities display complex population dynamics, both in fre-

quency and absolute density. Evolutionary game theory provides a natural

approach to analyse and model this complexity by studying the detailed inter-

actions among players, including competition and conflict, cooperation and

coexistence. Classic evolutionary game theory models typically assume con-

stant population size, which often does not hold for microbial populations.

Here, we explicitly take into account population growth with frequency-

dependent growth parameters, as observed in our experimental system.

We study the in vitro population dynamics of the two commensal bacteria

(Curvibacter sp. (AEP1.3) and Duganella sp. (C1.2)) that synergistically protect

the metazoan host Hydra vulgaris (AEP) from fungal infection. The frequency-

dependent, nonlinear growth rates observed in our experiments indicate that

the interactions among bacteria in co-culture are beyond the simple case of

direct competition or, equivalently, pairwise games. This is in agreement

with the synergistic effect of anti-fungal activity observed in vivo. Our analysis

provides new insight into the minimal degree of complexity needed to appro-

priately understand and predict coexistence or extinction events in this kind

of microbial community dynamics. Our approach extends the understanding

of microbial communities and points to novel experiments.
1. Introduction
From protists to humans, all animals and plants are inhabited by microbial

organisms. There is an increasing appreciation that these resident microbes influ-

ence evolutionary important traits (e.g. fitness) of their hosts [1,2]. The host and

its associated microbiota do not evolve independently, but form a metaorganism

that evolves as a whole under natural selection [3,4]. The microbial organisms

affect host fitness in various ways. They contribute by enhancing digestion and

mediating energy balance via nutrient absorption [5–8], controlling pathogenic

reactions [9–11], stimulating stem cell turnover [12] and the maturation of

immune systems [13,14] and potentially triggering normal development of

organs [15,16]. They even promote hybrid lethality/sterility and thus contribute

to speciation [4]. Despite the well-accepted importance of microbiota to the

normal functioning of the host, the molecular and cellular mechanisms control-

ling interactions within the metaorganisms are poorly understood and many

key interactions between the associated organisms remain unknown [17]. More-

over, the applications of theoretical frameworks to improve the understanding of

the ecological interactions among microbiota and between host and microbiota

are still very limited. Notable exceptions include [18–22].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2015.0121&domain=pdf&date_stamp=2015-06-17
mailto:traulsen@evolbio.mpg.de
http://dx.doi.org/10.1098/rsif.2015.0121
http://dx.doi.org/10.1098/rsif.2015.0121
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://orcid.org/
http://orcid.org/0000-0001-8662-0865


rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150121

2
There exists an established body of ecological theory for

the population dynamics of large organisms, such as plants

and animals. But whether these theories also apply to the

dynamics of microorganisms is largely unknown, yet

seldom questioned [17]. Compared to large organisms, bac-

teria not only differ greatly in the small physical size and

high growth rate, but also in the drastic changes of popu-

lation size. These differences are most profound during

neonatal host development, while the microbiota establish.

There has been comparably little theoretical development

regarding the interaction dynamics of size fluctuating bac-

terial populations [23,24]. A recent study showed that

microbiota colonization patterns during host development

display complex dynamics, which cannot be explained with

standard models of density independent competition [25].

This study also showed that the microbiota composition in

fresh water Hydra hatchlings changed greatly during devel-

opment. A highly variable initial stage was followed by a

transient adult-like phase in which the microbial composition

was temporarily very similar to the stable adult microbiota,

yet only retained for a short time. The adult microbiota com-

position only reappear after further drastic changes.

Remarkably, a similar ‘in-out-in’ colonization pattern of

adult-like microbiota composition was also observed in

human infants [26].

Even more interestingly, the complex microbiota in Hydra
prevents infection by the filamentous fungus Fusarium sp.

[11]. Using a germ-free Hydra model, it was shown that

germ-free polyps were highly susceptible to fungal infection,

while restoring the complex microbiota in gnotobiotic polyps

prevented infection. Testing single bacterial isolates from

Hydra in mono-associations revealed that none of the tested

bacterial colonizers alone was able to provide full anti-

fungal resistance. By contrast, resistance, as observed in con-

trol polyps, was achieved in polyps di-associated with the

two most dominant bacterial colonizers, Curvibacter sp. and

Duganella sp., by exhibiting a strong synergistic effect [11].

This finding provides compelling evidence for the impor-

tance of bacteria–bacteria interactions in the normal

functioning of Hydra-associated microbiota.

Besides empirical evidence, ecological theories are indis-

pensable to our understanding of the full complexity in

host–microbiota interplay. Evolutionary game theory takes its

root in classic game theory but focuses on the frequency

dynamics of strategies in populations instead of the quality of

competing strategies themselves. Therefore, it is especially

suited for studying microbial population dynamics on the eco-

logical timescale, where the fitness landscapes of different

types are constantly changing [27], and thus selection is fre-

quency dependent [28–30]. In the case of deterministic

dynamics, there exists a strong link between game dynamics

and ecological dynamics. The game theoretical replicator

equation is mathematically closely related to the ecological

Lotka–Volterra equation with linear growth rates [31]. The repli-

cator equation focuses on relative changes in population size

under frequency-dependent fitness, which can provide concep-

tual insights into the microscopic interactions between

individual bacteria cells. The Lotka–Volterra equation describes

populations of changing size. Therefore, it can be conveniently

linked to experiments [32–34]. In the case of two interacting

species, replicator dynamics and the competitive Lotka–Volterra

equations predict competitive exclusion, i.e. extinction of one

type, or coexistence at a unique state of population composition.
Considering the classic Lotka–Volterra equation as the

potential framework to understand bacterial interaction reveals

limitations in modelling the population dynamics of the two

most abundant bacterial species that interact synergistically to

protect the Hydra host from pathogenic infection. We show

that the patterns observed in our experiments require a more

detailed consideration of bacteria–bacteria interactions. This

includes growth rates that nonlinearly depend on the relative

abundance of different species in the exponential growth phase.

Compared to human and other more complex model

species, the early metazoan Hydra provides a comparably

simple system with a genetically determined bacterial com-

munity colonizing the surface of the ectodermal epithelium

[35]. Therefore, it serves as a powerful model organism for

studying the interactions between the host and its bacterial

community [36,37]. In addition, the synergistic interaction

between the two dominant bacteria species is especially excit-

ing. It provides anti-fungal protection to the host that cannot

be achieved by either of the bacteria when associated with the

host alone [11]. In a first attempt to quantitatively understand

the host–microbial interaction, here we determine the mech-

anisms of bacterial interactions without the host’s influence.

We performed double culture experiments in vitro with the

two most abundant actors in the Hydra microbiota. In order

to develop a mathematical model for this scenario, here

we propose general principles governing the interactions

within the microbiota. We start by adding frequency-

dependent growth rates into the Lotka–Volterra framework

and infer the possible dynamics for linear and quadratic

frequency-dependent growth rates, and then put these results

into the context of our empirical data. These data suggest inter-

actions between multiple players as one possible mechanism of

the interactions among individual bacterial cells, which can

lead to global population dynamics qualitatively similar to

those observed in our experiments.
2. Material and methods
We study the interactions between the two species of Betaproteo-

bacteria Curvibacter sp. AEP1.3 (C) and Duganella sp. C1.2 (D).

Both bacteria belong to the order of Burkholderiales, while C rep-

resents a Comamonadaceae and D an Oxalobacteraceae [11]. We

chose these two bacteria because (i) they are naturally found in

the bacterial community of the freshwater polyp Hydra vulgaris
(AEP) and are the two most abundant species in the microbiota

(C: 75.6% and D: 11.1%) [11]; (ii) the synergistic interaction

between the two bacteria species effectively provides anti-fungal

protection for the host [11]; and (iii) the morphology of their

colonies can be distinguished from each other on agar plates.

2.1. Monoculture and double culture experiments
To determine the growth rate in monocultures, we inoculated for

each bacterium 50 ml R2A medium with 10 concentrations

between 2.0 � 103 and 1.0 � 105 cfu ml– 1 of C or D of an over-

night culture. The cell numbers of each bacteria were estimated

by counting the colony forming units (cfu) and were cross-

checked with optical density (OD) measurements at OD600 ¼

0.1 (1.0 � 108 cfu ml– 1 for C and 2.0 � 107 cfu ml– 1 for D). In

double culture experiments, we kept a total initial concentration

of 1.0 � 105 cfu ml– 1 and applied a gradient of different initial

frequencies of species C and D. Over the course of 3 days,

three times a day, we measured the OD600 of the cultures and

plated two dilutions, which were adjusted individually to the

OD, on R2A agar plates. After 2 days, we counted the number
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Figure 1. We quantify the density of Curvibacter sp. and Duganella sp. by the method of counting colony forming units (cfu). At each time point, we took a sample of
the bacterial culture and performed a series of dilutions. The diluted samples were then plated on a Petri dish with solid agar medium. After 2 days, the fast-growing
Duganella sp. (indicated by cyan arrows) already formed clear and distinct colonies on the plates. After 4 days, the slow-growing Curvibacter sp. (indicated by green
arrows) also formed distinct colonies. Under the assumption that one colony was formed by one single founder cell in the medium, we can calculate the cell densities of
each of the two bacteria species in the original sample by adjusting the numbers of colonies with corresponding dilution factors.
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of colonies of D and after 4 days those of C. This difference in

counting times was due to different growth rates of the two

bacteria on agar plates (figure 1).
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Figure 2. Change in the frequency of Curvibacter sp. in double cultures with
Duganella sp. The frequency of Curvibacter sp. approaches the 0 or 1 bound-
aries over time, depending on the initial frequency of both types. If the
culture was inoculated with a high frequency of Curvibacter sp., the frequency
of it remains high (green trajectories), otherwise Duganella sp. quickly out-
grows and eventually pushes the frequency of Curvibacter sp. towards 0 (blue
trajectories). This resembles the dynamics in a coordination game, where the
two homogeneous populations are stable.
2.2. Data preparation and analysis
For cell culture growth over time in both monocultures and

double cultures, we calculated growth rate functions by applying

a linear regression to the log-linear transformed data. The good-

ness of fit was calculated using the (adjusted) R2 [38,39]. In

monoculture experiments for both species, we tested the depen-

dency of growth rate in the exponential growth phase on a

gradient of initial cell densities.

In double culture experiments for both species, we tested

linear, quadratic and cubic functions of growth rate on a gradient

of initial frequencies. These three different model hypotheses

were then compared using Akaike information criterion (AIC)

[40] and Bayesian information criterion (BIC) [41,42], based on

the likelihood functions of a normally distributed error term in

the linear regression model. The most appropriate models were

chosen with the agreement between both AIC and BIC tests.

In double culture experiments, if the cell density value was

missing for one of the species at a certain point in time during

the exponential growth phase, this data point was excluded

when plotting the growth trajectories. But the cell density of

the species that did have a valid count can still be used for

calculating the growth rate.
3. Mathematical model
Our mathematical model is directly motivated by experimental

observations. We analysed the growth trajectories of the

double culture experiments of Curvibacter sp. (C) and
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Duganella sp. (D), the two most abundant species that interact

synergistically to protect the Hydra host from fungal infection.

Depending on the initial condition, one of the two species

eventually becomes dominant in frequency (figure 2). This

resembles a coordination game [43], which is characterized

by an unstable intermediate fixed point and two stable bound-

ary fixed points. However, the submissive species does not go

extinct but keeps growing in absolute density. This is a key fea-

ture, which is usually neglected in game theoretic models

where only changes in frequency, fixation and respective

extinction are considered.

Based on these experimental findings, we propose a

mathematical model building on the classic Lotka–Volterra

competition dynamics, which is mathematically closely related

to the replicator equation in game theory models [31]. In our

model, the maximum growth rates in the exponential growth

phase of the bacterial culture are frequency dependent. This

model of in vitro bacterial interactions in growing populations

serves as a basis for making comparisons with the in vivo
scenarios influenced by the host.
1

3.1. Lotka – Volterra competition model with linear
frequency-dependent growth rates

The population dynamics in two-species Lotka–Volterra

competition models has been thoroughly discussed in text-

books [32,33]. Those models assume that the two species

only compete for the same limited resources, e.g. the same

food, or space with unrestricted nutrient provision, or terri-

tory which is directly related to food resources, but the two

species do not interact otherwise. Then the dynamics are

given by the following growth equations:

_C ¼ rC �
rC

KC
C� rD

KC
D

� �
C

and _D ¼ rD �
rD

KD
D� rC

KD
C

� �
D:

9>>>=
>>>;

(3:1)

Both species exhibit logistic growth when cultured

alone. The value of growth rates r and carrying capacities

K are positive constants. Equations (3.1) predict that

the two species can coexist only when exactly rCKC ¼

rDKD. Otherwise, the species with higher rK value

wins the competition, and the other species goes extinct

(competitive exclusion).

We depart from this simple case and consider the case

where growth rates rC and rD are frequency-dependent

linear functions. The frequency of C is denoted as x (x ¼ C/

(C þ D)), and the frequency of D is thus 1 2 x, in the

double culture system. Therefore, rC and rD can be written

as linear functions of x

rC(x) ¼ g0 þ g1x
and rD(x) ¼ d0 þ d1x:

)
(3:2)

Since the growth rates rC and rD are the maximum growth

rates reached at the exponential growth phase, they are

always positive. Consequently, we require g0, d0, g0 þ g1,

and d0 þ d1 to be positive. Then the population dynamics is

described by a set of modified Lotka–Volterra equations,

with linear frequency-dependent growth rates and interaction

coefficients. This is equivalent to logistic growth functions

with frequency-dependent competition coefficients. In the
following, we assume constant carrying capacity for both

species, KC ¼ KD ¼ K. For constant and linear growth rates,

it is straightforward to generalize our findings to KC = KD.

There are four steady states—three boundary cases (0, 0),

(0, K ), (K, 0), and the mixed solution:

(C�, D�) ¼ d0 � g0

g1 � d1
K,

g0 � d0 þ g1 � d1

g1 � d1
K

� �
: (3:3)

The mixed solution is only biologically meaningful if 0 , C*,

D* , 1. The relation C* . 0 implies that the growth rates

of the two species have to intersect at an intermediate

frequency. For the overall dynamics, there are four qualitatively

different cases, as illustrated in figure 3.

The set of points C þ D ¼ K satisfy the condition Ċ þ Ḋ ¼ 0;

therefore, it is an invariant manifold [31,44] of the dynamics.

Once this invariant manifold has been reached, the population

dynamics will not lead away from it. Let f ¼ jC0 þ D0 –Kj be

the distance from any point (C0, D0) on the plane spanned by

C and D to this invariant manifold. This distance decreases

monotonically regardless of the initial condition (C0, D0) off

the C þ D ¼ K manifold

_f ¼ C0 þD0 � K
jC0 þD0 � Kj (

_C0 þ _D0)

¼ �jC0 þD0 � Kj rC(x)
C0

K
þ rD(x)

D0

K

� �
, 0: (3:4)

Note that this holds regardless of the functional form of

the original frequency-dependent growth rates used in our

model rC(x) and rD(x).

We can determine the local stability of the fixed points

from the signs of the eigenvalues of the Jacobian matrix at

the fixed points [31,45]. The fixed point at (0, K ) is stable if

g0 , d0. The fixed point at (K, 0) is stable if g0 þ g1 . d0 þ d1.

Intuitively, these points are stable if the resident type grows

faster than the invading type. In figure 3a, we illustrate the

case where the growth rates rC(x) and rD(x) intersect in

the interval (0, 1), and rC(0) . rD(0). Then the fixed points

where one species goes extinct (K, 0) and (0, K ) are unstable.

On the one-dimensional stable manifold C þ D ¼ K, the

stability of fixed points alternate. Hence, the internal fixed

point (C*, D*) is stable. The other cases in figure 3b–d can be

analysed in the same way.
3.2. Quadratic growth rates
In order to obtain multiple intersections of the frequency-

dependent growth rates in the range (0, 1), the simplest

possibility is that one of the growth rate functions is linear

and the other is quadratic in species frequency. Therefore,

we assume a quadratic term in the growth rate function of

species D, and keep rC(x) and the population dynamics in

equations (3.1) unchanged

rD(x) ¼ d0 þ d1xþ d2x2: (3:5)

Depending on whether rD(x) has a maximum or a mini-

mum, there are two different cases allowing the growth rate

functions to intersect twice in the frequency range (0, 1). To

have two intersections of rC(x) and rD(x) within (0,1), the

function rC(x)2rD(x) must have two roots in the same

range. Besides the two boundary solutions (0, K ) and (K, 0),

there are now two intermediate solutions on the manifold
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Figure 3. Population growth with linear frequency-dependent growth rates, cf. equations (3.2). The four main panels show the population dynamics. The insets
show the corresponding linear frequency-dependent growth rate functions, in which the x-axis represents the frequency of C. In the main panels, filled circles are
stable fixed points and open circles are unstable fixed points. The orange arrows show the stream line trajectories of the population dynamics starting from a variety
of initial states. The gradient background captures the speed of change. (a,b) The growth rate functions cross in the range (0,1), leading to a mixed steady state
(C*,D*). (a) If rC(0) . rD(0) and rC(1) , rD(1), (C*,D*) is stable (rC ¼ 0.5 þ 0.1x, rD ¼ 0.2 þ 0.6x)). (b) If rC(0) , rD(0) and rC(1) . rD(1), (C*,D*) is unstable
(rC ¼ 0.2 þ 0.7x, rD ¼ 0.3 þ 0.3x). (c) If rC(x) , rD(x) for all x, there is no interior fixed point and only (0, K ) is stable (rC ¼ 0.2 þ 0.5x, rD ¼ 0.3 þ 0.6x).
(d ) If rC(x) . rD(x) for all x, there is no interior fixed point and only (K, 0) is stable (rC ¼ 0.2 þ 0.5x, rD ¼ 0.1 þ 0.4x).
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C þ D ¼ K, given by

(C�1, D�1) ¼ K
2d2

(g1 � d1 þV, 2d2 þ d1 � g1 �V) (3:6)

and

(C�2, D�2) ¼ K
2d2

(g1 � d1 �V, 2d2 þ d1 � g1 þV), (3:7)

where V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g1 � d1)2 þ 4(g0 � d0)d2

q
:

Similar to the cases where rC(x) and rD(x) are linear

functions of x, all trajectories lead to the invariant manifold

C þ D ¼ K. The stability of fixed points alternates on this

one-dimensional line. Conditioned on whether rD(x) has a

maximum or a minimum, there are two different stability

patterns on the manifold. The stability patterns are illustrated

in figure 4. When the quadratic function rD(x) has a maxi-

mum (d2 , 0), the two eigenvalues of the Jacobian matrix at

(0, K ) are 2d0 , 0 and g0 – d0 . 0. The two eigenvalues at

(K, 0) are –g0– g1 , 0 and –g0– g1 þ d0 þ d1 þ d2 , 0.
Therefore, (0, K) is unstable and (K, 0) is stable. Thus, the

intermediate fixed point (C�1, D�1) is stable and (C�2, D�2) is

unstable, as shown in figure 4a. The stability of fixed points

when rD(x) has a minimum can be analysed in the same

way, as shown in figure 4b. When the carrying capacity

values KC and KD are not equal, the fixed points can still be

calculated analytically, but (C�1, D�1) and (C�2, D�2) do not

always both fall in the first quadrant.
4. Results
Let us now come to a comparison of our theoretical model

and our experiments. The two bacteria species Curvibacter
sp. and Duganella sp. were mixed with different initial

frequency combinations and inoculated from a total concen-

tration of 1.0 � 105 cfu ml– 1. Depending on the initial

condition, the frequency of one of the species becomes

much higher than the frequency of the other (figure 2),
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resembling the scenario of positive frequency-dependent

selection in a coordination game. However, the absolute con-

centrations of both species increased over time in any case.

The observed bacterial population dynamics are different

from competitive exclusion in the sense that the advan-

tageous species cannot entirely take over the population.

The submissive species kept growing in absolute number

despite the decrease in frequency.

We first confirmed experimentally that the maximum growth

rates of the two bacteria did not change with the initial density in

monoculture experiments (figure 5a). The maximum growth

rates of Curvibacter sp. and Duganella sp. in monoculture inocu-

lated with a gradient of initial densities are fitted to constant

functions rC¼ 0.146 (R2¼ 0.998) and rD¼ 0.420 (R2¼ 0.996).

This suggests that differences in the growth rate in double cul-

tures (figure 5b) depend on the frequency combinations of the

two species, rather than their absolute densities.

The frequency-dependent growth rate of Curvibacter sp. in

double culture is fitted to a linear function rC ¼ 0.049x þ
0.128 (adjusted R2 ¼ 0.970), and the growth rate of Duganella
sp. in double culture is fitted to a quadratic function

rD ¼ 20.825x þ 0.898x þ 0.080 (adjusted R2 ¼ 0.972), shown

in figure 5b. For both rC and rD, we fitted the data to linear,

quadratic and cubic functions. The models of best fit are

chosen by both finite sample corrected AIC [40] and BIC

[41,42]. The carrying capacity values K of both bacteria are

5.9 � 108 cfu ml– 1, which is the median of all double culture

experiments (shown as the red line in figure 6).

From the comparison between growth rates in mono-

culture and double culture experiments, we observe that

the presence of Duganella sp. does not profoundly influence

the growth rates of Curvibacter sp., across a wide range of

initial frequencies. But interestingly, the presence of Curvibac-
ter sp. greatly influences the growth rate of Duganella sp.,

even at very low frequency (2%). When the initial frequency

of Curvibacter sp. approaches 0 in double culture experiments,

the growth rates of Duganella sp. do not converge to its



density of Curvibacter sp. (cfu ml–1)

de
ns

ity
 o

f 
D

ug
an

el
la

 s
p.

 (
cf

u
m

l–1
)

102
102

104

106

108

1010

104 106 108 1010
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growth rate when cultured alone. This disproportionally

large effect of Curvibacter sp. on the system indicates its role

as a keystone species [46,47] in the simplified microbiome.

Inserting the parameters measured from experiments, the

phase plane dynamics obtained from equations (3.1) is shown

in figure 6.
5. Discussion
Growth is important for bacterial populations. In comparison to

larger organisms, the size of bacterial populations can fluctuate

greatly and rapidly. Drastic changes occur particularly during

the colonization of new environments. Such new environments

can be abiotic systems like deep-sea hydrothermal vents [48,49],

and biotic systems, including neonatal invertebrate hosts [25]

and vertebrate hosts [26]. The composition of host-associated

microbiota play an important role in the development and

functioning of the host [50]. Prior work has shown that

the colonization processes display fast growth and complex

dynamics of the microbiota composition. Interesting examples

include the in-out-in colonization pattern of the adult-like micro-

biota composition, observed in Hydra and human babies [26]. In

addition, the ‘division of labour’-like dynamics in marine bac-

teria that colonize the chitin substratum [51], the life cycle-like

dynamics of Pseudomonas biofilms that connect extrinsic struc-

tures and intrinsic protein expression [52], and cross-feeding

and spatial partitioning of biofilm spaces between ecotypes

[53] are also interesting examples of complex bacterial popu-

lation dynamics during colonization of new environments.

More examples of bacterial interactions in biofilms during the

colonization of new environments can be found in the review

by Hall-Stoodley et al. [54]. Despite the wealth of intriguing
empirical discoveries, theoretical work that informs about

principal mechanisms and leads to synthesis and integration

of the available data is still limited [17].

Although various models have been developed to

describe the time dynamics of bacterial growth, most

of them only focus on the growth of one single species

[55–57]. On the other hand, bacterial inter-species inter-

actions are often studied in systems that have been

intentionally excluded from notable fluctuations in popu-

lation density [19,28,29]. In this way, species frequencies

instead of absolute densities are used to describe population

dynamics. For example, in the work of Kerr et al. [29], the

authors studied the spatial interactions of three strains of

Escherichia coli. It was found that when interactions are

localized, the dynamics of the three strains resemble a

‘rock–paper–scissors’ game, with the colicin-resistant strain

beating the colicin-producing strain, the colicin-producing

strain beating the colicin-sensitive strain, and the colicin-

sensitive strain outgrowing the colicin-resistant strain. This

provided compelling support for game theoretical predictions

in microbial ecology and evolution. However, the total popu-

lation size was kept relatively constant on static agar plates.

Therefore, frequency alone was sufficient to describe the

population dynamics observed.

In contrast to populations that have been kept in con-

stant size for theoretical convenience, here we analyse the

dynamics in growing bacterial populations. We show that

it is necessary to take into account both frequency and den-

sity to fully characterize the interaction dynamics.

Considering microbial density alone, the growth curves of

both Curvibacter sp. and Duganella sp. resemble logistic

growth. Solely from the frequency perspective, the two bac-

teria seem to play a coordination game. Only in the

interplay of the two effects, can we aptly describe the full

picture. Our analysis reveals a system with two intermediate

fixed points where both species coexist only if we look at

both frequency and density dynamics together.

In evolutionary game theory, the vast majority of studies

consider cases where the population size is either constant or

where the system can be recast into a form where population

growth does not affect the outcome. When it comes to growing

populations—as in our case—many concepts and definitions

become more cumbersome. Consequently, experimental and

quantitative descriptions also become more delicate. For

example, the typical definition of cooperative traits is that

they increase the fitness of others at a fitness cost to self. But

this increase could refer to the relative abundance or the absol-

ute abundance. The former is commonly assumed in the

evolutionary game theory literature, while the latter is com-

monly found in the experimental evolution literature. In

other words, interactions could either influence the relative

abundance or the absolute abundance in a variety of ways,

which has not yet been fully addressed by theoretical models.

In classic logistic growth under Lotka–Volterra

dynamics, or equivalently, game theoretical replicator

dynamics, the growth rates in the exponential growth phase

(simply denoted as growth rates in the following) are usually

assumed to be constant [58–61]. The overall density-

dependent change in population size can be introduced by

altering the carrying capacity of the system. This alteration

can arise from interspecific and intraspecific competition.

For example, the carrying capacity could be determined by

an evolutionary game [62]. In our case, we have seen that
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the growth rates are affected much more by bacterial inter-

actions than the carrying capacities. Such growth rates can

be frequency dependent due to interactions in the population

other than direct competition [63].

A recent modelling study showed that social interactions

between antibiotic-tolerant and antibiotic-sensitive bacteria

can lead to patterns of multiple stability and thus explained

how the microbiota composition can switch after antibiotic

treatment [64]. Linear frequency-dependent growth rates

have also been reported in a study of microbial random

phase variation, which influences bacterial survival in chan-

ging environments [65]. A particularly interesting finding

was reported by Trosvik et al. [66]. There the authors found

a parabolic interaction relationship between Bacteroides
uniformis and Escherichia coli, similar to our case. In our

experimental system, the growth rate of Duganella sp.

depends on the frequency of Curvibacter sp. also in a para-

bolic way. In the study by Trosvik et al., E. coli had a

positive effect on B. uniformis only to a certain point in the

range of frequency, and then the effect turned out to be detri-

mental. Mechanistically, the positive effect of E. coli at low

frequency might result from the removal of residual oxygen

from the growth medium [67], given that B. uniformis is

strictly anaerobic. But when the frequency of E. coli became

higher, the authors argued that direct competition might out-

weigh the benefits from oxygen removal, and thus limited the

growth of B. uniformis [66].

In our case, Curvibacter sp. has an overall suppression effect

on the growth of Duganella sp. in double cultures. This effect is

nonlinearly frequency dependent, most remarkably when the

frequency difference of the two species is large. This is consist-

ent with the situation in vivo. Inside the Hydra host, Curvibacter
sp. has absolute dominance in abundance, despite Duganella
sp.’s faster growth rate when cultured alone [11]. We have

shown in the analysis that direct pairwise interactions between

two bacterial cells are not enough to capture the complexity of

the system. This leads us to consider the possibility that bac-

terial cells are involved in ‘multiplayer’ interactions [68–70].

In these scenarios, multiple bacterial cells interact with each

other at the same time. Others have shown that bacteria can

form nanotubes with multiple other cells and exchange mol-

ecules with each other [71,72]. This could be the physical

basis of bacterial multiplayer games. In the simple system

we have studied, at least a three-player game of degree two

[73] is needed to account for the observed quadratic nonlinear-

ity in frequency-dependent payoffs. Other alternative
explanations include the effect of phage infection in the

system. Our hypothesis is that the phage that infects Curvibac-
ter sp. at an population equilibrium level may switch its host to

Duganella sp. and thus induces an outbreak event that reduces

its Malthusian growth rate by increased mortality. Testing this

hypothesis is an extension of this project. Since frequency-

dependent interactions can lead to multiple coexistence states

[69], this effect could contribute to the tremendous microbial

diversity coexisting with the numerically dominant few in

natural environments, known as the ‘rare biosphere’ [74].

To conclude, in this study we show that it is necessary to

consider both frequency and density dynamics in bacterial

populations with noteworthy density fluctuations. Using a

mathematical model, we examined the effects of linear

and quadratic frequency-dependent growth rates in Lotka–

Volterra dynamics. The interaction patterns of the system

are richer with additional intermediate fixed points when

frequency-dependent growth rate functions intersect more

than once. Most importantly, our empirical data provide

compelling evidence that the maximum growth rate can be

a nonlinear function of frequency, without the effects of den-

sity limitation. This strongly indicates that there must be

mechanisms other than direct pairwise interactions (includ-

ing competition for a limiting resource) among the growing

bacterial populations. Such complex patterns provide a mech-

anism for the maintenance of vast microbial diversity in the

natural environment. Our study focuses on the interactions

among growing bacterial populations without the effect of

host or other environmental factors, serving as a null model

for studying higher-level interactions.
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Quérellou J, Gaill F, Cambon-Bonavita M-A. 2004
Early steps in microbial colonization processes at
deep-sea hydrothermal vents. Environ. Microbiol. 6,
227 – 241. (doi:10.1111/j.1462-2920.2003.00557.x)

49. Guezennec J, Ortega-Morales O, Raguenes G, Geesey
G. 1998 Bacterial colonization of artificial substrate
in the vicinity of deep-sea hydrothermal vents.
FEMS Microbiol. Ecol. 26, 89 – 99. (doi:10.1111/j.
1574-6941.1998.tb00495.x)

50. Goldmann DA, Leclair J, Macone A. 1978 Bacterial
colonization of neonates admitted to an intensive
care environment. J. Pediatrics 93, 288 – 293.
(doi:10.1016/S0022-3476(78)80523-X)

51. Baty AM, Eastburn CC, Techkarnjanaruk S, Goodman
AE, Geesey GG. 2000 Spatial and temporal variations
in chitinolytic gene expression and bacterial
biomass production during chitin degradation. Appl.
Environ. Microbiol. 66, 3574 – 3585. (doi:10.1128/
AEM.66.8.3574-3585.2000)

52. Sauer K, Camper AK, Ehrlich GD, Costerton JW,
Davies DG. 2002 Pseudomonas aeruginosa displays
multiple phenotypes during development as a
biofilm. J. Bacteriol. 184, 1140 – 1154. (doi:10.1128/
jb.184.4.1140-1154.2002)

53. Poltak SR, Cooper VS. 2011 Ecological succession in
long-term experimentally evolved biofilms produces
synergistic communities. ISME J. 5, 369 – 378.
(doi:10.1038/ismej.2010.136)

54. Hall-Stoodley L, Costerton JW, Stoodley P. 2004
Bacterial biofilms: from the natural environment to
infectious diseases. Nat. Rev. Microbiol. 2, 95 – 108.
(doi:10.1038/nrmicro821)

55. Buchanan R, Whiting R, Damert W. 1997 When is
simple good enough: a comparison of the
Gompertz, Baranyi, and three-phase linear models
for fitting bacterial growth curves. Food Microbiol.
14, 313 – 326. (doi:10.1006/fmic.1997.0125)

56. Koch AL. 1982 Multistep kinetics: choice of models
for the growth of bacteria. J. Theor. Biol. 98, 401 –
417. (doi:10.1016/0022-5193(82)90127-8)

57. Kompala DS, Ramkrishna D, Jansen NB, Tsao GT.
1986 Investigation of bacterial growth on mixed
substrates: experimental evaluation of cybernetic

http://dx.doi.org/10.1128/IAI.05496-11
http://dx.doi.org/10.1038/nri3430
http://dx.doi.org/10.1038/nri3430
http://dx.doi.org/10.1038/ismej.2014.239
http://dx.doi.org/10.1038/emboj.2013.224
http://dx.doi.org/10.1038/emboj.2013.224
http://dx.doi.org/10.1016/j.cell.2005.05.007
http://dx.doi.org/10.1016/j.cell.2005.05.007
http://dx.doi.org/10.4049/jimmunol.1103691
http://dx.doi.org/10.1073/pnas.0400706101
http://dx.doi.org/10.1038/nrmicro1643
http://dx.doi.org/10.1038/nature06198
http://dx.doi.org/10.1371/journal.pbio.1001424
http://dx.doi.org/10.1371/journal.pbio.1001424
http://dx.doi.org/10.1371/journal.pcbi.1003388
http://dx.doi.org/10.1371/journal.pcbi.1003388
http://dx.doi.org/10.1016/j.jmb.2014.03.017
http://dx.doi.org/10.1073/pnas.1311322111
http://dx.doi.org/10.1073/pnas.1311322111
http://dx.doi.org/10.1073/pnas.0710150104
http://dx.doi.org/10.1103/PhysRevLett.105.178101
http://dx.doi.org/10.1038/ismej.2012.156
http://dx.doi.org/10.1038/ismej.2012.156
http://dx.doi.org/10.1371/journal.pbio.0050177
http://dx.doi.org/10.1371/journal.pbio.0050177
http://dx.doi.org/10.1126/science.1093411
http://dx.doi.org/10.1126/science.1093411
http://dx.doi.org/10.1038/nature00823
http://dx.doi.org/10.1038/nature01906
http://dx.doi.org/10.1073/pnas.0703375104
http://dx.doi.org/10.1073/pnas.0703375104
http://dx.doi.org/10.1146/annurev-micro-092412-155626
http://dx.doi.org/10.1146/annurev-micro-092412-155626
http://dx.doi.org/10.1002/bies.200900192
http://dx.doi.org/10.1007/BF02294361
http://dx.doi.org/10.1177/0049124104268644
http://dx.doi.org/10.1080/10635150490522304
http://dx.doi.org/10.1046/j.1523-1739.1995.09040962.x
http://dx.doi.org/10.1046/j.1523-1739.1995.09040962.x
http://dx.doi.org/10.2307/1312122
http://dx.doi.org/10.1111/j.1462-2920.2003.00557.x
http://dx.doi.org/10.1111/j.1574-6941.1998.tb00495.x
http://dx.doi.org/10.1111/j.1574-6941.1998.tb00495.x
http://dx.doi.org/10.1016/S0022-3476(78)80523-X
http://dx.doi.org/10.1128/AEM.66.8.3574-3585.2000
http://dx.doi.org/10.1128/AEM.66.8.3574-3585.2000
http://dx.doi.org/10.1128/jb.184.4.1140-1154.2002
http://dx.doi.org/10.1128/jb.184.4.1140-1154.2002
http://dx.doi.org/10.1038/ismej.2010.136
http://dx.doi.org/10.1038/nrmicro821
http://dx.doi.org/10.1006/fmic.1997.0125
http://dx.doi.org/10.1016/0022-5193(82)90127-8


rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150121

10
models. Biotechnol. Bioeng. 28, 1044 – 1055.
(doi:10.1002/bit.260280715)

58. Berryman AA. 1992 The origins and evolution of
predator – prey theory. Ecology 73, 1530 – 1535.
(doi:10.2307/1940005)

59. Hanson FB, Tuckwell HC. 1981 Logistic growth with
random density independent disasters. Theor. Popul.
Biol. 19, 1 – 18. (doi:10.1016/0040-5809(81)90032-0)

60. Tsoularis A, Wallace J. 2002 Analysis of logistic
growth models. Math. Biosci. 179, 21 – 55. (doi:10.
1016/S0025-5564(02)00096-2)

61. Verhulst PF. 1838 Notice sur la loi que la population
suit dans son accroissement. Correspondance
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