
Sequence analysis

EBSeq-HMM: a Bayesian approach for

identifying gene-expression changes in

ordered RNA-seq experiments

Ning Leng1,2, Yuan Li1, Brian E. McIntosh2, Bao Kim Nguyen2,

Bret Duffin2, Shulan Tian2, James A. Thomson2,3,4, Colin N. Dewey5,

Ron Stewart2 and Christina Kendziorski5,*

1Department of Statistics, University of Wisconsin, Madison, WI, USA, 2Regenerative Biology, Morgridge Institute

for Research, Madison, WI, USA, 3Department of Cell and Regenerative Biology, University of Wisconsin School of

Medicine and Public Health, Madison, WI, USA, 4Department of Molecular, Cellular, and Developmental Biology,

University of California, Santa Barbara, CA, USA and 5Department of Biostatistics and Medical Informatics,

University of Wisconsin, Madison, WI, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on October 14, 2014; revised on February 23, 2015; accepted on March 30, 2015

Abstract

Motivation: With improvements in next-generation sequencing technologies and reductions in

price, ordered RNA-seq experiments are becoming common. Of primary interest in these experi-

ments is identifying genes that are changing over time or space, for example, and then characteriz-

ing the specific expression changes. A number of robust statistical methods are available to

identify genes showing differential expression among multiple conditions, but most assume condi-

tions are exchangeable and thereby sacrifice power and precision when applied to ordered data.

Results: We propose an empirical Bayes mixture modeling approach called EBSeq-HMM. In

EBSeq-HMM, an auto-regressive hidden Markov model is implemented to accommodate depend-

ence in gene expression across ordered conditions. As demonstrated in simulation and case

studies, the output proves useful in identifying differentially expressed genes and in specifying

gene-specific expression paths. EBSeq-HMM may also be used for inference regarding isoform

expression.

Availability and implementation: An R package containing examples and sample datasets is avail-

able at Bioconductor.

Contact: kendzior@biostat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With improvements in next-generation sequencing technologies and

reductions in price, ordered RNA-seq experiments are becoming

common. Of primary interest in these experiments is characterizing

how genes are changing over some factor with ordered levels (for

example, ordered in time, in space, along a gradient, etc).

For simplicity, we refer to any ordered RNA-seq experiment as a

time-course experiment, noting that other similar designs may be

analyzed within this framework; and we restrict attention to time-

course data collected within a single biological condition.

In a time-course RNA-seq experiment, an investigator may be

interested in genes that are monotonically increasing or decreasing,
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that increase initially then decrease, that increase initially then re-

main unchanged and so on. We refer to these types of changes in ex-

pression hereinafter as expression paths, and we consider three

broad types: (i) constant paths: expression remains unchanged, or

equally expressed (EE), over all time points; (ii) sporadic paths: ex-

pression shows some change between at least one pair of time

points, but remains unchanged between at least one other pair and

(iii) dynamic paths: expression changes continuously. With respect

to the examples listed earlier, the first few (expression is monotonic-

ally increasing, monotonically decreasing, increasing then decreas-

ing) are instances of dynamic paths. The last (increase initially then

remain unchanged) is an example of a sporadic path.

A number of robust statistical methods are available for identify-

ing differentially expressed (DE) genes [EBSeq (Leng et al., 2013),

DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010), voom

(Law et al., 2014), baySeq (Hardcastle and Kelly, 2010), Cuffdiff2

(Trapnell et al., 2012)] as well as isoforms [EBSeq, rSeqDiff (Shi and

Jiang, 2013), Cuffdiff2, BitSeq (Glaus et al., 2012)] in a static RNA-

seq experiment; and most of these methods accommodate time-

course experiments by considering time as a factor with multiple,

unordered, levels (Supplementary Section S7 provides details). The

statistical tests employed are designed to identify a gene as DE if it

shows a change at least one time point; and, consequently, non-con-

stant genes are detected collectively. Multiple steps of subsequent

analyses are required if an investigator wants to distinguish sporadic

paths from dynamic ones, to classify genes into distinct paths and to

assess the associated classification uncertainty—for example, per-

form model fitting multiple times with different design matrices and

then adjust for multiple testing. In addition, as these approaches

were not designed specifically for time-course experiments, they do

not accommodate dependence over time and consequently sacrifice

power if applied in this setting.

These same issues were addressed in the context of microarray

time-course experiments, and a number of methods are available for

analyzing (Conesa et al., 2006; Filkov et al., 2002; Ma et al., 2009;

Yuan and Kendziorski, 2006) and clustering (Ernst et al., 2005;

Luan and Li, 2003) time-course microarray data. These methods are

not directly applicable to RNA-seq studies since they do not accom-

modate count data, the unequal variabilities in measurements or the

dependence of isoforms within genes. To address this, the approach

developed by Conesa et al. (2006), maSigPro, originally developed

for microarray time-course analysis, was recently extended to ac-

commodate ordered RNA-seq count data (Nueda et al., 2014). Like

DESeq2 and edgeR, maSigPro-GLM is based on a negative binomial

(NB) generalized linear model (GLM); but unlike previous

approaches, maSigPro-GLM defines gene-specific expected expres-

sion by a time-dependent polynomial to accommodate dependence

over time. Once significant genes are selected, a second regression is

conducted for each gene to identify the time points at which it shows

expression differences. Clustering algorithms are then applied to the

resulting regression coefficients and/or expression values to identify

groups of genes with similar expression profiles. Although useful the

two step procedure makes it challenging to determine appropriate

thresholds for false discovery rate (FDR) control, and suggested

thresholds are conservative in many settings (Nueda et al., 2014). In

addition, identified gene groups are subject to limitations inherent in

clustering algorithms; namely, the number of groups as well as

group membership are determined by user-defined cutoffs, there is

no probabilistic information associated with a given gene’s member-

ship within a group, and it is not clear how to classify gene groups

into expression paths.

To address these considerations, we have developed an empirical

Bayes auto-regressive hidden Markov model (HMM) based ap-

proach called EBSeq-HMM. The model extends our previous work,

EBSeq, for identifying DE genes and isoforms across two or more

biological conditions (Leng et al., 2013). As detailed in Methods, an

auto-regressive process describes changes in expression over time,

and a hidden Markov component is used to accommodate depend-

ence. EBSeq-HMM allows users to identify genes with non-constant

expression over multiple ordered conditions, and simultaneously

classify them into expression paths. Results from a simulation study,

detailed in Section 3.1, suggest that EBSeq-HMM has increased

power over competing approaches for identifying genes following

non-constant paths, especially for those genes showing subtle yet

consistent changes over time. EBSeq-HMM also provides improved

accuracy in classifying genes into expression paths. Similar results

are demonstrated in a case study of the adult mouse limb presented

in Section 3.2.

2 Methods

2.1 EBSeq-HMM: an empirical Bayes auto-regressive

Hidden Markov model
EBSeq-HMM requires estimates of gene or isoform expression col-

lected over three or more ordered levels of a factor. The general

model is presented for gene-level analysis; the isoform-level model is

discussed in Section 2.3. To simplify the presentation, we refer to

ordered levels as time points denoted by t ¼ 1; 2; . . . ;T, noting that

the method directly accommodates other ordered data structures

(e.g. ordered in space, along a gradient, etc.).

Let Xt be a G�Nt matrix of expression values for G genes in Nt

samples at time t. The full set of observed expression values is then

denoted by X ¼ ðX1;X2; . . . ;XTÞ. With a slight abuse of notation,

let Xg denote one row of this matrix containing data for gene g over

time; Xgtn denotes expression values for gene g at time t in sample n.

Of interest are changes in the latent mean expression levels for gene

g: lg1; lg2; . . . ;lgT . We allow for three possibilities, or states, to de-

scribe such changes: Up, Down, EE. If lt�1 < lt, we define state SDt

as Up; if lt�1 > lt; SDt is Down and lt�1 ¼ lt defines SDt as EE. The

main goals in an ordered RNA-seq experiment—identifying genes

that change over time, and specifying each genes’ expression path—

can be restated as questions about these underlying states. In short,

for each gene g and each transition between t�1 and t, we would

like to estimate the probability of each state. A gene is said to follow

a non-constant path if at least one state is not EE. We would also

like to estimate the most likely expression path, which is given by

the configuration of expression states over time (SD2
g ; SD3

g ; . . . ; SDT
g ),

noting that the most likely configuration of states need not equal the

collection of states that define SDt
g marginally at each t (an example

is provided in Section 3.1).

To make inference regarding these states, we propose a

model for the set of expression measurements taken on a gene g.

We make the common and well-supported assumption that gene

expression in an RNA-seq experiment is well described by a NB dis-

tribution (Anders and Huber, 2010; Hardcastle and Kelly, 2010;

Love et al., 2014; Nueda et al., 2014; Robinson et al., 2010;

Trapnell et al., 2012). Were we to consider time t in isolation,

this implies Xgtnjrgt;qgt � NBðrgt; qgtÞ where the NB distribu-

tion may be parameterized such that lgt ¼ rgtð1� qgtÞ=qgt. For sim-

plicity of notation, we assume equal library sizes. Details on

adjustments for unequal library sizes are given in Supplementary

Section S2.
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Because our interest here is in quantifying changes in Xgt over

time, we assume expression at time t depends on that at t�1 through

parameters r and q. Specifically, ðXgtnjrg; t�1; qg; t�1; SDt
g ¼ sÞ �

NBðrg; t�1 ns
g; qg; t�1Þ where ns

g ¼ c if s is Up; ns
g ¼ 1=c if s is Down

and ns
g ¼ 1 if s is EE. The data dependent parameter c specifies the

expected change associated with each state. For example, if c¼2,

then SDt
g ¼Up refers to a 2-fold increase in expression between t�1

and t. Although c may be defined by a user, we suggest estimation

by maximum likelihood (see the next section). We further model

fluctuations in lgt by defining a prior distribution for qgt : ðqgtja;b;
Xg; t�1 ¼ xg; t�1Þ � BetaðaþNt�1 rg; t�1; bþ

X
j
xg; t�1; jÞ for all g

and t>1. Given this set-up, when t>1, the marginal predictive con-

ditional distribution describing expression (or emissions) for each

state is Beta-NB: ðXgtnjXg; t�1 ¼ xg; t�1; S
Dt
g ;HÞ � Beta–NBðaþNt�1

rg; t�1; bþ
X

j
xg; t�1;j; n

s
grg; t�1Þ where H ¼ ½a;b; rg; t�1; n

s
g�. The ex-

pected mean is then defined as ns
grg; t�1ðbþ

X
j
xg; t�1; jÞ=ðaþNt�1

rg; t�1Þ (Teerapabolarn, 2008). When t¼1, the prior distribution for

qg1 is defined as ðqg1ja; bÞ � Betaða; bÞ for all g, and the marginal

predictive distribution is ðXg1njHÞ � Beta–NB ða; b; rg;1Þ.
For genes with dynamic paths, each state SDt

g is dependent on the

prior state SDt�1
g since these genes represent continuous changes over

time. To accommodate this dependence, we assume that the state

process is described by a Markov chain. The constant and sporadic

genes do not show continuous changes over time, and consequently

we assume that states are independent, although we note that de-

pendence among expression levels is still accommodated via the

auto-regressive component.

In summary, the time-course Xg for a dynamic gene is governed

by two interrelated probabilistic mechanisms: the conditional distri-

bution (emissions model) at each time and the process describing the

evolution of states over time. Initially, we assume that the observed

expression vector can be characterized by the Beta-NB model

described earlier and that the state process can be described by a

Markov chain. Were it the case that dependence among measure-

ments is fully captured by the state process, the proposed model

would be a standard HMM. However, this last assumption does not

hold, given that Xt for dynamic genes depends not only on the state

SDt but also on Xt�1 through rt�1. Consequently, the model for dy-

namic genes is given by a Markov-switching auto-regressive model,

as in Hamilton (1989) and Ailliot and Monbet (2012) (Fig. 1). For

constant and sporadic genes, we assume the same emissions model,

but do not assume the state process is Markov. Taken together, since

we do not know the expression path type a priori, the model for the

full set of expression measurements is a two-component mixture

over the sporadic/constant and dynamic genes.

2.2 Parameter estimation
In the emissions distributions, the unknown parameters (r’s, a and

b) are estimated using the method of moments (r’s are estimated

within time point while a and b are estimated using all samples); c is

estimated via maximum likelihood. Recall that EBSeq-HMM as-

sumes a mixture model with a Markov component m1 and a non-

Markov component m2. We assume equal prior probabilities of

being in each mixture component.

In Markov chain m1, the Baum-Welch algorithm is used to esti-

mate initial pj ¼ PðSD2
g ¼ jjm1Þ and state transition probabilities

at;tþ1
dj ¼ PðSDtþ1

g ¼ jjSDt
g ¼ d;m1Þ for t�2. Here, we assume a non-

homogeneous Markov chain for the hidden states so at;tþ1
dj ’s are dif-

ferent for different t’s. Denote the vector of initial probabilities and

the state transition matrices estimated from the last step as p
�
;A
�

.

Given parameter estimates p
�
;A
�

, define zm1
g ¼ PðMg ¼ m1jXg; p

�
;A
�
Þ

and bjðXgtÞ ¼ PðXgtjSDt
g ¼ j;Xg;t�1 ¼ xg;t�1Þ. The forward and back-

ward steps of the Baum-Welch algorithm are then defined as

follows:

ag;jðtÞ ¼ ½
X

d

ag;dðt � 1Þa�t�1;t

dj �bjðXg;tÞ

/ PðXg1; . . . ;Xgt; S
Dt
g ¼ jjm1Þ

bg;jðtÞ ¼
X

d

½bg;dðt þ 1ÞbdðXg;tþ1Þa
�t;tþ1

jd �

/ PðXg;tþ1; . . . ;XgT jXgt; S
Dt
g ¼ j;m1Þ

The initial and state transition probabilities are updated by:

at;tþ1
D;J ¼

X
g

PðSDt
g ¼ D; SDtþ1

g ¼ J;Mg ¼ m1jXg; p
�
;A
�
Þ

X
g

X
j

PðSDt
g ¼ D; SDtþ1

g ¼ j;Mg ¼ m1jXg; p
�
;A
�
Þ

¼

X
g

ag;DðtÞa
�t;tþ1

D;J bg;JðXg;tþ1Þbg;Jðt þ 1Þzm1
g

X
g

X
j

ag;DðtÞa
�t;tþ1

D;j bg;jðXg;tþ1Þbg;jðt þ 1Þzm1
g

pJ ¼

X
g

PðSD2
g ¼ J;Mg ¼ m1jXg; p

�Þ
X

g

X
j

PðSD2
g ¼ j;Mg ¼ m1jXg; p

�Þ

¼

X
g

ag;Jð2Þbg;Jð2Þzm1
gX

g

X
j

ag;jð2Þbg;jð2Þzm1
g

Parameters are estimated by fixing expected fold-change (FC) c

at 1.2. The process is then repeated for c in (1.4, 1.6, . . . , 3); and

the parameter set with maximum likelihood is used in the final

model.

2.3 Inference at the isoform level

The model detailed in the previous section applies to gene counts.

To apply the approach to isoforms, the uncertainty inherent in

isoform expression estimation should be accommodated. In short,

Fig. 1. (a) An auto-regressive hidden Markov component models dynamic

paths. (b) An auto-regressive non-hidden Markov component models con-

stant and sporadic paths
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estimating expression at the gene-level is a relatively easy task in

RNA-seq as all reads mapping to a gene’s constituent exons may be

used. The same holds true for estimating expression for an isoform

unique to its parent gene. However, for genes with multiple iso-

forms, the problem is more challenging as reads mapping to overlap-

ping exons (exons present in more than one isoform) must be

allocated to isoforms in a way that is consistent with their expres-

sion. Consequently, there is increased uncertainty (on average) in ex-

pression estimates for isoforms with multiple overlapping exons,

referred to as complex isoforms; and the uncertainty has been shown

to have a substantial effect on downstream analysis methods (Leng

et al., 2013).

Specifically, define an isoform of gene g as belonging to the

Ig¼k group, for example, where k¼1, 2 or 3, if the total number of

isoforms from gene g is k (the Ig¼3 group contains all isoforms

from genes having 3 or more isoforms). Leng et al. (2013) demon-

strated that there is decreased variability in the Ig¼1 group, but

increased variability in the others, due to the relative increase in un-

certainty inherent in estimating isoform expression when multiple

isoforms of a given gene are present. This observation is not specific

to the dataset and/or the method used for isoform expression estima-

tion; it is also not specific to the particular method used for quan-

tifying isoform complexity.

To adjust for the increased uncertainty inherent in complex iso-

form expression estimates, we allow the Beta prior to depend on iso-

form group: qC
gi
ja;bIg � Betaða; bIg Þ. The hyperparameter a is shared

across isoforms, but here b depends on Ig, accommodating the sys-

tematic differences in variability among the Ig groups. Ig quantifies a

measure of isoform complexity and may be defined by the user as

the number of isoforms from a gene, as described earlier. It could

also be defined by an isoform’s mappability score or credibility

interval as provided by Koehler et al. (2011), Li and Dewey (2011)

or Derrien et al. (2012).

2.4 Simulated data
We followed the simulation setup of Robinson and Smyth (2007) by

defining counts as NB with gene-specific mean in sample n and time

point t given by lgt and variance lgtð1þ lgt/gtÞ. The (lgt, /gt)’s

were sampled as pairs from the mouse limb case study data

described in the next section. Paired sampling was done to preserve

the mean-variance relationship observed in most RNA-seq datasets.

Each simulated dataset contains 10 000 genes and 15 samples which

represent three biological replicates at each of five time points. One

hundred datasets were considered for each simulation scenario.

2.4.1 Sim I

Sim I considers dynamic changes over time for 60% of the genes,

which matches the percentage in the case study data. For these

genes, paths were generated from an HMM. With five conditions,

there are four states in the hidden chain (as shown in Fig. 1), so

three state transition matrices were used. We defined the initial

probabilities as 0.5 and the state transition matrices as

0:9 0:1

0:2 0:8

 !
,

0:1 0:9

0:8 0:2

 !
and

0:9 0:1

0:1 0:9

 !
, which resulted in

Up-Up-Down-Down and Down-Down-Up-Up being the two most

frequent expression paths. Note that other paths were realized as

well, although with fewer genes. Once a gene’s particular path

(collection of states) was generated, lg;tþ1 was simulated as lgt

multiplied (divided) by d if SDtþ1
g was Up (Down). For one-half of

the dynamic genes, we simulated strong effects, with d sampled

from empirical FCs between 1.3 and 1.4 calculated using case

study data. The other one-half represent weak effects with d
sampled from empirical FCs between 1.2 and 1.3. The remaining

40% of genes were simulated as constant meaning the latent level

of expression remains unchanged across conditions. To simulate

genes following constant paths, we only took the genes whose

simulated empirical FC of medians between any two adjacent time

points was within (1/1.2, 1.2).

2.4.2 Sim II

For this simulation scenario, 40% of the 10 000 genes were simu-

lated as dynamic as in Sim I and another 20% were simulated as

sporadic. For dynamic genes, paths were generated from an HMM

as described in Sim I; half were simulated as strong effects and the

other half were with weak effects. For the sporadic genes, a time

point t was chosen at random and lgt was defined as lgt � d, where d
was sampled from empirical FCs between 1.3 and 1.4. The remain-

ing 40% of genes were simulated as constant, again as described in

Sim I.

2.5 Case study data
Of interest in our case study, detailed below, is RNA-seq data from

the James Thomson Lab at the Morgridge Institute for Research.

We evaluated gene expression from seven positions along the mouse

limb: proximal stylopod, distal stylopod, elbow, proximal zeugo-

pod, distal zeugopod, autopod and digit. Three 12-week old C57BL/

6J female mice were euthanized by cervical dislocation, followed by

the extraction of the right forelimb. The tissues were treated with

RNAlater (Sigma), per manufacturers instructions, dissected using a

SteREO Discovery.V8 microscope (Zeiss), and stored at �20�C.

The tissues were homogenized and lysed using a variable speed rotor

stator homogenizer and Qiazol (Qiagen). Total RNA was extracted

from the homogenized tissue samples using Qiagen’s RNeasy Lipid

Tissue Mini (digits) and Midi (all other) Kits. A total of 21 samples

were sequenced using Illumina’s Directional mRNA-Seq protocol

(Part # 15018460 Rev. A). The reads are single-end with read length

42-bp. Each sample was run on one lane of an Illumina GAII in a

randomized order to reduce batch effects. Alignment was done using

Bowtie (Langmead et al., 2010) with the hg19 RefSeq annotation.

Expression estimates were obtained from RSEM (Li and Dewey,

2011) and library size factors were obtained using median-of-ratios

normalization (Anders and Huber, 2010). See Supplementary

Section S7 for package versions and further details.

2.6 Identification of DE genes and classification
EBSeq-HMM is compared with EBSeq, DESeq2, edgeR, voom,

maSigPro and a naive method based on FC. See Supplementary

Section S7 for package versions and further details. Two tasks are of

interest: identifying DE genes, defined as those showing any change

across conditions; and assigning DE genes into their most likely ex-

pression path.

2.6.1 Identification of DE genes

To identify a list of DE genes with FDR a via EBSeq-HMM or

EBSeq, we take those genes for which the posterior probability (PP)

of being constant is less than or equal to a.

Both DESeq2 and edgeR implement a generalized-linear model

to test H0: data� intercept versus H1: data� interceptþ condition

with derived P-values adjusted for multiplicities using Benjamini

and Hochberg (1995). To construct a list of DE genes with target

FDR a, we consider those genes with adjusted P-values less than or
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equal to a. As detailed in Law et al. (2014), the voom approach first

estimates the precision weights based on the inverse variance, then

applies the limma empirical Bayes pipeline taking the precision

weights as prior information to account for the unequal variabilities

in RNA-seq data. A similar hypothesis test was performed as in

DESeq2 and edgeR, and the P-values were adjusted using

Benjamini-Hochberg as well. Genes with adjusted P-values less than

or equal to a were considered.

As suggested in the maSigPro user manual, we applied the GLM

method in the maSigPro package with the NB family and default

parameter settings. We also considered two additional settings.

Specifically, maSigPro uses an R2 value to obtain a sorted gene list.

However, it is not clear how to pick an R2 threshold that gives a

gene list with FDR controlled at some target level. The authors sug-

gest 0.7 as the default R2 value. In addition to this default setting,

we also considered R2 thresholds of 0.5 and 0.3 to evaluate

maSigPro more thoroughly.

For the naive FC method, denote medt
g as the median expression

of gene g at time point t. A gene g is called Up (Down) between t

and tþ1 if
medtþ1

g

medt
g

is greater than (less than) K; otherwise, it is EE. We

evaluate five values of K: 1.2, 1.3, 1.5, 2 and 2.5. A gene is defined

as DE if it is non-EE at any transition.

2.6.2 Classification of genes into expression paths

Recall that EBSeq-HMM provides gene-specific posterior probabil-

ities associated with each expression path. For EBSeq-HMM, a DE

gene is classified into a specific expression path if its PP of being in

that path exceeds 0.5. Selecting genes with PP>0.5 ensures that the

posterior maximizing class always minimizes the Bayes risk regard-

less of choice of the metric loss function (Schlüter et al., 2005), al-

though we note that there may be reasons to consider different

thresholds in some situations (Section 4). For EBSeq, DESeq2,

edgeR, voom and maSigPro, classifying DE genes into expression

paths is not of interest, and no clear guidelines on how to do so is

provided. Consequently, these methods are not evaluated for expres-

sion path classification. Finally, since no uncertainty measure of as-

signment is available using FC, for the FC analysis a gene is classified

into the path defined by the Up/Down/EE calls across transitions.

3 Results

3.1 Simulation results
Simulation studies were conducted to investigate the operating char-

acteristics of EBSeq-HMM and to assess how it compares with

EBSeq, DESeq2, edgeR, voom, maSigPro and FC analysis. As de-

tailed in Methods, each simulated dataset derives counts from a NB

model. Like EBSeq-HMM, EBSeq, DESeq2, edgeR and maSigPro

also assume that counts are distributed as NB, and consequently,

this assumption should not provide advantage, or lack thereof, to

any one method in particular. As the form of the variance is that

assumed in edgeR, there may be a slight advantage given to that

method. Parameter estimates were derived from case study data to

help ensure that many features of real data are preserved in the

simulation (e.g. mean/variance relationship and magnitude of FCs;

Section 2.4 and the Supplement Section S3 for more details).

Table 1 shows the power and FDR for identifying dynamic genes

in Sim I, where the target FDR is controlled at 5%. In addition to

showing power overall, it is also shown separately for strong and

weak effects (FDR is not shown for each subgroup because false dis-

coveries are discoveries of EE genes and therefore cannot be

classified as strong or weak). EBSeq-HMM has higher power than

EBSeq, DESeq2, edgeR and voom, which is largely due to its ability

to identify genes showing subtle, yet consistent, changes over time.

Specifically, the power of the five methods is comparable for genes

with strong effects, but EBSeq-HMM shows advantage in identify-

ing genes where changes between any two points are relatively

small. An example of two genes identified exclusively by EBSeq-

HMM is shown in Figure 2 [panels (a) and (b)]. It is clear from the

figure that the change between any two points is small (FC<1.3)

and in some cases these changes would not be identified by a mar-

ginal analysis between adjacent time points [e.g. time points 1 and 2

in Fig. 2b], but EBSeq-HMM identifies the genes as dynamic given

the consistent changes over time.

Note that although EBSeq-HMM has the highest empirical FDR

among these five methods, it is still well-controlled under the 5%

target FDR. In fact, among all approaches, the empirical FDR from

EBSeq-HMM is closest to the target FDR. To better understand the

overall performance of each method, the third column in Table 1

shows the F1 score. The F1 score measures a test’s accuracy account-

ing for both power and false discoveries, where an F1 score reaches

its best value at 1 and worst at 0. EBSeq-HMM has the highest F1

score among all approaches.

In addition, Table 1 shows that [consistent with other studies

(Nueda et al., 2014)], the suggested threshold of maSigPro

(R2 ¼ 0:7) is conservative and provides lower power than EBSeq-

HMM, EBSeq, DESeq2, edgeR and voom. The power is improved

by relaxing the threshold, but is still lower than others. The FC ana-

lysis works best at threshold 1.3, but is still inferior to the other

methods.

Table 2 shows the power, FDR and F1 score for identifying DE

genes (either dynamic or sporadic) in Sim II where, again, the target

FDR is controlled at 5%. The increased power of EBSeq-HMM in

identifying dynamic genes that was demonstrated in Sim I persists

when sporadic genes are present, and EBSeq-HMM also shows ad-

vantage for identifying sporadic genes.

In spite of this advantage, we note that all methods show

reduced power for identifying sporadic genes. This is because in the

simulation (and in our case study data upon which the simulation is

based), the range of expression differences in sporadic genes is

smaller, in general, than in dynamic genes. For example, consider

dynamic genes having fold changes at each transition between 1.3

and 1.4. On average, for a dynamic gene that is monotonically

increasing, the range in expression would be � 1354 ¼ 332 over all

conditions (for a weak dynamic gene, the range would be � 2:44).

However, in a sporadic gene, the range would be � 1:35 since only

one condition differs from the others.

In addition to identification of DE genes, we also evaluated the

ability of EBSeq-HMM and FC to classify genes into distinct expres-

sion paths (EBSeq, DESeq2, edgeR, voom and maSigPro were not

evaluated as they were not developed for this purpose; Section 2.6).

Figure 3 shows results for eight dynamic paths simulated in Sim I;

these eight were chosen as they contain the most genes among all

simulated paths. The ground truth shows the number of genes simu-

lated in each expression path. Also shown are the average number

classified into each path by EBSeq-HMM and by FC analysis at FC

threshold K¼1.2 and 1.3 (averages are calculated over 100 Sim I

datasets). Correct classifications are shown in blue; incorrect are

shown in red. For FC analysis, we chose 1.2 and 1.3 as they per-

formed best under all thresholds considered. As shown, EBSeq-

HMM identified more true positives than FC, while the FDR is well

below 5%. Similar results were observed in Sim II data

(Supplementary Fig. S2).
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3.2 Case study results
An important problem in regenerative biology is understanding the

connection between gene expression patterns and the positional

identities of cells throughout development. Once humans and other

mammals reach adulthood, they possess a very limited ability to re-

generate body parts like limb structures; and it has been hypothe-

sized that a loss of positional identity information is at least

partially responsible for the reduction in regenerative capacity.

However, a few studies (Chang, 2009; Rinn et al., 2006; Wang

et al., 2009) have demonstrated that some aspects of positional iden-

tity in mammals are retained into adulthood. Understanding the

changes in gene expression across limb positions in mammals is an

essential first step in gaining a better understanding of these proc-

esses. Toward this end, we conducted RNA-seq experiments to

study gene expression changes over seven positions (proximal to dis-

tal) along the limbs of adult mice.

EBSeq-HMM, EBSeq, DESeq2, edgeR and voom identified

14 817, 12 825, 11 517, 9520 and 10 259 DE genes at a 5% target

FDR, and there is substantial overlap among the lists. Specifically,

EBSeq-HMM identified over 90% of the genes identified by the

other approaches. maSigPro identified 2479, 6919 and 10 727 DE

genes using R2 threshold 0.7, 0.5 and 0.3 and FC analyses identified

4225, 6500, 10 881, 14 016 and 15 877 genes for K ¼2.5, 2, 1.5,

1.3 and 1.2, respectively. These identifications showed substantially

lower overlap with other methods.

Given that the majority of genes identified by EBSeq, DESeq2,

edgeR and voom are also identified by EBSeq-HMM, we focus ini-

tially on genes that are identified exclusively by EBSeq-HMM.

Figure 2c and d shows two examples. As in the simulated data

[shown in (a) and (b)], these genes have subtle but consistent

changes over the seven limb positions, again demonstrating that by

accommodating dependence, EBSeq-HMM has increased power to

identify genes showing relatively weak, but consistent, changes.

Supplementary Figure S3 shows similar results for other genes iden-

tified exclusively by EBSeq-HMM.

Although the simulation and case study results suggest that

EBSeq-HMM has increased power for identifying DE genes, the

main advantage of EBSeq-HMM over other approaches is in its abil-

ity to classify genes into particular expression paths. To illustrate,

we consider Hox genes, a set of genes that are of primary interest

here as they are well-known to play an important role in maintain-

ing positional identity in adult cells (Rinn et al., 2006; Wang et al.,

2009). In our case study data, 33 out of 39 Hox genes were identi-

fied as DE by EBSeq-HMM. Figure 4 shows expression levels of the

33 genes along with their most likely expression paths. Although the

positional changes for most Hox genes are not well-known, it is

known that Hoxb4 and Hoxb8 have up-regulated expression in

proximal sites (Rinn et al., 2006; Wang et al., 2009). The EBSeq-

HMM paths for these genes are consistent with these prior studies

and provide further information as they characterize changes across

the seven positions. In addition, the overall pattern of Hox gene ex-

pression found here demonstrates that, in general, higher numbered

Hox genes are up-regulated distally and lower numbered Hox genes

are up-regulated proximally. This is in agreement with existing data

and models of proximal-distal patterning of the limb (Zakany and

Duboule, 2007).

Table 1. Operating characteristics for identifying changes in Sim I

Power (%) FDR (%) F1 score (%) Power (strong) (%) Power (weak) (%)

EBSeqHMM 98.6 4.3 97.1 99.7 97.5

EBSeq 90.0 0.1 94.7 93.9 86.1

DESeq2 92.4 0 96.1 95.4 89.4

edgeR 92.5 0.1 96.1 96.1 89.4

voom 91.9 0 95.8 95.1 88.6

maSigPro (0.7) 46.8 0 63.8 56.1 37.5

maSigPro (0.5) 76.1 0.1 86.4 81.5 70.6

maSigPro (0.3) 86.9 0.5 92.8 90.6 83.2

FC (2.5) 0.6 0.2 1.2 0.8 0.5

FC (2) 3.4 1.4 6.6 4.3 2.6

FC (1.5) 42.1 3.5 58.7 55.7 28.6

FC (1.3) 90.0 8.5 90.7 97.5 82.4

FC (1.2) 98.6 19.7 88.6 99.8 97.9

The first three columns show the average power, FDR and F1 score for detecting DE genes in Sim I. Power within the strong and weak groups is further eval-

uated in columns 4 and 5. Averages are calculated over 100 Sim I simulations. The standard errors (not shown) for EBSeq-HMM, EBSeq, DESeq2, edgeR, voom

and maSigPro (and in most cases FC) were 	0:005.

Fig. 2. Shown are two genes identified exclusively by EBSeq-HMM in Sim I

data (upper) and in case study data (lower). The x-axis shows time points

(upper) and positions on mouse limb (lower), and the y-axis shows median

gene expression adjusted for library sizes
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To explore other genes beyond the Hox family that may be

involved in positional identity, we considered 2347 genes that are clas-

sified by EBSeq-HMM into one of 64 possible dynamic paths. Among

the 64 clusters formed by these dynamic genes, the two largest are Up-

Down-Up-Down-Down-Down (827) and Down-Up-Down-Up-Up-

Up (218). Figure 5a and b shows median expression of each position

for each of these genes. As these groups each contain Hox genes but

also previously unknown genes showing similar dynamics across pos-

ition, the novel identifications define candidates for further study.

4 Discussion

We have developed an approach called EBSeq-HMM for analysis of

ordered RNA-seq experiments. EBSeq-HMM may be used to iden-

tify genes that are DE across a set of ordered conditions and to clas-

sify genes into their most likely expression paths. There are a

number of methods available for identifying DE genes that may be

used when data from multiple conditions is available. EBSeq-HMM

has two main advantages over these approaches. First, it accommo-

dates dependence across ordered conditions and consequently has

increased power to identify genes showing subtle, yet consistent,

changes. Second, for every gene, EBSeq-HMM calculates the gene-

specific PP associated with each possible expression path and in

doing so allows for genes to be classified into distinct expression

paths with a pre-specified FDR. Put another way, EBSeq-HMM not

only identifies genes that change across conditions, but can be used

to specify how they change.

Simulations demonstrated the power of EBSeq-HMM over other

approaches to identify DE genes. In particular, results showed that

DESeq2, edgeR and voom perform well in detecting trends and/or

changes are relatively strong, but that EBSeq-HMM has increased

power to identify genes showing weaker changes. EBSeq-HMM also

worked well for identifying genes showing sporadic changes (where

there is no dependence across ordered conditions as for some genes

in Sim II). Applying maSigPro-GLM with its default cutoff for call-

ing DE genes gave significantly reduced power than other

approaches. Relaxing the cutoff improved its power, but it was still

inferior to the others.

In addition to DE gene identification, EBSeq-HMM performed

well for classifying genes into expression paths. We defined a gene as

being in a particular path if the gene was classified as DE at FDR 5%

(PP of EE was less than 0.05) and the PP of being in that path ex-

ceeded 0.5. Given the two step process, observed mis-classification

rates were conservatively controlled. Note that in some cases, a DE

gene may not be classified to any particular path. For example, if the

last time point of a four-condition experiment is known to be noisy, a

gene that is initially increasing may have equal PP, say one-third, of

being Up-Up-Up, Up-Up-EE, and Up-Up-Down. This gene would be

called DE with 5% FDR since PP(EE-EE-EE)<0.05, but it would not

be assigned into a particular expression path if threshold 0.5 was

used. In some cases, a user may want to modify these thresholds. If a

false negative classification was considered more serious than a false

positive, this threshold could be adjusted. Motivation for doing so

under varying loss functions is discussed in (Berger, 1985).

5 Implementation

EBSeq-HMM is implemented as an R package (EBSeqHMM), cur-

rently available at Bioconductor: www.bioconductor.org/packages/

devel/bioc/html/EBSeqHMM.html. EBSeq-HMM requires estimates

of gene or isoform expression, but is not specific to any particular esti-

mation method. To estimate library sizes, EBSeq-HMM defaults to

Table 2. Operating characteristics for identifying changes in Sim II

Power (%) FDR (%) F1 score (%) Power (strong) (%) Power (weak) (%) Power (sporadic) (%)

EBSeqHMM 94.5 4.5 95.0 99.7 97.4 86.4

EBSeq 81.4 0.1 89.7 93.9 86.1 64.2

DESeq2 84.1 0 91.4 95.2 89.3 67.9

edgeR 84.4 0 91.6 95.4 89.5 68.3

voom 83.2 0 90.8 95.0 88.7 65.9

maSigPro (0.7) 33.1 0 49.7 56.0 37.8 5.5

maSigPro (0.5) 56.8 0.1 72.4 81.6 70.6 18.2

maSigPro (0.3) 67.4 0.5 80.4 89.9 82.3 30.0

FC (2.5) 0.4 0.4 0.8 0.7 0.4 0.1

FC (2) 2.5 1.9 4.9 4.2 2.5 0.8

FC (1.5) 36.1 4.0 52.5 55.9 28.6 23.9

FC (1.3) 83.0 9.0 86.8 97.4 82.5 69.2

FC (1.2) 95.8 20.1 87.1 99.8 97.9 89.6

The first three columns show the average power, FDR and F1 score for detecting DE genes in Sim II. For dynamic genes, the power within the strong and weak

groups is further evaluated in columns 4 and 5. Power within the sporadic group is evaluated in column 6. Averages are calculated over 100 Sim II simulations.

The standard errors (not shown) for EBSeq-HMM, EBSeq, DESeq2, edgeR, voom and maSigPro (and in most cases FC) were 	0:005.

Fig. 3. Shown are the number of genes (ground truth) simulated in Sim I as

being in each of eight dynamic paths (these eight are shown as they contain

the most genes among all simulated paths). Also shown are the average

number classified into each path by EBSeq-HMM and by FC analysis at

thresholds 1.2 and 1.3 (averages are calculated over 100 Sim I datasets).

Correct classifications are shown in blue (first bar); incorrect are shown in red

(second bar)
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median-of-ratios normalization (Anders and Huber, 2010); TMM

(Robinson and Oshlack, 2010) and Upper Quartile Normalization

(Bullard et al., 2010) are also available in the package.

Like most methods, EBSeq-HMM makes assumptions regarding

the distribution governing expression measurements. Consequently,

poor performance may result if there are strong departures from

these assumptions. Model diagnostics are implemented in EBSeq-

HMM to ensure that assumptions can be easily checked. They

should be considered with each application and results should not

be used if serious departures from model assumptions are observed.

A typical diagnostic summary for the case study data is shown in

Supplementary Figure S4.
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