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Cancer dynamics are an evolutionary game between cellular phenotypes.

A typical assumption in this modelling paradigm is that the probability of a

given phenotypic strategy interacting with another depends exclusively on

the abundance of those strategies without regard for local neighbourhood

structure. We address this limitation by using the Ohtsuki–Nowak transform

to introduce spatial structure to the go versus grow game. We show that

spatial structure can promote the invasive (go) strategy. By considering the

change in neighbourhood size at a static boundary—such as a blood vessel,

organ capsule or basement membrane—we show an edge effect that allows

a tumour without invasive phenotypes in the bulk to have a polyclonal

boundary with invasive cells. We present an example of this promotion of

invasive (epithelial–mesenchymal transition-positive) cells in a metastatic

colony of prostate adenocarcinoma in bone marrow. Our results caution

that pathologic analyses that do not distinguish between cells in the bulk

and cells at a static edge of a tumour can underestimate the number of inva-

sive cells. Although we concentrate on applications in mathematical oncology,

we expect our approach to extend to other evolutionary game models where

interaction neighbourhoods change at fixed system boundaries.
1. Introduction
The importance of heterogeneity within tumours is gaining ground as one of

the most important factors in the laboratory and clinic alike [1]. This heterogen-

eity exists at multiple scales, each of which presents its own unique set of

challenges. One form of phenotypic heterogeneity that has been widely studied

was first described by Giese et al. [2], when they showed that in gliomas

migration and proliferation were mutually exclusive processes; motile cells

are unable to proliferate while they are moving and proliferating cells are

unable to move while they divide. This has been termed the go or grow dichot-

omy [3]. A proliferative or autonomous growth (grow) cell might switch to a

motile or invasive (go) cell either through mutation, metabolic stress [4],

undergoing the epithelial–mesenchymal transition (EMT) [5], or some other

mechanism. EMT is generally characterized by the loss of cell–cell adhesion

and a gain in motility and invasiveness in tumour cells and is often the first

step in the metastatic cascade. The opposite, or mesenchymal–epithelial tran-

sition, occurs when the cells arrive at a distant site and shift their invasive

phenotype to one of more aggressive clonal growth [6]. This combination of

transitions is one of the hallmarks of several carcinomas such as prostate

[7,8], breast [9] and other ductal cancers, where pre-invasive neoplasms are con-

strained by architectural boundaries (edges) such as the duct wall or basement

membrane. Our goal in this work is to highlight the important and overlooked

role of such edges in the evolutionary dynamics of the competition between go

and grow cells.

Evolutionary game theory (EGT) is a mathematical approach to modelling

frequency-dependent selection, where players interact strategically not by

choosing from a set of strategies but instead by using a fixed strategy deter-

mined by their phenotype. Given the evolutionary nature of cancer [10,11],

EGT has been applied to study how the interactions between different types
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Figure 1. An idealized image of a hypothetical tumour (a), and a clinically produced micrograph of a sarcoma under low power stained with haematoxylin and
eosin (b). A tumour cell (a: blue cells) has several different scenarios that affect the architecture of its neighbourhood geometry which we illustrate here. On short
time scales, cells in a solid tumour experience largely static neighbourhood architectures; however, cells in the bulk of the tumour (a: turquoise; b: lower right box)
have many more neighbours than cells against static boundaries ( pink) like an organ capsule (a: left close-up), fibrous capsule (b: left box) or blood vessel (a: right
close-up; b: upper right box). This change in relative number of neighbours affects evolutionary game dynamics. The boundary between the tumour and healthy
cells (yellow), while of interest, is a dynamic edge and is not considered in this article. (Online version in colour.)
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of cells in a polyclonal tumour could drive the dynamics of a

given cancer [12]. In its first application to oncology [13,14],

EGT was used to analyse the circumstances that lead to

coexistence of two phenotypes. Subsequent research [15]

extended this idea to interactions between three players in

the angiogenesis problem. Gatenby and Vincent adopted a

game theory model heavily influenced by population

dynamics to investigate the influence of the tumour–host

interface in colorectal carcinogenesis [16,17] and suggested

therapeutic strategies [18]. Our own work, as well as that of

others, has shown that EGT can be used to study the conditions

that select for more aggressive tumour phenotypes in gliomas

[19,20], colorectal cancer [16,17], multiple myeloma [21] and

prostate cancer [22]. Furthermore, EGT has been used to inves-

tigate the impact of treatment on cancer progression [23–25].

For an in depth overview of the game-theoretical approach to

cancer, see Basanta & Deutsch [12].

In this study, we introduce spatial structure into the cano-

nical ‘go versus grow’ game [26,27] in which proliferation

and motility compete within a tumour. We use our direct

spatial approximation to consider a familiar scenario for con-

servation biology: the edge effect of an ecological system (for

example, a forest in landscape ecology) at a static boundary

[28–30]. In tumour progression, this is analogous to a

cancer cell surrounded entirely by other cancer cells as

opposed to constrained by a physical boundary, such as a

basement membrane, organ capsule, fibrous capsule, or

blood vessel (figure 1). Note that we do not consider the

unconstrained, dynamically growing edge of the tumour.

The static boundaries studied in this article are exciting in

and of themselves, as the evolutionary dynamics that occur at

static boundaries govern progression past key cancer stages:

the change from in situ to invasive; locally contained to

regional advanced growth; and the dramatic shift from local

to metastatic disease. The former situation occurs early in

the progression of most epithelial tumours, and it is com-

monly believed that it is at this point when the Warburg

effect occurs, pushing cells towards the glycolytic (acid produ-

cing) phenotype which promotes invasion and motility—the

so-called ‘acid-mediated invasion’ hypothesis [19,31–34]. The

latter situation occurs when tumours are up against blood
vessels and is likely the first opportunity for haematogenous

dissemination, the first step in the metastatic process [35].

Here, we show a striking change in the evolutionary game

dynamics from the tumour bulk to the tumour’s physical bound-

ary (figure 1). This study represents, to our knowledge, the first

attempt to understand the effects of changing neighbourhood

structure on evolutionary game dynamics of tumours.
2. Material and methods
2.1. Inviscid game for motility
To mathematically model the go or grow dichotomy [3], we con-

sidered the situation in which the tumour is made of a population

of rapidly proliferating cells capable of autonomous growth (AG),

along with a subpopulation which arises by a mutation or phenoty-

pic change which confers motility/invasiveness (INV) to tumour

cells. The game has two parameters: c represents the direct and indir-

ect costs of motility incurred by cells with the INV phenotype

resulting from the reduced proliferation rate of motile/invasive

cells [3] and b is the maximum fitness a tumour cell will have

under ideal circumstances when it does not have to share space or

nutrients with other cells. As the units of measure are arbitrary,

the ratio c/b can be considered alone to determine game-theoretic

dynamics of the proportion of cell types. With INV as strategy 1

and AG as strategy 2, the game’s payoff matrix is

INV AG
INV
AG

1
2bþ 1

2(b� c)
b

�
b� c

1
2b

�
:

(2:1)

To understand the inviscid model [26], imagine two cells meet-

ing at random in a resource spot; for an inviscid population

this probability depends only on the cells’ relative abundance

but for the structured populations considered later, the prob-

ability of meeting again will be higher. If both cells are INV

(motile), then one cell stays in the resource spot (i.e. a location

that contains oxygen, glucose or other growth factors) and con-

sumes the resources b, and the other pays a cost, c, to move

and find a new empty site where it can then find resources, for

a payoff b. If after a move a motile cell only finds a new

empty spot with probability r, then the expected move payoff

is rb 2 c. This can be captured as an indirect cost by adjusting

the cost to be c0 ¼ c þ (1 2 r)b without introducing an extra
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parameter. As the cell that has to move is chosen randomly from

the two, the expected payoff for each cell is the average of the no-

move (b) and move (b 2 c) payoffs. On the other hand, if an INV

cell meets an AG cell then the INV cell will move, incurring the

cost, c, before receiving the benefit, b, for a total fitness (b 2 c).

The AG cell, however, will stay and consume all the resources

(b). Finally, if two non-motile cells (AG) are in the same resource

spot, then they simply share the resources, for a payoff of b/2.

Note that we are not explicitly modelling the mechanics of

motility, but just their effects on cell fitness. Thus, our approach

applies equally well to any other interaction with the same

payoff structure. A more explicit account of the biomechanics

of motility could inform the specific values of b and c, but the

exact values of these parameters are not essential for our analysis

and are beyond the scope of this study. We also expect the

specific values of the payoffs to vary between tissues within a

patient and across patients.

2.2. Direct approximation of spatial structure
A standard assumption in EGT is a perfectly mixed (inviscid)

population, in which every cell in the population is equally

likely to interact with every other cell [36]. This may be a reason-

able assumption in some cases, but in most solid tumours (or any

other situation being modelled) in which spatial structure is

important, the validity of this assumption should be questioned

[37]. The current solution to this is to map analytic EGT cancer

models onto a lattice and run in silico experiments to simulate

the resulting cellular automaton [26,38,39]. In such cases, the

choices of the specific microdynamics to simulate are arbitrary

and often left up to convention and the modeller’s imagination,

since direct empirical mechanisms at such a precise level are

often unknown. Further, explicitly solving complex spatial

structures is currently outside of existing mathematical tools, so

computational approaches have to sacrifice the analytical power

and full theoretical understanding of pure EGT approaches.

On occasion, computational modellers restore some analytical

power by making mathematical approximations of the simulation

that are already approximations of, or guesses at, the tumour’s real

spatial structure. To avoid this double approximation and to ana-

lytically model how spatial structure affects evolutionary games in

the limit of large populations and weak selection, Ohtsuki &

Nowak [40] derived a simple rule for taking a more direct first-

order approximation of any spatial structure. This approach is

based on the technique of pair-approximation [41–43] and is

exact only for Bethe lattices (infinite trees of constant degree),

but is highly accurate for any static structure where higher order

terms, like the correlations between neighbours of neighbours,

are negligible. For example, Ohtsuki and Nowak concentrated

on the application of their tool to k-regular random graphs,

which are locally tree-like and have negligible second-order and

higher terms, but the transform can be used more broadly.

While real spatially structured biological populations, such as

solid tumours, can have non-negligible higher order interactions,

Ohtsuki and Nowak’s first-order approximation is an improve-

ment over the common inviscid assumption that still allows us

to explore a completely analytic model.

Given a game matrix A, one can compute the Ohtsuki–

Nowak (ON) transform A0 ¼ ONk(A) and then recover the

dynamics of the spatially structured game A by simply

looking at the inviscid replicator equation of A0. Here, we present

the transform in a form that stresses its important qualitative

aspects:

ONk(A) ¼ Aþ 1

k � 2
(D1T � 1DT)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

assortativeness from
local dispersal

þ 1

(k þ 1)(k � 2)
(A� AT)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

finite sampling from
death�birth updating

,

(2:2)
where 1 is the all ones vector and D is the diagonal of the game

matrix A ¼ [aij], i.e. Di ¼ aii; thus, D1T (1DT) is a matrix with diag-

onal elements repeated to fill each row (column). The first

summand is the original payoff matrix. The second summand

accounts for the more common same-strain interactions that are

a consequence of local dispersal. The type of perturbation in the

third summand was shown by Hilbe [44] to result from finite

sampling of interaction partners. The summands are not arbitrary,

and emerge as a whole from the pair-approximation technique.

Our rationale for grouping the summands in this particular

form is to help build intuition for equation (2.2). Effects of indirect

interaction from more distant cells could be introduced as further

corrections to equation (2.2), but would require more assumptions

about the tumour microstructure [43]. Because local interactions

between neighbouring cells are empirically well studied [45], the

focus of the current study is incorporating only this first-order

structure into an EGT model of cancer dynamics.
3. Results
Whenever b . c, the game in equation (2.1) is a social

dilemma (like Prisoner’s Dilemma or Hawk–Dove game;

for a classification, see [46]) with invasive cells as the coopera-

tors, and AG cells as defectors. Rules of thumb from EGT [47]

suggest that cooperators benefit from the structure of small

interaction neighbourhoods, in agreement with our biological

intuition that, in this game, having the ability for conditional

motion is of more use in a more constrained and viscous

environment than in one where all cells are already stochas-

tically moving around and interacting at random. We look

at this formally by explicitly considering spatial effects on

the previously inviscid model. Applying the transform from

equation (2.2) to the game in equation (2.1) yields

1

2
bþ 1

2
(b� c) b

2k � 3

2(k � 2)
� c

2k2 � k � 1

2(k � 2)(k þ 1)

b
2k � 5

2(k � 2)
þ c

k þ 3

2(k � 2)(k þ 1)

1

2
b

0
BB@

1
CCA:

(3:1)

This game has three qualitatively different regimes that

depend on the value of c/b and k:

(1) If (k þ 1)/(k2 þ 1) � c/b, then there is a single stable fixed

point with all cells invasive. All polyclonal tumours evolve

towards this fixed point. For inviscid populations (k!1),

this condition is satisfied only if motility is cost-free (c ¼ 0)

and hence the possibility of an all invasive tumour was not

noted in previous non-spatial analysis [26].

(2) If (k þ 1)/(k2 þ 1) , c/b , (k þ 1)/(2k þ 1), then the

game has Hawk–Dove dynamics, and there is a stable

polyclonal equilibrium with a proportion p of INV cells:

p ¼ b� 2c
b� c

þ 1

k � 2
� 1

(k þ 1)(k � 2)

2c
(b� c)

: (3:2)

All polyclonal populations will converge towards

this proportion of INV cells. In the unstructured limit

as k!1, we have perfect agreement with our previous

results [26] and recover the condition c/b � 1/2 that was

assumed for the inviscid equilibrium to exist and the

exact numeric value of (b 2 2c)/(b 2 c) for the equili-

brium proportion of INV agents. For any finite k,

however, the proportion of invasive cells is strictly

higher.
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Figure 2. Evolutionary game dynamics as a function of changing neighbourhood size and relative cost of motility. Here, we plot level of viscosity 1/(k 2 2) versus
relative cost of motility c/b. The parameter space is divided into three regions that correspond to qualitatively different dynamics. In the red, the population evolves
towards all INV; in the yellow—towards a polyclonal tumour of INV and AG cells; and in the green the tumour remains all AG. When 1/(k 2 2) ¼ 0 (i.e. k!1)
we recover the standard inviscid replicator dynamics of our previous work [26]. For 1/(k 2 2) ¼ 1 (k ¼ 3, the top edge of the plot), we have the environment
with the smallest local neighbourhood to which the ON transform applies. The first horizontal dotted line marks k ¼ 5 ( pink cell in figure 1) and the bottom line is
k ¼ 8 (teal cell in figure 1). The left vertical dotted line is at c/b ¼ 0.23 and shows that it is possible to go from a polyclonal tumour in the bulk to a completely
invasive population at a static edge. The right vertical dotted lines shows that is possible to see a qualitative shift from all AG to a polyclonal tumour in dynamics
with the game fixed at c/b ¼ 0.53 by decreasing k from 8 and 5 (increasing 1/(k 2 2) from 1/6 to 1/3) at the tumour boundary. Example dynamics from a
numerical solution of the replicator equation of the transformed game are shown in the insets, where proportion of INV ( p) is plotted versus time (t). The equation
specifying the dynamics is _p ¼ p((ONk (G)p)1 � pTONk (G)p), where pT ¼ ( p, 1 2 p), G is the game in equation (2.1), and ONk is the transform from equation
(2.2). The left inset corresponds to c/b ¼ 0.23, an initial proportion of invasive agents of p0 ¼ 0.93, k ¼ 5 (tumour edge) for the red line and k ¼ 8 (tumour
bulk) for the yellow. The right inset corresponds to c/b ¼ 0.53, an initial proportion of invasive agents of p0 ¼ 0.04, k ¼ 5 (tumour edge) for the yellow line, and
k ¼ 8 (tumour bulk) for the green. (Online version in colour.)
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(3) If (k þ 1)/(2k þ 1) � c/b, then the game has Prisoner’s

Dilemma dynamics and any polyclonal population

converges towards all AG and the tumour remains

non-invasive.

These three regimes are plotted in figure 2. When 1/(k 2 2)¼ 0,

we have the inviscid game and for 1/(k 2 2) ¼ 1 we have the

most structured regime possible with small neighbourhoods

(k¼ 3). The red region corresponds to a completely INV

tumour, the yellow to a polyclonal tumour and the green to

all AG. As we make the tumour more structured and reduce

the number of neighbours, it becomes easier for the INV cells

to be expressed in the tumour.

For example, consider the case where c/b ¼ 0.53, and as in

figure 1, in the tumour away from boundary (the turquoise

cell) there are k ¼ 8 neighbours and the dynamics favour all

AG, so no INV cells will be present at equilibrium. For an

example of replicator dynamics of this condition, see the

green line of the right inset. If the solid tumour is pressed

up against a static boundary then cells at the edge have

fewer neighbours (e.g. k ¼ 5, the pink cell) and the dynamics

at the boundary favour a polyclonal population with about

8% of the cells INV. For an example of replicator dynamics

for this condition, see the yellow line of the right inset. Note

that the tumours represented by the green (k ¼ 8) and yellow
(k ¼ 5) lines of the right inset have the same c/b ¼ 0.53 and

initial proportion of invasive cells p0 ¼ 0.04 and yet the inva-

sive phenotype is pushed to extinction in the tumour bulk

(k ¼ 8), but stabilizes near potentially dangerous level of inva-

sive cells ( p ¼ 0.08) at the tumour edge (k ¼ 5). Similar higher

selection for invasiveness at the static edge is present for the

more competitive environment of c/b ¼ 0.23 in the left inset,

but in this case we started the example replicator dynamics

at p0 ¼ 0.93. In this case, we have a polyclonal tumour bulk

(k ¼ 8) with p ¼ 0.86 and convergence towards all invasive

phenotypes at the static edge (k ¼ 5). Of course, the specific

parameter values above are for illustrative purposes. Actual

change in k ( just like c/b) will be experiment and geometry

dependent—for example, we expect a more drastic decrease

in k for a convex rather than a concave boundary.

The main message is that the edge effect can cause a poly-

clonal boundary in a tumour with a homogeneous all AG

body. And while not yet shown to be universally applicable,

this is in qualitative agreement with the experience of pathol-

ogists, such as the typical staining for motility (EMT) in

figure 3, where we see the bone marrow space entirely invaded

by carcinoma cells (pancytokeratin; figure 3a), but a stark

difference in motile phenotype as illustrated by the nuclear

staining by SLUG, which is only present in high concentration

in cells against the static boundary of the bony trabecula. As
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Figure 3. EMT is found to be upregulated near static boundaries within bone marrow in bony metastatic deposits of prostate cancer. In serial sections taken of bony
metastatic deposits of prostatic adenocarcinoma at rapid autopsy, staining for SLUG is found to be increased near to the static boundaries created by the bony
trabeculae. Nearly homogeneous pancytokeratin staining (a) reveals the ubiquity of metastatic carcinoma in this sample. In the next slice (b), stained for SLUG (a
marker of EMT), we see increased uptake of the antibody in the carcinoma cells lining the static boundary, suggesting a more motile phenotype (highlighted by
arrows) when compared with those in the neighbourhood representing the tumour bulk. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150154

5

with all interesting questions in biology, there can be many

other causes involved in such specific experimental or clinical

systems, and our result is focused on the idealized change in

local architecture common to many of them. The effect to

which we are drawing attention is different from and can

occur in addition to other system-specific mechanisms or

heterogeneity due to more traditional sources like gradients

in metabolites and drugs.
4. Discussion
A standard assumption in EGT is that all players interact with

all other players: the population is inviscid. There are a

number of biological scenarios in which such an assumption

could be misleading, and we consider such a scenario in the

form of several key aspects of solid tumour progression. The

role of spatial heterogeneity has been explored before in math-

ematical models studying evolutionary processes in cancer

[48–50]. Those models show that different environments

produce different selective pressures and that phenotypic het-

erogeneity results from, and drives, the spatial one. Our

approach tackles a different question related to the nature of

physical edges on cancer evolution for which we have applied

the Ohtsuki–Nowak transform [40] to the standard go–grow

game of mathematical oncology [26]. We have shown a

quantitative effect: spatially structured tumours promote the

invasive phenotype compared to inviscid tumours with the

same ratio of cost of motility to benefit of resources c/b.

We also considered the decrease in neighbourhood size

experienced by cells at the static boundary of a tumour, com-

pared to cells within the tumour bulk. This could represent a

number of feasible and very relevant scenarios, including a

tumour against a blood vessel, organ capsule or fibrous cap-

sule; or an in situ neoplasm at the basement membrane. We

have shown that this change in neighbourhood for tumour

cells can, independently from any other parameters, signifi-

cantly affect the evolutionary stable strategies: in this case, a

promotion of the INV phenotype. The edge effect allows a

tumour that internally has no invasive phenotypes expressed

to have a polyclonal boundary with both invasive and non-

invasive cells, a scenario which is known to appear in several

cancers, most notably prostate [51] in the form of peri-neural

invasion, and the recently described perivascular invasion in
melanoma [52] (previously called angiotropism). In each of

these two scenarios, tumour cells express the motile pheno-

type, but only when against the physical structure in

question. Another recent result suggesting the importance of

effects of changes in local architecture is the work of

Belmonte-Beitia et al. [53], in which the authors show that

the dynamics of motility change drastically at the grey–white

interface in glioblastoma in ways that cannot be predicted by

simply comparing the behaviour in each zone individually.

The results of our mathematical model could have signifi-

cant translational implications. Genetic heterogeneity has

recently become recognized as the rule in cancer [54], but

for as long as physicians have had microscopes, we have rea-

lized that spatial organizational heterogeneity was an equally

defining factor. The Gleason score [55] is a classic example of

greater heterogeneity predicting worse survival in prostate

cancer. We have shown that a specific change in neighbour-

hood size at a static boundary can dramatically alter game

dynamics, and select for novel phenotypes, and gives a

rationale for working to understand within-tumour differ-

ences, not just at relatively long length scales [56], but also

at architecturally different locations at short length scales,

which can be done with the advent of single-cell technologies

and laser capture microdissection [57].

We have shown that the local spatial structure of a

tumour can strongly affect the evolutionary pressures on its

constituent cells, even if all other factors are held constant.

This can add yet another source of sampling bias to tissue

biopsies and suggests that the architectural, not just the mol-

ecular, context is important. For instance, consider an

idealized fine-needle aspiration biopsy [58], assuming the

standard 0.7 mm needle samples a perfect column around

20 cells in diameter of tumour cells right next to a critical

boundary such as a capillary. In our running example of

c/b ¼ 0.53 (figures 1 and 2), this would result in the sample

containing only about 0.4% invasive cells since 19 out of

every 20 cells are not at the boundary. This is below the detec-

tion levels of the state-of-the-art medical practice [59,60].

However, among the critical 1 out of every 20 cells at the

boundary, a dangerous proportion of 8% would display the

invasive phenotype. Thus, an oncologist performing a diag-

nostic fine-needle aspiration biopsy could be led to think

that a tumour poses a low risk for invasion/metastasis,

because the technique destroys the local structure of the
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tumour and mixes the cells at the critical tumour boundary

with the (in this case) irrelevant tumour bulk.

Our model was motivated by the study of cancer, but the

spatial edge effects in games of interacting players that we

investigate could represent any number of other scenarios.

While we have focused on the specifics of metastasis and

cancer invasion, this method could yield insights into many

other interesting problems ranging from ecology to medicine,

and highlights the importance of neighbourhood geometry

when studying the evolutionary dynamics of competing

biological agents.
Authors’ contributions. A.K., J.G.S. and D.B. designed the study, inter-
preted the results and wrote the manuscript. A.K. and J.G.S.
carried out the mathematical modelling. All authors gave final
approval for publication.

Competing interests. We declare we have no competing interests.

Funding. D.B. would like to acknowledge U01CA151924–01A1 for
financial support. J.G.S. would like to thank the NIH for its generos-
ity in providing a Loan Repayment Grant.

Acknowledgements. We would like to thank Colm Morrissey from the
University of Washington and Marilyn Bui from the Moffitt Cancer
Center for illustrative images used in this paper, and David Liao
for extensive helpful feedback.
J.R.Soc.Int
References
erface
12:20150154
1. McGranahan N, Swanton C. 2015 Biological and
therapeutic impact of intratumor heterogeneity in
cancer evolution. Cancer Cell 27, 15 – 26. (doi:10.
1016/j.ccell.2014.12.001)

2. Giese A, Bjerkvig R, Berens ME, Westphal M.
2003 Cost of migration: invasion of malignant
gliomas and implications for treatment. J. Clin.
Oncol. 21, 1624 – 1636. (doi:10.1200/JCO.2003.05.063)

3. Giese A, Loo MA, Tran N, Haskett D, Coons SW,
Berens ME. 1996 Dichotomy of astrocytoma
migration and proliferation. Int. J. Cancer 67,
275 – 282. (doi:10.1002/(SICI)1097-
0215(19960717)67:2,275::AID-IJC20.3.0.CO;2-9)

4. Godlewski J et al. 2010 Microrna-451 regulates
lkb1/ampk signaling and allows adaptation to
metabolic stress in glioma cells. Mol. Cell 37,
620 – 632. (doi:10.1016/j.molcel.2010.02.018)

5. Polyak K, Weinberg RA. 2009 Transitions between
epithelial and mesenchymal states: acquisition of
malignant and stem cell traits. Nat. Rev. Cancer 9,
265 – 273. (doi:10.1038/nrc2620)

6. Chaffer CL, Weinberg RA. 2011 A perspective on
cancer cell metastasis. Science 331, 1559 – 1564.
(doi:10.1126/science.1203543)

7. Smith BN, Odero-Marah VA. 2012 The role of Snail
in prostate cancer. Cell Adh. Migr. 6, 433 – 441.
(doi:10.4161/cam.21687)

8. Khan MI, Hamid A, Adhami VM, Lall RK, Mukhtar H.
2014 Role of epithelial mesenchymal transition in
prostate tumorigenesis. Curr. Pharm. Des. 21,
1240 – 1248.

9. Armstrong AJ et al. 2011 Circulating tumor cells
from patients with advanced prostate and breast
cancer display both epithelial and mesenchymal
markers. Mol. Cancer Res. 9, 997 – 1007. (doi:10.
1158/1541-7786.MCR-10-0490)

10. Nowell PC. 1976 The clonal evolution of tumor cell
populations. Science 194, 23 – 28. (doi:10.1126/
science.959840)

11. Greaves M, Maley CC. 2012 Clonal evolution in
cancer. Nature 481, 306 – 313. (doi:10.1038/
nature10762)

12. Basanta D, Deutsch A. 2008 A game theoretical
perspective on the somatic evolution of cancer.
In Selected topics on cancer modelling:
genesis, evolution, inmune competition, therapy
(eds N Bellomo, M Chaplain, E De Angelis),
pp. 1 – 16. Boston, MA: Birkhauser. (doi:10.1007/
978-0-8176-4713-1_5)

13. Tomlinson IP. 1997 Game-theory models of
interactions between tumour cells. Eur. J. Cancer 33,
1495 – 1500. (doi:10.1016/S0959-8049(97)00170-6)

14. Tomlinson IP, Bodmer WF. 1997 Modelling the
consequences of interactions between tumour cells.
Br. J. Cancer 75, 157 – 160. (doi:10.1038/bjc.1997.26)

15. Bach LA, Bentzen SM, Alsner J, Christiansen FB.
2001 An evolutionary-game model of tumour – cell
interactions: possible relevance to gene therapy.
Eur. J. Cancer 37, 2116 – 2120. (doi:10.1016/S0959-
8049(01)00246-5)

16. Gatenby R, Vincent T. 2003 An evolutionary model
of carcinogenesis. Cancer Res. 63, 6212 – 6220.

17. Gatenby R, Vincent T, Gillies R. 2005 Evolutionary
dynamics in carcinogenesis. Math. Mod. Methods
Appl. Sci. 15, 1619 – 1638. (doi:10.1142/
S0218202505000911)

18. Gatenby R, Vincent T. 2007 Application of
quantitative models from population biology and
evolutionary game theory to tumor therapeutic
strategies. Mol. Cancer Ther. 2, 919 – 927.

19. Basanta D, Simon M, Hatzikirou H, Deutsch A. 2008
Evolutionary game theory elucidates the role of
glycolysis in glioma progression and invasion. Cell
Prolif. 41, 980 – 987. (doi:10.1111/j.1365-2184.
2008.00563.x)

20. Basanta D, Scott JG, Rockne R, Swanson KR,
Anderson ARA. 2011 The role of IDH1 mutated
tumour cells in secondary glioblastomas: an
evolutionary game theoretical view. Phys. Biol. 8,
015016. (doi:10.1088/1478-3975/8/1/015016)

21. Dingli D, Chalub FACC, Santos FC, van Segbroeck S,
Pacheco JM. 2009 Cancer phenotype as the outcome
of an evolutionary game between normal and
malignant cells. Br. J. Cancer 101, 1130 – 1136.
(doi:10.1038/sj.bjc.6605288)

22. Basanta D, Scott JG, Fishman MN, Ayala G, Hayward
SW, Anderson ARA. 2012 Investigating prostate cancer
tumour-stroma interactions: clinical and biological
insights from an evolutionary game. Br. J. Cancer 106,
174 – 181. (doi:10.1038/bjc.2011.517)

23. Basanta D, Gatenby RA, Anderson ARA. 2012
Exploiting evolution to treat drug resistance:
combination therapy and the double bind. Mol.
Pharm. 9, 914 – 921. (doi:10.1021/mp200458e)
24. Orlando PA, Gatenby RA, Brown JS. 2012 Cancer
treatment as a game: integrating evolutionary
game theory into the optimal control of
chemotherapy. Phys. Biol. 9, 065007. (doi:10.1088/
1478-3975/9/6/065007)

25. Archetti M. 2013 Evolutionary game theory of
growth factor production: implications for tumour
heterogeneity and resistance to therapies.
Br. J. Cancer 109, 1056 – 1062. (doi:10.1038/bjc.
2013.336)

26. Basanta D, Hatzikirou H, Deutsch A. 2008 Studying
the emergence of invasiveness in tumours using
game theory. Eur. Phys. J. B 63, 393 – 397. (doi:10.
1140/epjb/e2008-00249-y)

27. Hatzikirou H, Basanta D, Simon M, Schaller K,
Deutsch A. 2010 ‘Go or Grow’: the key to the
emergence of invasion in tumour progression?
Math. Med. Biol. 29, 49 – 65. (doi:10.1093/
imammb/dqq011)

28. Saunders DA, Hobbs RJ, Margules CR. 1991
Biological consequences of ecosystem
fragmentation: a review. Conserv. Biol. 5, 18 – 32.
(doi:10.1111/j.1523-1739.1991.tb00384.x)

29. Murcia C. 1995 Edge effects in fragmented forests:
implications for conservation. Trends Ecol. Evol. 10,
58 – 62. (doi:10.1016/S0169-5347(00)88977-6)

30. Pickett STA, Cadenasso ML. 1995 Landscape
ecology: spatial heterogeneity in ecological systems.
Science 269, 331 – 334. (doi:10.1126/science.269.
5222.331)

31. Gatenby RA, Gillies RJ. 2004 Why do cancers
have high aerobic glycolysis? Nat. Rev. Cancer 4,
891 – 899. (doi:10.1038/nrc1478)

32. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B,
Gillies RJ. 2006 Acid-mediated tumor invasion: a
multidisciplinary study. Cancer Res. 66, 5216 – 5223.
(doi:10.1158/0008-5472.CAN-05-4193)

33.. Gillies RJ, Robey I, Gatenby RA. 2008 Causes and
consequences of increased glucose metabolism of
cancers. J. Nuclear Med. 49(Suppl. 2), 24S. (doi:10.
2967/jnumed.107.047258)

34. Epstein T, Xu L, Gillies RJ, Gatenby RA. 2014
Separation of metabolic supply and demand:
aerobic glycolysis as a normal physiological
response to fluctuating energetic demands in the
membrane. Cancer Metab. 2, 7. (doi:10.1186/2049-
3002-2-7)

http://dx.doi.org/10.1016/j.ccell.2014.12.001
http://dx.doi.org/10.1016/j.ccell.2014.12.001
http://dx.doi.org/10.1200/JCO.2003.05.063
http://dx.doi.org/10.1002/(SICI)1097-0215(19960717)67:2%3C275::AID-IJC20%3E3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0215(19960717)67:2%3C275::AID-IJC20%3E3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0215(19960717)67:2%3C275::AID-IJC20%3E3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0215(19960717)67:2%3C275::AID-IJC20%3E3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0215(19960717)67:2%3C275::AID-IJC20%3E3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0215(19960717)67:2%3C275::AID-IJC20%3E3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0215(19960717)67:2%3C275::AID-IJC20%3E3.0.CO;2-9
http://dx.doi.org/10.1016/j.molcel.2010.02.018
http://dx.doi.org/10.1038/nrc2620
http://dx.doi.org/10.1126/science.1203543
http://dx.doi.org/10.4161/cam.21687
http://dx.doi.org/10.1158/1541-7786.MCR-10-0490
http://dx.doi.org/10.1158/1541-7786.MCR-10-0490
http://dx.doi.org/10.1126/science.959840
http://dx.doi.org/10.1126/science.959840
http://dx.doi.org/10.1038/nature10762
http://dx.doi.org/10.1038/nature10762
http://dx.doi.org/10.1007/978-0-8176-4713-1_5
http://dx.doi.org/10.1007/978-0-8176-4713-1_5
http://dx.doi.org/10.1016/S0959-8049(97)00170-6
http://dx.doi.org/10.1038/bjc.1997.26
http://dx.doi.org/10.1016/S0959-8049(01)00246-5
http://dx.doi.org/10.1016/S0959-8049(01)00246-5
http://dx.doi.org/10.1142/S0218202505000911
http://dx.doi.org/10.1142/S0218202505000911
http://dx.doi.org/10.1111/j.1365-2184.2008.00563.x
http://dx.doi.org/10.1111/j.1365-2184.2008.00563.x
http://dx.doi.org/10.1088/1478-3975/8/1/015016
http://dx.doi.org/10.1038/sj.bjc.6605288
http://dx.doi.org/10.1038/bjc.2011.517
http://dx.doi.org/10.1021/mp200458e
http://dx.doi.org/10.1088/1478-3975/9/6/065007
http://dx.doi.org/10.1088/1478-3975/9/6/065007
http://dx.doi.org/10.1038/bjc.2013.336
http://dx.doi.org/10.1038/bjc.2013.336
http://dx.doi.org/10.1140/epjb/e2008-00249-y
http://dx.doi.org/10.1140/epjb/e2008-00249-y
http://dx.doi.org/10.1093/imammb/dqq011
http://dx.doi.org/10.1093/imammb/dqq011
http://dx.doi.org/10.1111/j.1523-1739.1991.tb00384.x
http://dx.doi.org/10.1016/S0169-5347(00)88977-6
http://dx.doi.org/10.1126/science.269.5222.331
http://dx.doi.org/10.1126/science.269.5222.331
http://dx.doi.org/10.1038/nrc1478
http://dx.doi.org/10.1158/0008-5472.CAN-05-4193
http://dx.doi.org/10.2967/jnumed.107.047258
http://dx.doi.org/10.2967/jnumed.107.047258
http://dx.doi.org/10.1186/2049-3002-2-7
http://dx.doi.org/10.1186/2049-3002-2-7


rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150154

7
35. Chambers AF, Groom AC, MacDonald IC. 2002
Metastasis: dissemination and growth of cancer cells
in metastatic sites. Nat. Rev. Cancer 2, 563 – 572.
(doi:10.1038/nrc865)

36. Hofbauer J, Sigmund K. 2003 Evolutionary game
dynamics. Bull. Am. Math. Soc. 40, 479 – 519.
(doi:10.1090/S0273-0979-03-00988-1)
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