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Abstract

Summary: Metabolic network mapping is a widely used approach for integration of metabolomic

experimental results with biological domain knowledge. However, current approaches can be lim-

ited by biochemical domain or pathway knowledge which results in sparse disconnected graphs

for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with

metabolite structural similarity, mass spectral similarity and empirical associations to generate

richly connected metabolic networks. This open source, web-based or desktop software, written in

the R programming language, leverages KEGG and PubChem databases to derive associations be-

tween metabolites even in cases where biochemical domain or molecular annotations are un-

known. Network calculation is enhanced through an interface to the Chemical Translation System,

which allows metabolite identifier translation between >200 common biochemical databases.

Analysis results are presented as interactive visualizations or can be exported as high-quality

graphics and numerical tables which can be imported into common network analysis and visualiza-

tion tools.

Availability and Implementation: Freely available at http://dgrapov.github.io/MetaMapR/. Requires

R and a modern web browser. Installation instructions, tutorials and application examples are

available at http://dgrapov.github.io/MetaMapR/.

Contact: ofiehn@ucdavis.edu

1 Introduction

Metabolomic experiments contain both high-dimensional and

complex biological, chemical and analytical information. Mass

spectrometry based analyses can generate measurements for many

hundreds to thousands of small molecules. In addition to com-

pounds with identified biological roles many measurements may

only contain mass spectral or empirical information. Analysis of

metabolomic data in the context of biological domain knowledge

(e.g. enzymatic precursor to product relationships) is a well-

established approach for metabolic network generation (Gao et al.,

2010). However, real world metabolomic experiments can measure

a wide range of biochemical domains [for example (Grapov et al.,

2012)] for which direct biochemical intermediates may be absent

or unknown, leading to sparse disconnected biochemical

representations. Inclusion of non-measured metabolites in the recon-

structed metabolic networks using tools like Metscape (Karnovsky

et al., 2012) can help overcome this issue, but requires calculation of

minimum spanning trees, which can still fail to associate metabolites

lacking biochemical domain knowledge (e.g. complex lipids).

Barupal et al. (2012) recently showed in their tool Metamapp that

structural similarity information can be used to enhance enzymatic

transformation networks and fill in the gaps between missing

biochemical intermediates or domains. However, neither Metamapp

nor Metscape directly calculate structural similarity, mass spectral

similarity nor empirical relationships, and lack standalone inter-

active network visualization and threshold tuning interfaces featured

in MetaMapR. In addition to biochemical transformations and

structural similarity, MetaMapR also incorporates mass spectral
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similarity and empirical correlation information. The combination

of these four orthogonal measures of molecular association provides

a robust framework for generating richly connected biochemical

representations which can combine molecules with unknown bio-

chemistry, unknown structures and integrate non-metabolomic data

(genomic, proteomic, clinical) into the reconstructed metabolic

networks.

2 Methods

MetaMapR (http://dgrapov.github.io/MetaMapR/) is implemented

in the R programming language (http://cran.us.r-project.org/) and

requires the R package Shiny (http://www.rstudio.com/) and a mod-

ern web browser (Chrome, Firefox, IE10, Safari, etc). Internet con-

nection is required for calculation of biochemical (KEGG, http://

www.genome.jp/kegg/) and structural similarity network

(PubChem, https://pubchem.ncbi.nlm.nih.gov/) relationships.

The user interface is implemented using the Twitter Bootstrap

front-end (http://getbootstrap.com/2.3.2/) and enhanced by custom

CSS, HTML and JavaScript. Interactive networks are created using

the D3.js (http://d3js.org/) JavaScript library and the R package

d3Networks. Networks can be exported as scalable vector graphic

or portable network graphic formats. Alternatively, network edge

list and node attributes can be exported as a comma separated value

(.csv) files which can be extended using other third party software

such as Cytoscape (Shannon et al., 2003). This licensed (GPLv3)

cross-platform (windows, OSX and linux) software can be deployed

locally or as a hosted web application using the Shiny server (https://

github.com/rstudio/shiny-server). Download and installation in-

structions can be found at https://github.com/dgrapov/MetaMapR.

2.1 Features
Data can be uploaded as comma separated values (.csv) or other

delimited formats through the application paste field. Accepted me-

tabolite identifiers include synonyms or one of over 200 common

biological database identifiers (see Identifier Translation). Mass

spectra can be uploaded as mass-to-charge and intensity pair strings

(e.g. “m/z1:intensity1 m/z2:intensity2”). Measured metabolite con-

centrations, peak areas/heights, intensities or other experimental

data can be used to calculate empirical correlation relationships.

Identifier Translation can be optionally used to map user metab-

olite names or identifiers to KEGG or PubChem CIDs required to

calculate biochemical and chemical similarity networks.

Translations are accomplished using CTSgetR (https://github.com/

dgrapov/CTSgetR), an R interface to the Chemical Translation

System (http://cts.fiehnlab.ucdavis.edu/).

Biochemical Reaction Networks are generated based on the

KEGG RPAIR (http://www.genome.jp/kegg/reaction/, ftp://ftp.gen-

ome.jp/pub/db/rclass/rpair) substrate-product pair reaction data-

base. User supplied metabolite names or database identifiers are

optionally translated to KEGG identifiers which are then used to

query for biochemical substrate-product relationships using a cura-

ted lookup table based on over 14 000 biochemical reactions in the

KEGG Database (Kanehisa et al., 2014).

Structural Similarity Networks are determined based on similar-

ities between PubChem Substructure Fingerprints (ftp://ftp.ncbi.

nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt). The

R package Chemminer is used to generate molecular fingerprints

using the PubChem Power User Gateway (PUG). Molecular finger-

prints in the form of ordered lists of binary bits defining presence or

absence of physical properties (e.g. element type, functional group,

nearest neighbors) are used to calculate structural similarities.

Pairwise similarities are calculated based on the Tanimoto similarity

between two bit vectors (Willett et al., 1998). Similarity scores are

bound between 0 and 1, where a score of 0 or 1 defines no or com-

plete overlap in structural properties between two molecules.

Spectral Similarity Networks are calculated based on pairwise

similarities between mass spectra. Cosine correlations are

calculated between molecular features’ mass spectra which are

encoded as mass-to-charge ratio (m/z) and intensity pairs. The re-

sults are bounded between 0 and 1, with zero defining no and 1

complete correlation between two mass spectra. Generated mass

spectral similarity networks can be optimized based on control of

the cosine correlation threshold for edge acceptance, limit of total

edges per object, and object-specific control of edge acceptance (e.g.

limiting connections to only show annotated to unknown

relationships).

Empirical Dependency Networks are calculated (Langfelder and

Horvath, 2008) based on the parametric Pearson and biweight cor-

relations or non-parametric Spearman correlations between meas-

ured metabolite values (e.g. concentration, peak intensity, etc.) for

any or all samples. Measures of significance or P-values and the false

discovery rate (FDR) adjusted P-values can be used to alter the

statistical confidence of the correlation networks. For example a

correlation network based monotonic linear relationships between

metabolites which is robust to outliers and mitigates spurious false

discoveries can be calculated using Spearman correlations with edge

acceptance at FDR P-values<0.05.

3 Results and Discussion

MetaMapR is implemented using the shiny R package, a tool for

building browser-based applications, which can be deployed on the

desktop using a modern web browser or can be hosted as a stand-

alone web-application using the shiny-server (https://github.com/

rstudio/shiny-server).

A variety of MetaMapR applications are described at (http://

dgrapov.github.io/MetaMapR/) including the analysis of type 1

diabetes-dependent (T1D) biochemical changes in NOD mice

(Grapov et al., 2014) and metabolic changes in lung cancer in

humans (Wikoff et al., 2015). The study by Grapov et. al. compared

metabolic profiles of animals progressing to T1D (progressor) to

those maintaining normoglycemic control (non-progressor), to

identify age and gender independent T1D-associated biochemical

perturbations in over 470 plasma metabolites measured by gas-

chromatography time-of-flight mass spectrometry (GC–TOF–MS).

A biochemical reaction and structural similarity metabolic network

(Fig. 1A) was calculated to show key biochemical alterations in

progressor compared with non-progressors. Due to the limitation of

the KEGG database description of the directionality of biochemical

transformations, ‘the terms “reversible” and “irreversible” do not

necessarily reflect biochemical properties of each reaction’ (http://

www.genome.jp/kegg/xml/docs/) and because MetaMapR uniquely

combines biochemical relationships, many of which are reversible

given appropriate conditions, with structural similarity, mass

spectral similarity and correlations, all of which lack directionality;

the current implementation of MetaMapR treats all enzymatic

relationships as undirected. The network structural similarity

threshold was set to Tanimoto score>0.7, which maintains non-

overlapping network modularity for the biochemical classes

described in Figure 1A. A more detailed description of structural

similarity threshold selection can be found in Barupal et. al. (Barupal

et al., 2012).
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T1D was associated with large scale metabolic perturbations in

plasma metabolites including increases in the majority of carbohy-

drates (red downward arrows), and a decrease in the structurally

similar but not directly biochemically related 1,5-anhydroglucitol.

Dietary derived 1,5-anhydroglucitol (bottom left) is an established

marker of glucose control (Kim and Park, 2013), the levels in which

drop in response to competition with increasing glucose for re-

absorption in the kidneys. Networks in Figure 1 were calculated in

MetaMapR, exported to Cytoscape (Shannon et al., 2003) and fur-

ther enhanced by mapping various empirical and domain know-

ledge-based variables to the network node attributes, the process of

which is described in detail elsewhere (Grapov et al., 2014). Mass

spectral information can be used to extend the analysis of biochem-

ical and structural similarity relationships to molecules without

structural annotation (unknowns; Fig. 1B). Mass spectral similarity

network analysis has been previously used to link structurally un-

known features with known molecules (Watrous et al., 2012). Mass

spectral similarity is defined based on the cosine of the angle

between two or more mass spectra represented as vectors (cosine

correlation) which was set to>0.7 for Figure 1B and 1C. We sug-

gest that the user considers tuning the threshold for mass spectral

similarity based on their needs (Stein and Scott, 1994).

MetaMapR uniquely combines molecular biochemical and struc-

tural information (Fig. 1A) with mass spectral similarity (Fig. 1B)

and correlation based associations (Fig. 1C). The combination of

orthogonal information can help link structurally unknown metab-

olites (Fig. 1C, rounded rectangles) to other identified species.

MetaMapR is freely available open source software which includes

ongoing efforts to integrate the analysis of gene-metabolite and pro-

tein-metabolite biochemical information, calculation of Gaussian

graphical Markov metabolomic networks (GGM) and an enhanced

dynamic network mapping interface.
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