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Acute myeloid leukaemia is characterized by marked inter- and intra-patient

heterogeneity, the identification of which is critical for the design of person-

alized treatments. Heterogeneity of leukaemic cells is determined by

mutations which ultimately affect the cell cycle. We have developed and

validated a biologically relevant, mathematical model of the cell cycle

based on unique cell-cycle signatures, defined by duration of cell-cycle

phases and cyclin profiles as determined by flow cytometry, for three leu-

kaemia cell lines. The model was discretized for the different phases in

their respective progress variables (cyclins and DNA), resulting in a set of

time-dependent ordinary differential equations. Cell-cycle phase distri-

bution and cyclin concentration profiles were validated against population

chase experiments. Heterogeneity was simulated in culture by combining

the three cell lines in a blinded experimental set-up. Based on individual kin-

etics, the model was capable of identifying and quantifying cellular

heterogeneity. When supplying the initial conditions only, the model pre-

dicted future cell population dynamics and estimated the previous

heterogeneous composition of cells. Identification of heterogeneous leukae-

mia clones at diagnosis and post-treatment using such a mathematical

platform has the potential to predict multiple future outcomes in response

to induction and consolidation chemotherapy as well as relapse kinetics.
1. Introduction
Leukaemia heterogeneity develops as a result of compound genetic and micro-

environmental modifications and is reflected by increased cell proliferation,

block of differentiation pathways and reduction of apoptotic signals [1,2].

Cooperative effects of several mutations, as well as their order of appearance,

result in cell subpopulations that acquire unique traits [3,4]. The resulting dis-

ease- and patient-specific heterogeneity is one of the main sources of

variation in treatment response [1,5]. In acute myeloid leukaemia (AML), cur-

rent gold-standard treatment depends on the use of cell-cycle-specific (CCS)

chemotherapy. Delivery of truly personalized chemotherapy remains a chal-

lenge as most patients relapse due to clonal resistance or the emergence of

more aggressive leukaemic subclones as a result of the initial chemotherapy

used to treat the disease [5,6].

We have previously shown that assessment of proliferation kinetics and cell-

cycle times in AML may provide optimized chemotherapy protocols in order to

improve tumour cell kill yet minimize toxicity for the patient [7,8]. Defining the
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Figure 1. The cell cycle. Outer circles represent biological events (succession
of phases and phase-specific cell-cycle protein expression); inner ‘pie’ circles
summarize model simplifications and the discretization strategy based on
state variable level. State variables are chosen according to relevance to
their phase: cyclin E for G0/G1, DNA for S and cyclin B for G2/M. Bins in
each phase indicate discrete state variable levels: CE(e), DNA(d ) and CB(b)
correspond to the state variable levels of bin number e, d and b, while
cell numbers in each bin are represented by Ge(t), Sd(t) and Mb(t) in
G0/G1, S and G2/M, respectively. Transition rates (rG!S, e for G0/G1 and
rM!G, b for G2/M) account for the likelihood of cells moving to the next
phase and growth rates (rG, rS and rM) reflect progress within the phase.
(Online version in colour.)
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changes that occur in the cell cycle is central to these optimi-

zed treatment protocols since many chemotherapeutic drugs

are cell-cycle phase-specific and heterogeneity of patient

responses may be broadly defined in terms of cell-cycle

phase distributions and timings [9]. The four phases of the

cell cycle (G1, S, G2 and M) are governed by the periodic

fluctuation in the concentration of cyclins (figure 1), a set of

proteins that bind to cyclin-dependent kinases (CDKs),

which are present in non-limiting concentrations [10]. Given

favourable conditions, cells exit G0 and enter G1 in response

to increasing cyclin D concentration. Cyclin E is produced

during G1 and peaks at the transition to S phase, when

it binds primarily to CDK-2, activating DNA duplication

mechanisms. G2 starts when DNA synthesis is complete,

and is reflected by increased cyclin B concentration, a protein

that accumulates as G2 tasks are completed [11]. Once cyclin

B threshold concentration is reached, it binds to CDK-1

resulting in the transition to mitosis (M). AML patients can

have discrepant phase durations [9] and characteristically

overexpressed/unscheduled cyclin patterns [12,13]. Together,

cyclin fluctuation patterns and cell-cycle times can serve as a

unique signature to define patient-specific disease charac-

teristics mathematically, which is essential to the design of

personalized treatments.

Prior work has modelled cell-cycle phase compartments

using ordinary differential equations [14]; these models

quantify changes in cell number in each phase as a function

of time and capture macroscopic responses of cell populations.

A more detailed analysis of the system requires a description of
the cell-cycle phase distribution and experimental validation of

the intra-phase kinetics. A first approach could be to consider

the system from the point of view of a single cell as it moves

within and between phases as a function of time (discrete

cells, continuous phase progression); however, this definition

would be computationally expensive, unnecessary and exper-

imentally infeasible given the need to obtain data for and

model millions of cells [15]. A more efficient and tangible

approach is to observe the passage of cells in time at a specific

point within the phase through a population function (continu-

ous cells, continuous phase progression). Such a model is

dependent on time, but also on a state variable that distributes

each phase into a continuum of populations, known as a popu-

lation balance model (PBM) [16]. Solving PBMs explicitly is

practically impossible in most cases; the complex task of state

variable space discretization is often required. PBMs are rel-

evant to the cell cycle in that they enable tracking of the

movement of cells inside each phase through the increase in

the state variable and interpret the transition between phases

as the summation of exiting populations from different parts

of the phase. Typically, PBMs of the cell cycle consist of three

stages, namely an aggregated G0/G1 phase, S phase and an

aggregated G2/M phase [17]. Traditionally, properties such

as cell age, size or volume have been used as state variables.

Age-based PBMs cannot be directly validated as age is not a

biological property; it can be used as a mathematical artefact

theoretically correlating phase coordinate to phase time; how-

ever, perturbations in the transition state cannot be explained

by time alone [18]. Size- and volume-based PBMs have perhaps

more relevant qualitative biologically meaningful state vari-

ables; high variability in the experimental data renders

validation of these models extremely difficult requiring the esti-

mation of the necessary parameters [19]. Finally, whereas DNA

content is a very good state variable choice for S phase, where it

is synthesized and can be measured, it bears no relevance to the

progress of cells in other phases. Consequently, traditional

PBMs cannot inform experiments with regards to the expected

state variable level (as it is either a ‘virtual’ state variable or very

difficult to measure); only models that specifically predict cellu-

lar properties (for a single cell) explicitly quantify these levels,

but at the expense of macroscopic growth [20,21]. Hence,

there is a need for cell-cycle PBMs that can be seamlessly vali-

dated experimentally and for explicit models of cell-cycle

checkpoints which can incorporate growth kinetic behaviour.

Herein, we have developed a mathematical model of the

cell cycle using a PBM that captures kinetics at both levels:

micro (intracellular protein concentration) and macro (cell

growth). The model is then used to predict heterogeneous

proliferation kinetics, such as the ones presented by three

leukaemic cell lines (K-562, MEC-1, MOLT-4) with very dis-

parate origins (AML, chronic lymphocytic leukaemia and

acute lymphocytic leukaemia, respectively), given a reduced

set of experimental parameters.
2. Results
2.1. Development of a multi-stage population balance

model based on cyclin concentration
The model is composed of three compartments according to

DNA content: G (DNA content of 1), S (increasing DNA con-

tent 1–2) and M (DNA content of 2), similar to other models
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Figure 2. Evolution of the percentage of Ki-67 positive cells among G0/G1 cells
over time (control cells) as determined by flow cytometry. Ki-67 is a protein
expressed by cells out of quiescence; G0 cells are thus identified by their lack
of Ki-67 expression. In the experiments performed with EdU, control cultures
were monitored for Ki-67 levels to validate the assumption that only a small
percentage of the cells is quiescent at any time. Indeed, Ki-67 was expressed
by at least 90% of the cells overall, with the exception of MEC-1 at time 0 h
which was found to be 80% (this is believed to be an effect of the washing
steps stress and not a ubiquitous condition). (Online version in colour.)
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available [17,18]. The novelty resides in the fact that cyclin E

and cyclin B are used as state variables (defined as CE and CB

in the model) for G0/G1 and G2/M, respectively, as these are

the phases where their concentration actively increases linked

to phase progression. DNA content (defined as DNA in the

model) is used as in previous models [19] for the represen-

tation of progress in S phase. Each of the three phases is

modelled by a PBM equation (equations (2.1)–(2.3); refer to

electronic supplementary material, table S2, for variable defi-

nitions), and these equations are linked by the transfer of cells

from phase to phase (figure 1) [22,23]:

@G(CE, t)
@t

þ @(G(CE, t) � dCE=dt)
@CE

¼ �rG!S(CE) � G(CE, t),

(2:1)

@S(DNA, t)
@t

þ @(S(DNA, t) � dDNA/dt)
@DNA

¼ 0 (2:2)

and

@M(CB, t)
@t

þ @(M(CB, t) � dCB=dt)
@CB

¼ �rM!G(CB) �M(CB, t),

(2:3)

where G(CE, t) represents the number of cells in G0/G1 at time t
that have a cyclin content CE; similarly, S(DNA, t) and M(CB, t)
represent the number of cells in S and G2/M that have a DNA

content DNA and a cyclin B content CB, respectively, at time t.
rM!G(CB) and rG!S(CE) represent the transition rates from

G2/M to G0/G1 and from G0/G1 to S, respectively (both

dependent on the particular phase state variable). Biologically,

growth rates account for the speed at which the accumulation or

production of cyclin/DNA occurs in a cell in the relevant

phases. Mathematically, growth rates represent how quickly

cells progress through the phase. Phase durations (TG, TS and

TM) are defined as the average time a cell spends in a phase.

Cyclin minima represent the baseline expression at the start of

the phase (CE, min and CB, min for G0/G1 and G2/M)

while cyclin thresholds (CE, thr and CE, thr) account for the

average cyclin level at which cells move to the next phase.

A constant cyclin E production rate (rG) is used for G1 (equation

(2.4)) [24]. DNA production (rS) is approximated as a lineal

function (equation (2.5)) based on normalized results [25].

Constant cyclin B production (rM) occurs during G2 with a con-

centration plateau at transition [26]; since transition occurs

rapidly, we assume a constant cyclin B production throughout

G2 (equation (2.6)).

rG ¼
dCE

dt
¼ CE, thr � CE, min

TG
for G0=G1ð Þ, (2:4)

rS ¼
dDNA

dt
¼ 2� 1

TS
(for S) (2:5)

and rM ¼
dCB

dt
¼ CB, thr � CB, min

TM
for G2=Mð Þ: (2:6)

A cell in G0/G1 or G2/M can either move to the next phase or

move to the next cyclin level. Biologically, the higher the cyclin

concentration the more likely it is for the cell to transition. Math-

ematically, the transition probability (G(CE) and G(CB)) accounts

for the likelihood of a cell at a particular position in the phase

moving to the next phase, which is explicitly calculated as the

ratio between transition happening (rG!S or rM!G) and all of

transition and growth happening (rG!S þ rG or rM!G þ rM):

GG(CE) ¼ rG!S(CE)

rG!S(CE)þ rG
(2:7)
and

GM(CB) ¼ rM!G(CB)

rM!G(CB)þ rM
: (2:8)

A recent study of different transition rate functions in cell-cycle

PBMs has indicated that the particular function used had little

impact on the ability of the model to fit the experimental data

[27]. We assumed a normal cumulative distribution function

for the transition probabilities G(CE) and G(CB) (see §1 in the

electronic supplementary material).

The boundary conditions address the discontinuities

between phases, where cells from a different phase enter a

new phase. Since cells transitioning to S or to G0/G1 arrive

with different cyclin concentrations from G0/G1 (equation

(2.9)) or G2/M (equation (2.10)), respectively, the total number

of cells is calculated by taking the integral of the transition

term over all cyclin levels. For G0/G1, incoming cells are

doubled to account for cell division; for S phase, all the cells

with a doubled DNA content are considered to transition to

the start of G2 (equation (2.11)):

rG � G(CE ¼ CE, min, t)

¼ 2

ðCB, max

CB, min

rM!G(CB) �M(CB, t) dCB, (2:9)

rS � S(DNA ¼ 1, t) ¼
ðCE, max

CE, min

rG!S(CE) � G(CE, t) dCE (2:10)

and rM �M(CB ¼ CB, min, t) ¼ rS � S(DNA ¼ 2, t): (2:11)

Two assumptions were made: (i) the G0/G1 phase is aggrega-

ted: leukaemic cell lines are highly proliferative and therefore

only a small percentage of cells with DNA content 1 will actually

be quiescent (figure 2) and (ii) the G2/M phase is aggregated:

the duration of the M phase is short enough compared with

that of G2, such that it does not affect significantly the overall

cell-cycle progress [28].

Given the complexity of the equations (partial differential

and integral terms), discretization of the state variable space

is required. Phase domains start at CE, min (G0/G1), 1 (S)

and CB, min (G2/M), and are truncated at CE, max (G0/G1),

2 (S) and CB, max (G2/M). Compartments are subdivided
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into ni bins 8 i [ fE; D; Bg; each of the bins representing a

range of state variable levels which correlates to the bin

number according to the following equations:

nE ¼
nE

(CE, max � CE, min)
, (2:12)

nD ¼
nD

(DNAmax �DNAmin)
¼ nD

(2� 1)
¼ nD (2:13)

and nB ¼
nB

(CB, max � CB, min)
: (2:14)

Each bin corresponds to state variable levels that span: 1/nE

(G0/G1 phase), 1/nD (S phase) and 1/nB (G2/M phase).

The state variable levels for each bin become:

CE, e ¼
(e� 0:5)

nE
þ CE, min 8e [ {1, . . . , nE}, (2:15)

DNAd ¼
(d� 0:5)

nD
þ 1 8d [ {1, . . . , nD} (2:16)

and CB, b ¼
(b� 0:5)

nB
þ CB, min 8b [ {1, . . . , nB}: (2:17)

In the discrete form, equations (2.7) and (2.8) become

GG, e ¼ GG(CE, e) and GM, b ¼ GM(CB, b): The model now con-

siders ni subpopulations 8 i [ fE; D; Bg corresponding to

each state variable level in the compartment (figure 1),

which are defined as a vector of length ni. Following discreti-

zation of cyclins and DNA via a fully stable upwind scheme

[29,30], the model equations are simplified into ni ODEs per

compartment as follows:

dGe

dt
¼ (Ge�1(t)� Ge(t)) � nE � rG � Ge(t) � nE � rG!S, e

8e [ {2, . . . , nE}, (2:18)

dSd

dt
¼ Sd�1(t) � rS � nD � Sd(t) � rS � nD 8d [ {2, . . . , nD}

(2:19)

and
dMb

dt
¼ Mb�1(t) � rM � nB �Mb(t) � nB � (rM þ rM!G, b)

8b [ {2, . . . , nB}: (2:20)

The discretized counterpart of @(G(CE, t) � dCE=dt)=@CE

(equation (2.1)) is (Ge21(t) 2 Ge(t)) . nE . rG (equation (2.18));

the transition term rG!S(CE) � G(CE, t) corresponds to Ge(t)�
nE � rG!S, e in the discretized form; change with time is conver-

ted from @G(CE, t)=@t to dGe/dt. In addition, the boundary

conditions become:

dG1

dt
¼ 2 �

XnB

b¼1

Mb � nB � rM!G, b � G1(t) � nE � (rG þ rG!S, 1),

(2:21)

dS1

dt
¼
XnE

e¼1

Ge � nE � rG!S, e � S1(t) � nD � rS (2:22)

and
dM1

dt
¼ SnD � nD � rS �M1(t) � nB � (rM þ �rM!G, 1): (2:23)
2.2. Experimental validation of the population balance
model

EdU (5-ethynyl-20-deoxyuridine) is a thymidine analogue that

can be incorporated in the DNA of cells during S phase [9].

Cells undergoing DNA duplication are effectively labelled

but not G0/G1 or G2/M cells, resulting in two separate

populations that can later be tracked by flow cytometry. This

provides a suitable method to generate cell-cycle ‘movies’
from which cell-cycle times can be extracted. EdU exposure

does not significantly affect cell proliferation so long as the

uptake is short and in low concentrations [31]. Regardless,

only information from the unlabelled population was utilized.

Subsequent phase deconvolution can be performed by DNA

staining and the concentration of cyclins E and B is monitored

by simultaneous antibody staining.

The experimental system is composed of thousands of cells,

each characterized by a fluorescence intensity per channel.

Global phase behaviour is obtained by normalizing the geo-

metric mean fluorescence of individual cells [32]. A similar

approach can be used in the case of the discretized model,

except the system is composed of groups of cells with similar

characteristics instead of single cells. The equivalence between

the data analysis procedure used to aggregate flow-cytometric

data and the mathematical procedure to combine the simulation

data of each of the bins (refer to electronic supplementary

material, figure S5, for more details) is as follows:

Geometric meanexp ¼
YNcells

i¼1

fi

 !1=Ncells

, (2:24)

Geometric meanPBM ¼
YNbins

j¼1

C
Ncells, j

j

0
@

1
A

1=Ncells, tot

(2:25)

where Ncells, tot ¼
XNbins

j¼1

Ncells, j, (2:26)

where i indicates the cell index and j the bin index; fi and fj are the

normalized fluorescence of a cell and of a bin, respectively.

Because equations (2.24) and (2.25) are adapted formulas for

each of the systems to calculate a common variable, the resulting

values are equivalent and thus comparable (electronic

supplementary material, figure S5).

The transition probability function chosen implies that cells

statistically never reach the maximum cyclin value in the

model. It is assumed that a maximum probability of 99.99%

can be achieved. Therefore, the maximum value of cyclin is

theoretically obtained as the cyclin value at which 99.99%

of the cells would have transitioned, which is equivalent

to solving GG(CE, max) ¼ 0:9999 and GM(CB, max) ¼ 0:9999: A

conservation analysis (detailed next) confirms this does not

result in significant cell loss while providing enough flexibility

for ‘outlier’ cyclin expression events to take place (electronic

supplementary material, figure S1). By setting the duplication

factor to one, cell numbers in the model are constant over

time; the numerical solutions are tested to fulfil this property

at two different levels: total cell number and final phase bins

(GnE (t) and MnB ). For the total cell number, the maximum

loss recorded was 1.2 � 1025% in G phase and 2 � 1026% in

M phase (K-562). The gPROMS solver used was DASOLV

with e ¼ 1 � 1025; the cell loss is within the error of the

numerical solver and therefore it can be assumed to be zero.

The test for the final phase bins led to even smaller cell losses

(�10237%). The model was additionally tested for cell con-

servation based on the number of discretization intervals

allowed. The duplication factor was again set to 1 and the

model was run for five different scenarios with nE, nDNA and

nB set to decreasing numbers, for a total of 1000 h. The results

in terms of total cells remaining after 1000 h compared with

initial cell number (represented as Total %) and percentage

of cells in G0/G1 and G2/M phases exiting at the last bin are

presented in electronic supplementary material, figure S1A.
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Discretization intervals must be reduced to very few to push

the model into conservation issues. However, since we are

relying on bin numbers for averaged cyclin expression, it is

still important to keep a wide distribution for a good resolu-

tion in cyclin expression (otherwise situations like figure S1B,

electronic supplementary material, can occur).

Because transitions are modelled according to a normal

cumulative distribution, the probability of transition in the

last bins of G and M (GnE and MnB ) is very high (we have

assumed 99.99%). When converted via equations (2.7) and

(2.8), the resulting transition rates (rG!S, e and rM!G, b) become

very high as compared to the growth rates (rG and rM). There-

fore, the cell number that is lost through the passage to the

next (non-existent) bin through growth processes is minimal,

satisfying the conservation requirements:

lim
nE!1

�GnE (t) � rG � nE ¼ 0 (2:27)

and

lim
nB!1

�MnB (t) � rM � nB ¼ 0: (2:28)

In order to calculate cyclin thresholds, EdU�CþB at time 0 was

considered to contain cells in late G2/M phase. CB, thr and

CE, thr were set to the value at the peak, occurring when G%

and M% are minimum, respectively (therefore the cells remain-

ing are towards the end of the phase and have a cyclin content

closer to the threshold). For G%, it occurs after at least TG 2

texposure hours, whereas for M%, it is recorded at the very begin-

ning (after TM 2 texposure, which is usually close to zero because

TM tends to be in the range of EdU exposure durations). The

minimum cyclin values were set as the minimum values

reached in the phase of interest throughout the experiment.

Regarding the intra-phase model initialization, two situ-

ations were encountered: even or biased cell distribution.

Even phase distributions occur when cell populations are

continuously coming in from the previous phase and leaving

to the next phase. At steady state, the percentage of cells

(with respect to the total cells in a phase) found in a bin is

proportional to the complementary probability of cells transi-

tioning from that bin (given constant intra-phase growth). A

more detailed derivation can be found in §2 of the electronic

supplementary material.

GePnE

e0¼1

Ge0

¼

Qe
e0¼1

(1� GG,e0 )

PnE

e0¼1

Qe0
e00¼1

(1� GG,e00 )

8e [ {1, . . . , nE}, (2:29)

SdPnD

d0¼1

Sd0

¼ 1

nD
8d [ {1, . . . , nD} (2:30)

and
MbPnB

b0¼1

Mb0

¼

Qb
b0¼1

(1� GM,b0 )

PnB

b0¼1

Qb0
b00¼1

(1� GM,b00 )

8b [ {1, . . . , nB}:

(2:31)

Even phase distributions are used for the initial cell-cycle

distribution in every phase when modelling the total popula-

tion. Biased phase distributions correspond to the situation

when no cells are entering a phase but cells in the phase keep

progressing and exiting to the next phase, accumulating

towards the end of the phase (until the phase is depleted com-

pletely). As a result of EdU exposure, the EdU2 population
consists of G0/G1 and G2/M cells only. Specifically, G2/M

cells include only those cells that were not in S phase at the

start of EdU exposure. This means the EdU2 G2/M subpopu-

lation is composed of cells that have been in the phase at least

for the duration of the exposure, and have progressed through

the phase. Therefore, the G2/M phase of the EdU2 population

at time 0 can be modelled as a biased phase distribution. To

capture this behaviour, the model was initialized for the dur-

ation of the EdU exposure and cell entrance to G2/M is

blocked, resulting in the new boundary condition:

dM1

dt
¼ �M1(t) � rM � nB �M1(t) � rM!G, 1 � nB: (2:32)

The resulting G0/G1 and G2/M intra-phase distribution at

the end of the simulation of the exposure is used to initialize

the model with the experimental data at time 0.

The model at this point included 283 variables and

400 parameters (measured and derived, see §6 in the electronic

supplementary material). Global sensitivity analysis (GSA)

identifies the parameters that have an impact on model

output, by observing the change in the outputs when par-

ameter values are varied [33]. It assesses which experimental

values critically need to be determined with experimental

accuracy, and which others can be estimated or kept at their

nominal values for model validity. Three groups of significant

parameters were identified (figure 3; see Material and methods

for details): (i) CB, min, CB, thr, CE, min and CE, thr for cyclin E and

B concentrations, (ii) TG, TS and TM for cell-cycle phase kinetics

and (iii) Gini, Sini and Mini (the percentage of total cells in G1, S

and G2/M at time zero) for the cell-cycle distribution. Groups

(i) and (ii) were important throughout the culture, although

phase times (ii) were more significant in their respective

phases when a majority of cells were exiting that phase, or in

their subsequent phases, when a majority of cells were entering

the phase. However, group (iii) was only significant in the first

few hours. Only in one of the cell lines (MEC-1) was phase kin-

etics affected by cyclin threshold/minimum values (maximum

observed sensitivity index value for CE, thr was 0.35). Conver-

sely, cyclin concentration was only affected by cell-cycle

times during the initial hours. Finally, since sE and sB were

not identified as significant parameters, they were both fixed

at 20% of the difference CE, thr � CE, min and CB, thr � CB, min:

In summary, an accurate determination of the cell-cycle times

(TG, TS and TM) for phase kinetics and cyclin thresholds and

minima (CB, min, CB, thr, CE, min and CE, thr) for cyclin expression

is essential to fully characterize the model.

The cell-cycle times (TG, TS and TM) were obtained by

following the entrance/exit times of the EdU2 population

(+2 h) to and from each phase for the first cycle. The initial

EdU2 cell-cycle distribution was used to initialize and run the

model. The agreement between the model and the experi-

ments was remarkably good for all three phases in each cell

line (figure 3), with the model prediction falling within the

95% confidence region for most time points. For the geometric

mean of cyclin concentration, the trends and magnitudes were

captured; although the experimental data were inherently noisy

(due to the need for normalization steps against isotypes or

other phases, which increased the number of sources for data

uncertainty, and the absence of replicates), a reasonable fit

was achieved. In the particular case of cyclin B concentration

profile in K-562, the DNA deconvolution of the initial S-phase

cell-cycle distribution places a fraction of the cells that were in

the left-most section of the second DNA peak at the right-most
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part of S phase. Indeed, this caused a fraction of the S-phase

population to enter G2/M at 2–4 h, completely shadowing

the high cyclin B concentration of the remaining G2/M popu-

lation at that time (figure 4a). If corrected for no cells at the

end of S phase initially, the model matched the experimental

data (figure 4b) in all but one point as determined by the

residual sum of squares (figure 4c). Cell numbers analysed in

this region are significantly lower since cells keep exiting the

phase resulting in experimental data becoming less robust

thus explaining the mismatch observed at 6 h.

GSA revealed that the most significant parameters for phase

kinetics were the cell-cycle times. Furthermore, the analysis

showed that initial cell-cycle distribution values were not necess-

ary for longer analyses (over 5 h). We hypothesized that co-

culture conditions would have an effect on individual kinetics.

A preliminary K-562/MEC-1 co-culture experiment was carried

out at three set ratios: 10%, 50% and 90% MEC-1. MEC-1 kinetics

was clearly slower, so its time parameters were readjusted to fit

the experimental data in one of the cultures (50%), and the new

model results were validated against the 10% and 90% exper-

iments (figure 5 and electronic supplementary material, figure

S2). Observe how the relative residual sum of squares is higher

towards the end of the culture (figure 5c), especially in the

90% and 10% MEC-1 co-cultures, and much lower in all other

time points.

2.3. Forward and backward heterogeneous cell
population dynamics can be predicted using
the population balance model

Nine different co-culture mixtures of the cell lines were prepared

by operator 1 (electronic supplementary material, table S1).

Operator 2, blinded to the nature of the samples, performed
the analysis at time 0 and determined the initial per cent of

each cell type in order to run the model. Subsequently, the rest

of the samples were analysed, after which all the data were gath-

ered and compared with model simulations. In the last three

tests, the model was also evaluated for its backwards prediction

capability. A pre-run plot of model predictions (see electronic

supplementary material, table S4, for details of model par-

ameters used) was used to estimate the evolution of cell line

contents (figure 6a) together with the total cell number. The

experimental trends for the total cell kinetics in the last three

tests (T7–T9) were correctly predicted (figure 6b). Later points

were overestimated; the reason for this is twofold: (i) nutrient

depletion and metabolite accumulation can have a negative

effect on growth which the model does not currently incorpor-

ate and (ii) MOLT-4 and MEC-1 have maximum recommended

densities of 1.5–2 M cells ml21 while K-562 cannot grow at such

high cell densities: T9, with a higher content of MEC-1 and

MOLT-4, was correctly predicted, while for T7 and T8 (which

have a majority of K-562 cells) the model overestimates

the last two to three points where the cell density was over

1–1.2M cells ml21. The model accurately predicted the evol-

ution of all cell populations for the duration of the second part

of the experiment (0–30 h, figure 6c). Additionally, the contents

of the original mixture (at 248 h) were found correctly in two of

the three cases (figure 6a,d).
2.4. Unknown heterogeneous leukaemic populations
can be deconvoluted using the population balance
model platform

A second strategy was implemented where operator 2 pre-ran

the model assigning each initial per cent to each of the cell
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lines (resulting in six different possible scenarios per blind

experiment; electronic supplementary material, figure S3).

The whole experimental panel was then revealed (unassigned

to specific cell lines) and compared with the model output of

each scenario in terms of Euclidian distance in a ternary plot:

the lower the distance (relative to the other five scenario),
the likelier to be a good match. The ranking of the scenarios

likeliness given by the model for each mixture is shown in

figure 7. In mixtures T1, T2, T3 and T7, the model’s highest

ranking candidate matched the true experimental content,

while in a further three mixtures (T6, T8 and T9) the actual

content was found in one of the top three candidates. Overall,
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the correct solution, as a sum of the Euclidian distances in all

nine tests, scored lowest. Only in two cases (T4 and T5) did

the model fail to identify the actual mixture as a real candi-

date, partly because other scenarios had extremely close

values (within the experimental error margins). Of note,

cells were co-cultured in non-standard conditions (cell den-

sities and cell culture media used), challenging the ability

of the PBM to work under uncertain conditions. Finally, the

cell-cycle times of the three cell lines used were relatively

close; primary leukaemic cells may have more disparate

populations, with variation of days [9]. In this case, the

differences would be largely sufficient for the model to ident-

ify and quantify heterogeneous cell populations based on

cell-cycle kinetics.
3. Discussion
A PBM of the cell cycle based on cyclin concentration and DNA

content was developed and used to deconvolute leukaemia

population kinetics. GSA established which model parameters

were critically required (and which did not need to be ident-

ified) so that they were obtained experimentally for three

leukaemic cell lines by following a synchronous cell population

over time, after which the model was run and compared against

the actual cell-cycle distribution and cyclin concentration.

The agreement between the model and the experimental

data was excellent, for micro (intracellular growth) as well as

macro (population growth) kinetics, with most predictions fall-

ing within the 95% experimental confidence area. Additionally,

residual sum of squares identified the time points where the

model deviated from the experiments. The most sensitive

regions included the last hours in culture (over 20 h), where

cells experience exposure to significant concentration gradients

in terms of nutrient depletion and metabolite accumulation

(figure 5c); and regions where the number of cells analysed is

not sufficient to provide an accurate representation of the

phenomena occurring in culture (figure 4c). Next, the model

was successfully used for two different strategies in the context

of co-culture kinetics: (i) the prediction of backward and

forward culture evolution given known cell line-specific cell-

cycle kinetics and initial conditions and (ii) the identification

of cell type and content given an unknown experimental panel.

Clonal heterogeneity of AML and competitive outgrowth

of more ‘fit’ clones in a ‘Darwinian’ model render the success-

ful treatment of this disease particularly challenging [34]. It is

currently unclear which factors within a subclone or in the
microenvironment make certain clones out-compete others

and how this dynamic can be altered by chemotherapy

schedule [9,34,35]. Recently, it has been proposed that

tumour-specific cell-autonomous and non-cell-autonomous

factors (e.g. cytokines) can alter growth kinetics and properties

of tumours and that these qualities may be targeted to manip-

ulate tumour growth [36]. Although there are many other

properties relevant to leukaemia and the treatment of leukae-

mia, most if not all of these factors ultimately affect the cell

cycle. Hence, this work describes a model of the cell cycle

that can be combined or upgraded to capture additional

phenomena such as differentiation (affecting traditional

chemotherapy, but also affected by novel agents targeting

specific types of haematopoietic cells) or environmental cues

(metabolism, cytokines, contact inhibition, etc.). The key is cap-

turing the most important phenomena at a sufficient level of

detail in order to maintain the fidelity and relevance to the

biological system. Defining which are the additional phenom-

ena that are key in response to chemotherapy is definitely a

critical step. Pharmacokinetics/pharmacodynamics (PK/PD)

models capture body processes that are relevant to the drug

distribution and transport to the bone marrow, as well as its

effect, for example. Our model may be able to capture clonal

heterogeneity which, combined with PK/PD, may lead to

improved and more effective therapies.

The ability to assess both backward and forward evolution

of cell clonal content using the PBM presented herein provides

a quantitative tool for the estimation of population dynamics

and the study of leukaemia progression in both treated and

untreated patients [6,37,38]. This tool also has the potential to

evaluate clonal models of leukaemogenesis [4,6,39] in order

to better understand the pathogenesis of disease. In the context

of CCS drug dosage and scheduling, the PBM could give a nar-

rower window of action than what is currently used in

treatment regimens, thereby limiting drug toxicity yet improv-

ing efficacy [8,7]. Drugs, such as small molecule inhibitors,

currently being tested that specifically target leukaemia sub-

clones (e.g. those expressing FLT3-ITD [40]) could be dosed

and scheduled to optimize cell kill during therapy according

to anticipated subclonal composition. Ultimately, balancing

CCS chemotherapy with more advanced gene-targeted treat-

ments will require detailed knowledge of subpopulation

evolution, kinetics and dynamics during treatment calculated

and manipulated using computational methods such as those

presented herein for designer therapies. The availability of

individual clone sensitivities to each drug (EC50) and the use

of accurate models simulating drug distribution in the
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human body will be key for simulating cell death by

chemotherapy. The PBM’s high resolution in describing

intra-phase events allows incorporating cell death not only in

a phase-specific but also in a phase coordinate-specific

manner (data not shown).

Genome-based methods are currently employed in order to

define mutational heterogeneity in AML subclones, thereby

identifying evolution of disease throughout treatment [6].

In order to optimize treatments in AML, we pursued a comp-

lementary strategy of clonal identification by using cell-cycle

kinetics to effectively represent heterogeneity. Cells may

acquire proliferative mutations that modify cell-cycle times

through bypassing of cell-cycle controls; overexpression of

p21 enables cells with DNA damage to continue to the next

phase prematurely [41], while mutations in Cdc20 delay the

timing of cyclin B degradation, and pRb or E2F mutations pro-

mote early entry into S phase by premature increase in the

concentration of cyclin E [42]. A plethora of subpopulations,

each with specific cell cycle signatures arises; the PBM can

estimate cell-cycle evolution for each of them and capture over-

all behaviour. Since cell-cycle duration has been shown to

correlate with prognosis in response to treatment [43], an

a priori classification of subpopulations according to slow/

intermediate/fast cell-cycle kinetics may be initially devel-

oped. A more sophisticated extrapolation for patient cell

populations is currently being studied by the use of steady-

state parameters [44], rather than the dynamic counterparts

(used here), which could potentially be measured in the

diagnostic bone marrow or peripheral blood sample at disease

presentation. Technology now exists wherein patient AML

mutations and subclones are identified routinely [45]. Put

together with cell-cycle data (which could be done at diagnosis

and throughout treatment if needed by assessment of S-phase

or cyclin expression by flow cytometry), PK/PD combined

models are being developed to optimize chemotherapy dose

and schedule according to anticipated clonal output [8,44].

With this method, there is the potential to tailor treatments

by manipulating leukaemic heterogeneity and instilling long-

term control of tumour growth, limiting expansion of more

pathogenic clones [36,46].

Heterogeneous cyclin production patterns originate as a

result of cell-cycle mutations (e.g. cyclins D1 and E1, KIP1,

INK4B and INK4A, CDK4, Rb [11]), making them leukae-

mia-specific. Predicting the intensity and timing of cyclin

concentration increase can become critical in defining the opti-

mal dose and schedule of current as well as novel treatment

strategies [8,47]. Owing to their critical role in the control of

cell-cycle progression, cyclin-blockade strategies arrest pro-

liferation, without the risk of additional mutagenesis inherent

in traditional chemotherapeutics. Specific cell-cycle drug tar-

gets, such as cyclin D and CDK1–cyclin B complexes [48,49],

may be identified and tracked using the PBM platform devel-

oped herein and used to identify the best dose and schedule

pre-clinically, expediting drug development trajectories.

The development of detailed models of the cell cycle that

are experimentally validated is critical in the implementation of

more advanced PK/PD models [50,51]. Additionally, linking a

small subset of measurable variables to unique characteristics

of the individual is necessary for the development of personal-

ized treatment. The PBM we have developed paves the way in

connecting both. Ultimately, the application of such a tool

could inform not only optimal timing and type of personalized

treatment for improved outcomes but also provide a platform
for pre-clinical assessment of novel targeted therapies for

leukaemia and other cancers.
4. Material and methods
4.1. Computational tools
The computational tools used for carrying out the simulations

in this paper are detailed below, as well as the sensitivity analysis

methods. The model was implemented on gPROMS ModelBuilder

3.5.3 and simulated on a 64-bit Windows with an Intel Core 2 Quad

CPU 2.67 GHz and 4GB RAM. GSA was performed on Matlab for

the discretized model by connecting gPROMS through gO:Matlab.

Sobol’s method [52] was used, screening the influence of 24 par-

ameters with 20 000 intervals each on the G1–S–G2/M phase

per cents, cyclin expression, % cell loss, transition rates and total

cell number. The inputs were varied +40%, built onto a matrix

in Matlabw and a call was sent sequentially via gO:Matlabw for

every set of parameter values. The outputs at 0, 1, 2, 5, 10, 15

and 20 h for each parameter were recorded and the sensitivity

indexes were subsequently calculated on GUI-HDMR [53]

Matlab package. The analysis was made on the model including

the reinitialization period for EdU exposure (biased phase

distribution).

4.2. Leukaemia cell lines
Cell lines are laboratory-adapted populations that give reproducible

experimental results and require basic culture methods for their

maintenance. Three leukaemia cell lines were used: K-562 (chronic

myeloid leukaemia in blast crisis; has unscheduled cyclin E

production and overexpressed cyclin B [54]); MEC-1 (chronic lym-

phoid leukaemia, which expresses CD19) and MOLT-4 (acute

lymphoid leukaemia, has scheduled cyclin E and B [13]). K-562

(ATCC, MD, USA) was cultured in Isocove modified Dulbecco’s

medium (IMDM; Invitrogen, CA, USA) with 10% heat inactivated

fetal bovine serum (FBS; Invitrogen) and 1% penicillin–streptomycin

(P/S; Invitrogen). MEC-1 (DSMZ, Germany) cells were cultured in

IMDM þ 20% FBS þ 1% P/S for 1 week, and in IMDMþ 10%

FBS þ 1% P/S thereafter. MOLT-4 (ATCC) cells were cultured in

RPMI-1640 (Invitrogen) þ 10% FBS þ 1% P/S. All cells lines were

used at p , 20.

4.3. Labelling cells with 5-ethynyl-20-deoxyuridine
In vitro labelling of cells with EdU is necessary to segregate the

global population into two approximately synchronous popu-

lations for dynamics to be observed. The AF647 EdU kit

(Invitrogen) was reconstituted and used according to manufac-

turer’s instructions. Cells were resuspended in fresh medium

and pre-cultured for 12 h in T175 flasks (Corning, NY, USA)

at 300 000 cells ml21 (K-562), 400 000 cells ml21 (MEC-1) or

350 000 cells ml21 (MOLT-4). EdU (10 nM) was added (optimal

concentration was determined by preliminary experiments, data

not shown) and after 1 h (MEC-1) or 2 h (K-562, MOLT-4), cells

were washed twice and resuspended in fresh medium for culture

under standard conditions in six-well plates (Corning; 4–6 ml per

well). Two cultures were exposed with a difference of 11–14 h;

samples were collected every 2 h for intervals of up to 14 h consecu-

tively and the data were merged (overlap in cell-cycle distribution

values was confirmed at matching points). An unexposed culture

was used as a control.

4.4. Co-culture experiments
Co-culture indicates an experimental set-up where two or more

separate cell lines are physically put together in the same culture

medium. In order to distinguish the populations, specific analysis
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methods detecting each of them individually have to be developed.

K-562 and MEC-1 cells were mixed at the appropriate ratios and

pre-cultured in IMDMþ 10% FBS. After 48 h, they were resus-

pended in fresh medium at a density of 0.5 � 106 cells ml21 and

cultivated in six-well plates (Corning), 4 ml per well. Triplicate

samples of 106 cells were taken at 0, 5, 10, 20, 25 and 30 h. For the

blinded experiments, operator 1 prepared unknown mixtures of

K-562, MEC-1 and MOLT-4 cell lines (different cell types and

ratios), which were precultured for 48 h. Samples were taken

every 5–10 h for a total of 30 h. Triplicate samples were collected

and split into two tests: samples to be stained for CD19 and fixed

in paraformaldehyde 4% and samples to be fixed in ethanol for

later detection of cyclin B concentration. In the segmentation of

co-cultured samples, the percentage of MEC-1 cells was inferred

from the population with CD19 expression, the MOLT-4 content

from the population with high cyclin B concentration (electronic

supplementary material, figure S4); K-562 was the % remaining.

For samples where only K-562 and MOLT-4 were present, SSC

versus DNA analyses sufficed to gate each cell type. Note that

this was impossible when all three cell lines were together as SSC

versus DNA of MEC-1 overlaps with both K-562 and MOLT-4

(only approximate values of per cent of each cell line could

be deduced).

4.5. Flow cytometry
Flow cytometry is a technique that allows translating single cell

properties (DNA content, protein expression) to fluorescence

intensity by labelling them with antibodies specific to the protein

or substances that bind to DNA strands and fluoresce when

exposed to a laser beam of a particular wavelength. The cyclin

B IgG1k antibody kit (clone GNS-1; BD, NJ, USA) was used

according to manufacturer’s instructions. Anti-human cyclin E

antibody (clone HE12), together with the isotype control IgG1

(clone ICIGG1) and the FITC secondary antibody to IgG were

prepared as per manufacturer’s protocol (all three from Abcam,

UK). The V450 Ki-67 IgG1k (clone B56, BD) antibody and V450

IgG1k isotype control (clone MOPC-21, BD) were both diluted

4�. A propidium iodide (PI; Sigma, MO, USA) solution was

prepared by dissolving 10 mg l21 PI with 100 mg l21 DNase-free

RNase (Sigma) in phosphate buffered saline (PBS; Invitrogen), as

previously described [51]. Triplicate samples were collected regu-

larly for each condition (EdU: every 2 h; No EdU: every 6 h) and

fixed in 70% ethanol at 2208C for a maximum of 2 days prior

to acquisition. Cells were then labelled with antibodies after

permeabilization in the following order: (i) exposure to EdU

reagent, (ii) staining with either cyclin B or E antibodies and

(iii) resuspended in PI.

For CD19 labelling in co-culture experiments, labelled or con-

trol antibody was added to each of the three replicate samples and

incubated for 30 min at 48C in the dark, fixed in paraformaldehyde

at 48C, and data were acquired within 2 days with a Guava flow-

cytometer (easyCyte 8HT, Millipore, MA, USA); a Fortessa flow

cytometer (LSRFortessa, BD) was used for all other data acqui-

sition. FACSDIVA software was used during acquisition of data

on Fortessa, while EASYCYTE was used on the Guava; for all

samples, 20 000 events were acquired. Data analysis, gating

and geometric mean calculations were performed in FLOWJO 8.7

(TreeStar Inc, OR, USA).
In order to process these data, several steps have to be per-

formed for every sample: (i) gating out the debris on the FSC

versus SSC, (ii) gating out the doublets on the PI (area) versus

PI (width) signal, (iii) deconvoluting the cell-cycle distribution

(Dean–Jett–Fox method) resulting in G0/G1, S (split into four

equal gates at time 0 only) and G2/M gates, (iv) gating the

EdU positive from the EdU negative populations (from control

which was unexposed to EdU but exposed to click reaction cock-

tail) and (v) gating the cyclin positive from the cyclin negative

populations (from isotype control exposed to EdU and reaction

cocktail). From this analysis, four different populations are ident-

ified: EdUþ Cþ; EdUþ C2; EdU2 Cþ; EdU2 C2, in addition to

the ungated total population. For each sample: (i) the geometric

mean of the fluorescence in the C þ population in the phase of

interest divided by the geometric mean of the fluorescence in

the total population in the phase where the cyclin expression is

minimal gives the normalized sample expression, (ii) for the iso-

type samples, the geometric mean of the fluorescence in the

phase of interest divided by the geometric mean of the fluor-

escence in the total population in the phase where the cyclin

expression is minimal gives the baseline expression of the

phase and finally (iii) the normalized values obtained in (i) are

divided by the baseline values from (ii) giving the normalized

cyclin expression of the phase of interest for the sample:

CE,norm ¼
fsample(CþE,G1)= fsample(Ctot

E,G2=M)

fisotype(Ctot
E,G1)= fisotype(Ctot

E,G2=M)
(4:1)

and

CB,norm ¼
fsample(CþB,G2=M)= fsample(Ctot

B,G1)

fisotype(Ctot
B,G2=M)= fisotype(Ctot

B,G1)
: (4:2)
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