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Biological cells sense and respond to mechanical forces, but how such a

mechanosensing process takes place in a nonlinear inhomogeneous fibrous

matrix remains unknown. We show that cells in a fibrous matrix induce defor-

mation fields that propagate over a longer range than predicted by linear

elasticity. Synthetic, linear elastic hydrogels used in many mechanotransduc-

tion studies fail to capture this effect. We develop a nonlinear microstructural

finite-element model for a fibre network to simulate localized deformations

induced by cells. The model captures measured cell-induced matrix dis-

placements from experiments and identifies an important mechanism for

long-range cell mechanosensing: loss of compression stiffness owing to micro-

buckling of individual fibres. We show evidence that cells sense each other

through the formation of localized intercellular bands of tensile deformations

caused by this mechanism.
1. Introduction
Physical cues control cell behaviour through various mechanisms collectively

referred to as mechanotransduction [1]. For example, the stiffness of a cell’s

environment controls cellular morphology, migration and development [2].

Equally important is the response of cells to direct physical forces either through

cell–cell adhesions [3,4] or through the extracellular matrix [5–7]. Nearly all

previous work on mechanotransduction has used synthetic, linear elastic gels

[8]. The mechanical properties of physiological extracellular environment,

however, deviate entirely from simple homogeneous linear elasticity. Natural

fibrous matrices exhibit strain stiffening [9], tensile normal strains under shear

loading [10], negative compressibility [11] and lower stiffness in compression

than in tension [10]. These nonlinear properties of biological gels can have a

dramatic effect on behaviours like cell spreading [12].

Various models have simulated nonlinearity of fibrous biological materials,

but relatively few have considered local, non-uniform deformations in such non-

linear inhomogeneous materials [13,14]. Instead, nearly all previous studies have

focused on homogeneous shearing [9,15–17] or uniaxial tension [11] of the bulk

material. These studies of uniform deformations have revealed novel constitutive

behaviour of fibrous materials, but they fail to simulate deformations similar

to those applied by a cell. By contracting and changing shape, cells apply localized

forces to their surroundings, resulting in inhomogeneous stress and deforma-

tion fields in the matrix. Given the lack of theoretical and experimental studies

of cell–matrix interactions at the local scale, there remains a need to quantify

cell-generated forces and displacements and to discern how cells respond to

nonlinear properties of fibrous materials at the scale sensed by the cell.

Here we experimentally measure three-dimensional cell-induced matrix dis-

placements and report two findings: (i) displacements decay much slower with

distance from the cell than predicted by linear elasticity; (ii) multiple cells cause

localized matrix densification and fibre alignment in tether-like bands joining

them. We hypothesize that the mechanism responsible for these phenomena

is loss of compression strength owing to microbuckling of individual fibres.
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To test this claim, we develop a microstructural finite-element

(FE) network model of the fibrin matrix. Buckling of individ-

ual fibres is modelled by a loss of stiffness in compression for

network elements. Our model agrees with previous experi-

mental observations for fibrin, and it predicts both the slow

decay of displacements and localization of intercellular tethers.

Variants of the model without loss of stiffness in compression

fail to predict these effects. The long range of cell-generated

displacements and stresses, and the localization into inter-

cellular tensile tethers, allow cells to sense each other and

their surroundings over larger distances through a fibrous

matrix than through homogeneous hydrogels with linear elas-

tic behaviour. We show evidence that cells respond to localized

tension by growing protrusions towards one another, guided

by the dense aligned fibres in tethers. This points to fibre micro-

buckling as an important mechanism responsible for enhanced

range of cell mechanosensing in fibrous matrix environments.
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Figure 1. Experimentally measured displacements induced by isolated cells
embedded within a three-dimensional fibrous matrix. (a) The coloured
quivers plot three-dimensional matrix displacement vectors applied by a
cell to a three-dimensional fibrin matrix. Paths (white) are chosen proceeding
outward from the cell body. (b) Displacement magnitudes along the paths
are averaged for multiple time points and plotted. Each curve is for a differ-
ent cell. The blue curve shows displacements for the cell in (a). The grey
shading behind the blue curve shows typical error of the displacement
measurement after averaging. Data used to generate these curves is in the
electronic supplementary material.
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2. Results
2.1. Cell-induced matrix displacements
We motivate our model by first considering cell-induced dis-

placements within a three-dimensional fibrous matrix during

initial cell spreading. A cell seeded in a three-dimensional

matrix initially applies tensile tractions to the fibres by under-

going uniform isotropic contraction while in an essentially

spherical state. This suggests Eshelby’s solution for a contracting

spherical inclusion in a homogeneous, linear elastic, infinite

medium [18], as a simple analytical model for cell-induced

matrix deformation. In this solution, the displacement magni-

tude u ¼ u(r) scales as u(r) � r22 with distance r from the cell

centre. Stress components, e.g. the radial component srr, scale

as srr � r23. A spreading, elongated, ellipsoidal cell with

polarized alignment, applies tractions equivalent to equal and

opposite forces at its poles, i.e. a dipole [19], in view of force

equilibrium. Displacements owing to a dipole in a three-

dimensional linear elastic continuum also scale as u � r22.

One would thus expect displacements induced by a spreading

cell in a three-dimensional matrix to scale similarly.

Using confocal microscopy and digital volume correlation

[14,20,21], we measure displacements induced by isolated

fibroblast cells embedded in a three-dimensional fibrin

matrix. Displacements induced by the cells are largest near to

the cell and decrease with distance from the cell (figure 1a).

We quantify the rate at which displacements decay over dis-

tance by computing displacements along linear paths starting

at the centre of cell and ending approximately 100 mm away

(figure 1a, white line). Experimental data from multiple differ-

ent cells are plotted on a logarithmic scale in figure 1b. Data are

fit to the form u(r) ¼ Ar2n. Here A and n are constants; n . 0 is

a decay power. The larger the value of n, the faster the displa-

cement u decays with distance r from the cell centre. Fits of the

experimental data yield n ¼ 0.52 (mean over data from six

cells during multiple time points), indicating that displace-

ments decay much slower than predicted by the linear

elastic solution n ¼ 2. The ratio of the RMS errors of fits to

u � r20.52 and u � r22 is 0.14+0.07 (mean+ s.d.); hence the

scaling u � r20.52 describes cell-induced displacements in a

fibrin matrix far better than the three-dimensional linear elastic

scaling u � r22.

A striking difference between fibrin networks and homo-

geneous gel matrices is the phenomenon of buckling of
individual fibres under compression (e.g. [22, fig. 5]). This is

directly responsible for the decreased ability of fibrin networks

to sustain compressive stresses. Each fibre has very low resist-

ance to bending, much like a flexible string [23]. If one pulls at

the ends of a string, it resists tension. If one pushes the ends of a

string towards each other, the string bends easily without

resisting compression (i.e. it buckles), and this buckling can

change the mechanical response of a network [24]. Fibrin

exhibits a larger stiffness in tension than compression [10,25]

owing to buckling of individual fibres under compression

[15,22,26,27]. Is this nonlinearity responsible for the discord

between the observed displacement scaling and the prediction

based on a linear elastic matrix assumption? While it may be

possible to address this via a continuum model for a material

with lower stiffness in compression [28], here we present a

simple theoretical continuum argument, which we will investi-

gate in detail using a discrete model. As the cell exerts radial

contractile traction forces, the stress tensor in the matrix has

a tensile (positive) radial component in three-dimensional
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Figure 2. Finite-element model network details. (a) Stress – strain curves for
bilinear model. Stress s is normalized by Young’s modulus E. Dashed black:
linear without microbuckling (r ¼ 1); solid blue: bilinear with microbuckling
(r ¼ 0.1). (b) Normalized stress – strain curves for the strain-stiffening
model, which exhibits WLC-like behaviour in tension. For this model r is defined
as the slope upon approaching the origin from the left divided by the slope upon
approaching the origin from the right. A continuous slope at the origin (r ¼ 1)
was used to simulate non-buckling elements (dashed black line) and a discon-
tinuous slope (r ¼ 0.1) was used to simulate microbuckling elements (solid red
line). (c) Network array. (d ) Randomized network, C ¼ 8. (e) Network with
reduced connectivity, C ¼ 3.
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spherical coordinates, and two contractile (negative) hoop

(angular) components. Assuming the individual fibres of the

fibrin matrix buckle under a small compressive load, the

contractile hoop components of the stress tensor are small

and can be neglected. This assumption reduces the radial

equilibrium equation [29] to

dsrr

dr
þ 2

srr

r
¼ 0: (2:1)

Solving equation (2.1) gives srr � r�2. Thus, stress owing to

cell contraction is transmitted over a longer range than under

the scaling srr � r�3 predicted by linear elasticity. Assuming

piecewise linear stress–strain relations with zero stiffness in

compression, srr is proportional to the radial strain du(r)/dr
which gives u � r21 (coupling between srr and the hoop

strains guu, gff vanishes due to hyperplastic reciprocity:

@srr/@guu ¼ @suu/@grr ¼ 0 as suu ¼ 0 in the compressive

regime. For more details on a hyperelastic material model

that leads to equation (2.1) as a special case, see [28].) The scal-

ing from this simple analysis, u � r21, points towards

displacements that propagate over a longer range than the

three-dimensional linear elastic scaling, u � r22. Furthermore,

the scaling from the theoretical analysis is closer to the exper-

imentally observed scaling, u � r20.52 than to the linear

elastic one. This plausibility argument shows the right trend,

but ignores the inhomogeneous and discrete nature of

the fibrin network. To account for these factors, we turn to a

microstructural network model.
2.2. Model
We develop a FE-based microstructural model consisting of a

two-/three-dimensional network of linear elements represent-

ing fibres. This model expands on one that we have recently

developed [14]. Each element undergoes uniaxial tension/

compression and rotates with no resistance. We model buck-

ling of fibres as a loss of stiffness in compression in the

stress–strain relation of individual elements. This agrees quali-

tatively with observed behaviour in similar systems [30]. In the

context of our model, ‘microbuckling’ will refer to elements

obeying a stress–strain relation where the stiffness (slope)

under compression is smaller than the stiffness under tension

(figure 2a, blue line). In the following simulations, we use a

ratio of stiffness in compression to stiffness in tension r ¼ 0.1.

While the choice of r ¼ 0.1 is arbitrary, we find that any posi-

tive ratio of stiffnesses r significantly less than unity yields

similar results. By contrast, ‘no microbuckling’ will refer to

elements with r ¼ 1, i.e. elements with a linear stress–strain

relation without a reduced compression stiffness. For most

simulations, networks comprise elements with a bilinear

stress–strain relationship (figure 2a, different slopes in tension

and compression). We will also account for the possibility of

entropic elasticity by employing a wormlike chain-type

(WLC) stress–strain relationship [9,23], where the stiffness

increases with strain in tension (figure 2b). The elements con-

nect an array of nodes as in figure 2c. Randomness is added

to nodal positions to simulate the random array of fibres of

different lengths typical of a fibrous network (figure 2d).

Another important aspect of actual fibrin networks is

their low connectivity, or coordination number C, i.e. the

average number of fibres meeting at a node. The network

of figure 2c,d has C ¼ 8, while actual fibrin often has a typical

value of C ¼ 3 [31]. This is below the critical value for
rigidity, C ¼ 6 or 4 for three- and two-dimensional networks,

respectively. As a result, fibrin is typically a ‘floppy’ network,

and this affects its mechanical properties [31]. To obtain a

model network with lower connectivity (such as C ¼ 3 in

figure 2e), we removed elements at random from the original

C ¼ 8 network of figure 2d. As in [31], deleted elements were

replaced by weak elements, whose stiffness was six orders of

magnitude less than that of the deleted ones; this ensured

stability of numerical calculations.

In contrast to previous models that focus on the macro-

scale behaviour of a fibre network [15–17], we simulate the

inhomogeneous, localized displacements induced in a fibrin

matrix by an embedded cell. We begin with two-dimensional

FE simulations where the cell is modelled as a contracting

circle. The matrix occupies the region a , r , b, where r is

distance from the cell centre; here a is the cell radius, and

b/a ¼ 50. The outside boundary r ¼ b is free (a zero traction

boundary condition is imposed). The cell boundary r ¼ a
undergoes a radial contractile displacement u(a) ¼ 20.1a.

Simulations were performed for different connectivities in

the interval 2.5 � C � 8 for bilinear element networks with

microbuckling and without. The displacement magnitude u
was computed (figure 3a), averaged around the circular region

(figure 3b; electronic supplementary material, figure S1a), and

fit against distance from the centre of the circular region r to

u ¼ Ar2n for the constants A and n. Results, n plotted versus

connectivity C, are shown in figure 3c. In general, the decay

power n for networks with microbuckling (figure 3c, open cir-

cles) is substantially lower, by at least 0.4, than for networks

without microbuckling of fibres (figure 3c, black circles). This

is true for a wide range of connectivities, with an exception

near the critical value C ¼ 4; for these values n � 0.6 in both

types of networks. We observe larger spatial inhomogeneities

of displacement at the scale of individual fibres in networks
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Figure 3. Long-range propagation of displacements is due to microbuckling. (a) Inhomogeneous forces, like those applied by a cell, are modelled by a circle of
radius a contracting in a circular region with radius b ¼ 50a. Contours of normalized displacement u/a are shown here for the case of the bilinear model ( figure 2a)
with microbuckling (r ¼ 0.1) and C ¼ 3. For a cell of radius 10 mm, the applied displacement u/a ¼ 0.1 would correspond to 1 mm. (b) Displacements are
averaged around a circle of radius r about the centre of the model and plotted for simulations that used different connectivities ranging from C ¼ 2.5 to C ¼ 8. All
curves show long-range propagation of displacements with slopes �20.5. At the critical connectivity, C ¼ 4, displacements exhibit spatial inhomogeneities,
resulting in fluctuations. (c) Decay power n versus connectivity C. Circles show fits to u ¼ Ar2n; squares show fits to u ¼ Ar2n þ Brn. Solid black symbols
represent fibres that do not buckle (r ¼ 1); open symbols represent fibres that do buckle (r ¼ 0.1). Most powers n for the case of microbuckling r ¼ 0.1
are �0.5, in agreement with the slope of 20.5 observed in (b). The value of n � 0.5 indicates displacement propagate over a longer range than predicted
by linear elasticity, for which n ¼ 1 in two dimensions. Simulations are repeated for the strain-stiffening WLC-type relationship (figure 2b). (d ) Contours of
displacement u/a for the strain-stiffening relationship with microbuckling (r ¼ 0.1). (e) Averaged displacements and ( f ) decay powers n for the strain-stiffening
relationship. As in (c), circles show fits to u ¼ Ar2n; squares show fits to u ¼ Ar2n þ Brn. Solid black symbols represent fibres that do not buckle (r ¼ 1); open
symbols represent fibres that do buckle (r ¼ 0.1).
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with C ¼ 4 than in those with both subcritical and supercritical

connectivity (figure 3b; electronic supplementary material,

figure S2). These fluctuations are due to the change in phase

from subcritical to supercritical connectivity as detailed

elsewhere [31,32]. For the case without microbuckling

(i.e. with linear stress–strain relation) as individual ele-

ments have linear stress–strain behaviour, we compare the

displacement with the linear elastic two-dimensional solu-

tion u ¼ Ar2n þ Brn for the constants A, B and n. Except near

C ¼ 4, we find n ¼ 0.89+0.04 (mean+ standard deviation,

essentially independent of C over all connectivities). This

value of n ¼ 0.89 is close to the two-dimensional linear

elastic solution n ¼ 1. Connectivity does not appear to play a

major role in displacement decay except near the critical

value. We find no change in these conclusions when the zero
traction boundary condition is replaced by a zero displace-

ment condition fixing the external boundary (see electronic

supplementary material, figure S3). Thus, we conclude

microbuckling is crucial for the slow decay of displacements.

The long range of cell-induced displacements has been

previously attributed to strain stiffening [12], but this has

been disputed [33]. We observe that the experiments of [12]

were performed on fibrin, which exhibits microbuckling.

Also, Rudnicki et al. [33] provide evidence against strain stif-

fening as the underlying mechanism, but do not seem to

propose an alternative. To help settle this, we repeated our

simulations with elements whose stress–strain curve is of

WLC type and stiffens in tension (figure 2b). Two versions

of stiffening WLC stress–strain curves were compared.

A curve whose slope is continuous at zero strain and increases
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buckling.
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smoothly in tension models a tension-stiffening material

that does not undergo microbuckling (black dashed line,

figure 2b). The alternative stress–strain curve has a discontinu-

ous slope at zero strain (10 times smaller than the tangent

stiffness for small tensile strain). It models microbuckling

(red solid line, figure 2b) combined with tension stiffening. In

all cases, values of the decay exponent n from fits for WLC net-

works (figure 3d–f; electronic supplementary material, figure

S1c) agreed well with fits for bilinear networks of the same con-

nectivity and same (buckling or non-buckling) type (figure 3c).

This provides strong evidence that the tension-stiffening non-

linearity in the absence of microbuckling is not the cause of

the slow displacement decay that we observe.

Until now, we have considered round cell geometries,

which do not capture the elongated shape of spread cells. For

an anisotropic cell contracting along its long axis, an ellipsoid

more accurately captures the cell’s shape. For this geometry,

linear elasticity predicts that displacements far from the cell

scale as u1 � x�n
1 , where n ¼ 2 in three dimensions, n ¼ 1 in

two dimensions; x1 is the distance along the major axis from

the centre of the ellipsoid (or ellipse in two dimensions) and

u1 is the displacement in the x1 direction [18]. To compare

with the linear elastic solution, we placed in our fibrous

network model an ellipse with a ratio of semi-major and

semi-minor axes a1/a2 ¼ 4. As with the contracting circle, the

matrix occupied a circular region of radius b ¼ 50a with the

nodes on the boundary r ¼ b free and a defined for the ellipse

as a ;
ffiffiffiffiffiffiffiffiffi

a1a2
p

. Contractile displacements were applied on

the boundary of the ellipse, with non-zero component

u1(x1) ¼ 20.1a(x1/a1) (along the long axis of the ellipse). This

is equivalent to subjecting the ellipse to a negative uniaxial

strain along the ellipse’s long axis. The largest magnitude of

contractile displacement is ju1(a1)j ¼ 0.1a (at the ellipse tip),

the same value as for the contracting circle. Displacements

along the axis of the ellipse (figure 4a) appear to scale simila-

rly to the displacements induced by the contracting circle

(figure 3b). Indeed, the fittings to u1 ¼ Ax�n
1 show decay

powers n that are significantly smaller for networks with micro-

buckling (figure 4b, r ¼ 0.1) than without (figure 4b, r ¼ 1;

electronic supplementary material, figure S1b). Like the con-

tracting circle, the ellipse exhibits an exception at the critical

connectivity C ¼ 4. The trend shown in figures 3 and 4 is

clear: microbuckling results in cell-induced displacements that

propagate over a longer range than predicted by linear elasticity

for both a contracting circle and a contractile ellipse.

We also performed three-dimensional simulations (con-

tracting spherical cell), with similar conclusions. We recall

that the three-dimensional linear elastic solution predicts

u � r22. The theoretical argument based on equation (2.1)

gives u � r21, while a fit to our experiments yields u � r20.52.

For three-dimensional networks (microbuckling bilinear

elements) with C ¼ 14, a fit to u ¼ Ar2n gives n ¼ 0.67. For

C ¼ 3.5 (below the critical value for rigidity C ¼ 6), we found

n ¼ 0.82 (electronic supplementary material, figure S4). These

results combine to show that microbuckling of fibres is the

key mechanism responsible for the longer range of cell-induced

deformations in a fibrin matrix.
2.3. Tethers
Can cells exploit the long propagation range of matrix defor-

mations they themselves induce for sensing the presence of

other cells? We use confocal microscopy to visualize both
the matrix and multiple fibroblast cells embedded in it. We

observe that cells whose distance from each other is of the

order of 10 cell diameters are connected to each other by

linear bands consisting of aligned and densely packed

matrix fibres (figure 5). Within these ‘tethers’ fibres appear

to be in tension in the direction joining the cells. These tethers

also occur between multicellular explants in a fibrous matrix

[34,35], but the mechanism for their formation remains

unknown. The tethers extend far beyond a single cell’s pro-

trusion (figure 5). Matrix remodelling by degradation or

deposition cannot be responsible for alignment at such a

large distance from the cell. This leads us to examine the

hypothesis that tethers form owing to tensile forces.

A previous model has shown that a point force in a fibrous

medium induces forces which propagate through tether-

like paths [36]. The point force loading of this previous

model was not intended to simulate forces owing to cells,

which maintain force equilibrium while pulling on the

matrix. To investigate the physical mechanism of tether for-

mation, we used our FE network model with microbuckling

to simulate a pair of contracting cells. A symmetric boundary

condition is imposed at the bottom of a square region contain-

ing a circle of radius a (the other boundaries are free of applied

tractions). By symmetry this is equivalent to a pair of identical

contracting circular cells in the fibrous matrix. We apply an

isotropic inward radial displacement of 0.1a to the circular
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region. For a cell with a radius of a ¼ 10 mm, this value of 0.1a
corresponds to 1 mm, in agreement with the experimental data

(figure 1b).

A different model [37] requires cell displacements nearly

an order of magnitude higher than the experimentally

observed value of 1 mm in order to predict appreciable

interaction between cells. The simulated tensile strains in our

network occur almost entirely in the band between the two

cells, along aligned linear paths formed by elements in tension

(figure 6a). Compressive strains localize perpendicular to these

tensile tethers (figure 6b). Owing to low compression stiffness

(microbuckling), the magnitude of compressive strain in

elements roughly perpendicular to the tether is more than

twice the magnitude of the tensile strain. Thus within the

tether, the trace of the strain tensor, or the volumetric strain,

is negative, consistent with the observation that matrix fibre

density increases between pairs of cells (figure 5). When

simulating networks without microbuckling, we found no

such tethers forming; instead, tensile strains had a nearly

radially symmetric distribution around each cell (electronic

supplementary material, figure S5). Thus, we conclude that

localization of matrix deformation caused by multiple cells in

the tensile, tether-like regions joining those cells occurs because

of microbuckling of fibres normal to the tethers.
line). Plots show tensile (a) and compressive (b) strains within fibres. Fibres
under tension (a) form intercellular tethers. Compressed fibres (b) are roughly
perpendicular to tensile ones. The strains below the dashed line are the
reflection of the strains above the dashed line.
3. Discussion

We have shown that cells embedded within a fibrin matrix

exert forces that cause matrix displacements to propagate

over a longer range than predicted by linear elasticity. The

long-range propagation of displacements has been previously

observed for cells on a flat, two-dimensional fibrous substrate

[12] and for multicellular constructs in a three-dimensional

matrix [38]. Our observations, first reported in ref. [14],
confirm this result for single cells in a three-dimensional

system. Here, we further quantify the spatial decay of displa-

cements by fitting to a power law resulting in displacements

scaling as u � r�0:52. While the propagation of displacements

over a long range is now apparent, the precise mechanism is
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still unclear. Recent studies have argued for [12] and against

[33] the hypothesis that long-range propagation of displace-

ments results from strain stiffening. When we included strain

stiffening in the behaviour of fibres, but suppressed com-

pression weakening owing to buckling, long-range

propagation was not observed in simulations of our model.

Thus, we conclude that fibre buckling—rather than strain stif-

fening in tension—explains the long-range propagation of

displacements observed in the experiments.

To simulate buckling, we used a model that does not

resist changes in angle between the elements. Previous

work [32] has pointed to bending as an important mechanism

that controls the mechanical response of fibrous materials.

However, the model of Broedersz et al. [32] does not allow

for buckling or even bending of individual fibres. Instead, it

models bending by penalizing changes in angle between

initially collinear elements that meet at a node. Moreover,

even for models that include bending, forces are dominated

not by transverse bending displacements but by axial ones

[36]. To address here the question of microbuckling, we focus

on these axial displacements. We assume fibres buckle immedi-

ately after a compressive load is applied, i.e. we assume the

fibre buckling load (equivalently the buckling strain) is equal

to zero. Is this assumption reasonable? A typical fibrin fibre

with a length of 1 mm, diameter of 0.2 mm, persistence length

of 40 mm [23] and Young’s modulus of 15 MPa [39] will

buckle at a compressive strain of approximately 4 � 1024%.

This value is small compared with typical strains experienced

in the matrix (approx. 1%), so our choice of setting the

transition point between different stiffnesses at the onset of

compression (vanishing buckling load) is justified.

Besides long-range propagation of displacements, fibrous

materials exhibit what is termed in [11] a ‘negative compressi-

bility’ in uniaxial tension, i.e. a negative ratio of the trace of

the stress tensor and the trace of the strain tensor during a uni-

axial tension experiment. Fibrous materials also exhibit tensile

normal stresses under prescribed shear deformation [10]. This

is in essence equivalent to negative normal (compressive) strains

when the material is subjected to external tangential forces (pre-

scribed shear stress), but not constrained to expand or contract.

To test whether our fibre model is consistent with these exper-

imental observations, we simulated homogeneous uniaxial

tension. We found that when fibres buckle, the model exhibits

negative compressibility in tension. In addition, under applied

tangential forces equivalent to an external shear stress, the

model responded with negative normal strains in shear. When

microbuckling is removed from the model, neither of the

aforementioned behaviours occurs (electronic supplementary

material, figure S6). Thus, our model with fibre microbuckling

is consistent with previous experimental work on fibrin

[10,11] and collagen [26]. Certainly fibrous materials exhibit

nonlinear behaviours besides microbuckling in compression,

but our model points to microbuckling as being both consistent

with previous experimental work and of major importance to

the mechanical response of fibrous materials.

Together, our simulations and experiments reveal that

microbuckling of fibrin enables cells to induce displacements

that follow linear, tether-like paths that lead to other cells.

These displacements propagate over a dramatically longer

range than in a linear material. A remaining question of bio-

logical relevance is whether cells physically respond to the

formation of tethers. In our experiments, we have observed

pairs of cells forming pointed protrusions along these tethers
and subsequently growing toward one another by several

cell diameters (figure 5), sometimes eventually joining two

cells (electronic supplementary material, figure S7). A different

model indicated that elongated cells initially pointed toward

one another may sense displacements induced by their neigh-

bours [37], but it did not answer the question of how cells break

their initial spherical symmetry to spread toward one another

as observed in our experiments. Our model, which we present

here and have described previously [14], suggests a mechanism

whereby cells can sense one another during the initially spheri-

cal state. Even if each cell is initially spherical and contracts

isotropically, the tether formation mechanism that we describe

results in greater tension and fibre density that is highly polar-

ized in the direction of neighbouring cells (figure 5). Both

tension and fibre density may provide a directional signal: by

growing protrusions along the direction of the tethers, cells

have a higher chance of approaching one another. The fact

that cells change shape and grow along such tethers supports

the hypothesis that they use this very same mechanism to

sense and even approach their neighbours. We expect future

work to further clarify how cells sense the mechanical proper-

ties of fibrous materials and how we can better design artificial

cell culture platforms to better control cellular response to

forces within the extracellular matrix.
4. Material and methods
4.1. Cell culture and matrix preparation
3T3 fibroblast cells stably expressing a green fluorescent protein–

actin fusion protein were cultured in Dulbecco’s Modified Eagle

Medium supplemented with 10% fetal bovine serum and 1 � non-

essential amino acids. Fibrin was fluorescently labelled by mixing

fibrinogen (Omrix Biopharmaceuticals, Israel) and 546 Alexa Fluor

(Life Technologies, Carlsbad, CA, USA) for 1 h before filtering

with a HiTrap desalting column (GE Healthcare, Milwaukee, WI,

USA). Cell–fibrin constructs were created by suspending the cells

in 20 U ml21 thrombin solution (Omrix), mixing with 5 mg ml21

labelled fibrinogen solution and placing on a #1.5 coverslip.

4.2. Microscopy and cell-induced matrix displacements
Within 1 h of seeding, cell–matrix constructs were transferred

to a custom built 5% CO2, 378C microscope enclosure. Imaging

was performed with a Swept Field confocal microscope using a

40 � NA 1.15 water immersion objective (Nikon Instruments,

Melville, NY, USA). Volume stacks of the cells and fibrin matrix

were captured every 15 min over time periods of several hours.

Three-dimensional matrix displacements were computed

directly from the images of the labelled fibrin using digital

volume correlation [20] with the initial volume stack (before cell

spreading) taken as a reference for the correlation. The digital

volume correlation software, written in Matlab (The Mathworks),

is freely available online [40]. Propagation of cell-induced matrix

displacements was quantified by computing displacement magni-

tudes along multiple linear paths propagating outward from the

centre of each initially rounded cell. To reduce errors caused by

inhomogeneities within the matrix, displacements were averaged

over approximately three different paths and over approximately

10 time points for each cell. After averaging, the standard deviation

of the noise level was found to be 0.04 mm.

4.3. Microstructural model
The microstructural model was developed in the FE software

ABAQUS v. 6.10 (Dassault Systemes, Waltham, MA). Rod elements
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supporting tension and compression but not bending were con-

nected as shown in figure 2c. Elements were randomly deleted to

reduce the network connectivity. Removed elements were

replaced by elements with stiffness 6 orders of magnitude smaller

than the original elements. The choice of using weak elements with

stiffness six orders of magnitude smaller than the original elements

came after a series of convergence studies showed that further

reduction in the stiffness of the weak elements had no effect on

the displacements. Under tension, both a linear (figure 2a) and a

strain-stiffening WLC relationship were investigated (figure 2b).

Under compression a linear stress–strain relationship was used

with slope given by r times the slope at small tensile strains with

r ¼ 0.1 for microbuckling and r ¼ 1 for no buckling. Strains

within each element (as plotted in figure 5; electronic supplemen-

tary material, figure S5) were computed by taking the natural

logarithm of the stretch ratio, defined as the final element length

divided by the initial element length. The three-dimensional

model used element connectivity as shown in electronic sup-

plementary material, figure S4 and the bilinear stress–strain

relationship. Uniaxial tension was simulated in a square region

by applying displacements on the top side, a symmetric boundary
on the bottom side, and traction free boundaries on the right and

left sides. Shear loading was simulated by applying horizontal

displacements to the top of a thin rectangular region (aspect ratio

1/10) with a fixed bottom boundary and traction free conditions

on the right and left. Apparent strains were computed by numeri-

cally computing the displacement gradients using a linear fitting.

Effective Poisson’s ratio was defined as the opposite of the ratio

of apparent strains in the transverse and axial directions.
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