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Abstract

Motivation: Glycans play critical roles in many biological processes, and their structural diversity

is key for specific protein-glycan recognition. Comparative structural studies of biological mol-

ecules provide useful insight into their biological relationships. However, most computational tools

are designed for protein structure, and despite their importance, there is no currently available tool

for comparing glycan structures in a sequence order- and size-independent manner.

Results: A novel method, GS-align, is developed for glycan structure alignment and similarity meas-

urement. GS-align generates possible alignments between two glycan structures through iterative

maximum clique search and fragment superposition. The optimal alignment is then determined by

the maximum structural similarity score, GS-score, which is size-independent. Benchmark tests

against the Protein Data Bank (PDB) N-linked glycan library and PDB homologous/non-homologous

N-glycoprotein sets indicate that GS-align is a robust computational tool to align glycan structures

and quantify their structural similarity. GS-align is also applied to template-based glycan structure

prediction and monosaccharide substitution matrix generation to illustrate its utility.

Availability and implementation: http://www.glycanstructure.org/gsalign.

Contact: wonpil@ku.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Glycans are one of the four fundamental components of cells (along

with nucleic acids, proteins and lipids) and the most abundant and di-

verse biopolymers in nature (Ohtsubo and Marth, 2006). They are

not only conjugated to proteins (glycoproteins) or lipids (glycolipids),

but also exist as diffusible ligands (Cummings, 2009; Dwek, 1996;

Varki et al., 2009). Protein glycosylation is one of the most important

post-translational modifications, with more than half of all proteins

expected to be glycosylated (Apweiler et al., 1999). Protein glycosyla-

tion falls into two general categories, N- and O-linked glycosylation.

N-glycosylation links glycans to Asn residues in the sequon,

Asn-X-Thr/Ser (where X can be any amino acid except Pro), of a nas-

cent polypeptide (N-glycans) (Imperiali and Hendrickson, 1995),

whereas O-linked glycosylation attaches glycans to Ser and Thr

residues at sites which do not have a well-defined sequence motif

(O-glycans) (Van den Steen et al., 1998). In particular, N-

glycosylation is needed for proper folding of a protein as well as qual-

ity control in the endoplasmic reticulum (Rudd et al., 2001). Based

on the lipid type, glycolipids can be classified into three main groups:

glycoglycerolipids, glycosylphosphatidylinositols (GPI) and glyco-

sphingolipids (Cummings, 2009). Hyaluronic acid is one of glycan
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(diffusible) ligands, which is not linked to either proteins or lipids

and is secreted into extracellular compartments (Weigel et al., 1997).

Glycans play critical roles in many biological processes through

covalent addition and/or specific protein-glycan recognition events.

For example, they interact with diverse proteins and are involved in

cell growth and development, tumor growth and metastasis, anticoa-

gulation, inflammation, immune tolerance, intercellular adhesion,

cell-cell communication and microbial attachment (Baenziger, 1985;

Casu et al., 2004; Imberty and Varrot, 2008; Rabinovich and

Toscano, 2009; Rudd et al., 2004). Glycans come in a diversity of se-

quences and structures by linking individual sugar units in a multitude

of ways. They can be broadly classified as linear and branched sugars

in terms of their sequence, and both forms are present in

glycoconjugates (Lowe and Marth, 2003; Varki et al., 2009).

The majority of the linear sugars are glycosaminoglycans and hyalur-

onic acid (Raman et al., 2005). Due to their flexible glycosidic link-

ages, glycans have an ensemble of diverse conformations (Petrescu

et al., 1997; Woods et al., 1998), and such a structural diversity is es-

sential for specific binding to their receptor proteins. For example, the

pentasaccharide of ganglioside GM1 has different conformations

upon binding to galectin-1 and cholera toxin (Siebert et al., 2003).

In contemporary structural biology, the comparison and align-

ment of protein structures are widely employed in studies such as

hierarchical classification of the known structural space of protein

domains (Andreeva et al., 2004; Greene et al., 2007), inference of

protein function from structure (Godzik et al., 2007) and protein

structure modeling (Moult et al., 2003). Protein structure compari-

son and alignment is a well-established area and there are currently

many publicly available tools such as DALI (Holm and Sander,

1996), CE (Shindyalov and Bourne, 1998) and TM-align (Zhang

and Skolnick, 2005).

The mammalian glycome encompasses a diverse and abundant rep-

ertoire of glycan structures, and could be larger than the proteome

(Ohtsubo and Marth, 2006). Because of their significant roles in biol-

ogy, understanding glycan structure and function in the context of their

3D structure is central to understanding biology. Despite the difficulties

in crystallization, the rate of deposition of glycan-containing structures

in the Protein Data Bank (PDB) (Berman et al., 2002) has been steadily

increasing (Jo et al., 2011). As demonstrated in protein structural biol-

ogy, fast and accurate computational tools for comparison and align-

ment of glycan structures are crucial to take an integrated approach to

advance glycan structure-function relationships. However, developing

a glycan structure alignment tool is challenging, given the unique struc-

tural features of glycans through different linkages and branching, re-

sulting in a tree-like structure unlike proteins. To the best of our

knowledge, there have been no such tools published to date.

To make a progress in the structural glycobiology field, we intro-

duce a novel method, GS-align, for glycan structure alignment and

similarity measurement. In particular, GS-align provides a size-

independent structural similarity score, GS-score. Below, we first

describe the alignment and scoring algorithms in details. Benchmark

tests and representative examples are then presented to illustrate

reliability and applicability of GS-align. Finally, we discuss both the

advantages and limitations of our approach.

2 Materials and methods

2.1 Preparation of random glycan structures
To prepare a set of random glycan structures, biologically relevant

glycan sequences that are largely different from each other were

chosen from the KEGG GLYCAN database, a collection of

experimentally determined glycan sequences (http://www.genome.

jp/kegg/glycan) (Hashimoto et al., 2006). Using all the glycan se-

quence information in KCF (KEGG Chemical Function) format,

carbohydrate (residue) names and linkage information between resi-

dues were extracted from the NODE and EDGE sections of each

KCF file. Any glycan structures that contain ambiguous linkage in-

formation were discarded. The total number of the remaining glycan

sequences was 10 983, and the glycan length (i.e. the total number

of carbohydrate residues) ranged from 1 to 54 (as of May, 2014)

(Supplementary Fig. S1A).

The CHARMM biomolecular simulation program (Brooks

et al., 2009) was used to generate initial 3D glycan structures from

the sequence obtained from the KEGG GLYCAN database. Glycans

containing sugars whose topologies are not available in the

CHARMM carbohydrate force field (Guvench et al., 2008) were

discarded for this study. To account for only non-redundant

(unique) glycan sequences, all files in KCF format were converted

into string format data structures for easy comparison of different

glycan sequences by each sugar position, glycosidic linkage carbon

number and anomeric configuration. Redundant sequences were

removed, and the final CHARMM-compatible unique KEGG glycan

sequences (4907 entries) were obtained after excluding glycans

containing furanose monosaccharides (58 out of 4965), as the

current version of GS-align is not able to handle five-membered

rings. Supplementary Figure S1B shows the numbers of final unique

KEGG glycans in terms of glycan length.

To prepare non-homologous glycans for a given glycan length,

called a ‘random glycan structure set’, a glycan sequence similarity

score matrix was first obtained by an in-house glycan sequence

alignment tool, which adopts tree-matching methods for glycan

sequence similarity measurement (Aoki et al., 2003). Then, all the

glycans were clustered using the average linkage clustering method

with a sequence similarity score cutoff of 0, which is the median of

all possible scores. Seventy clusters were identified for glycan lengths

ranging from 4 to 12, which were determined based on the abun-

dance and the structural diversity in the unique KEGG glycans, and

their centroids were used as glycan sequences for the random glycan

structure set. For each of the 70 glycans, 10 conformations were

generated by randomly changing possible glycosidic dihedral angles

(by 30� interval) using the IC EDIT and IC BUILD commands in

CHARMM. If the newly generated random conformation had a

CHARMM van der Waals energy <100 kcal/mol, the conformation

was accepted. Supplementary Table S1 summarizes the number of

glycan structures as a function of glycan length in the random glycan

structure set.

2.2 Glycan structure alignment
In GS-align, all possible alignments between two glycan structures

are generated by iterative maximum clique search and fragment

superposition, and the optimal alignment is determined by the max-

imum GS-score (see the next subsection for its definition). The over-

all algorithm is schematically illustrated in Figure 1. In the

maximum clique search method, two given glycan structures

(A and B) are represented by ring centroids and glycosidic oxygen

atoms (RðAÞ ¼ frðAÞ1 ; r
ðAÞ
2 ; . . . ; r

ðAÞ
M g and RðBÞ ¼ frðBÞ1 ; r

ðBÞ
2 ; . . . ; r

ðBÞ
N g,

where r is the coordinate of ring centroid or glycosidic

oxygen). All combinations of inter-structural pairs (PAB ¼
fp11ðrðAÞ1 ; r

ðBÞ
1 Þ; p12ðrðAÞ1 ; r

ðBÞ
2 Þ; . . . ;pMNðrðAÞM ; r

ðBÞ
N Þg) are generated

using the representative points from the glycan structures.

Two pairs pijðrðAÞi ; r
ðBÞ
j Þ and pklðrðAÞk ; r

ðBÞ
l Þ are selected from PAB

and then both distances dðrðAÞi ; r
ðAÞ
k Þ and dðrðBÞj ; r

ðBÞ
l Þ are calculated.
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Fig. 1.&ensp;Schematic illustration of the alignment algorithm in GS-align.


If jdðrðAÞi ; r
ðAÞ
k Þ � dðrðBÞj ; r

ðBÞ
l Þj is less than a cutoff (dcut), pij and pkl are

assigned to vertices of a product graph and connected by an edge.

This procedure is applied to all pairs in PAB. The generated product

graph is searched for the maximum clique, the largest subset of verti-

ces in which all vertices are connected to all other vertices. In our

case, solving the maximum clique problem for the product graph is

equivalent to identification of the largest subset of structurally aligned

points. We used an improved branch and bound algorithm for fast

maximum clique search (Konc and Janežič, 2007; Lee and Im, 2012).

Two glycan structures are superposed using the rotation matrix ob-

tained from the aligned point sets. GS-align repeats this procedure

five times, increasing dcut from 1 to 3.0 Å by an increment of 0.5 Å

(so-called the iterative maximum clique search). Thus, five alignments

are generated.

The second method to align two glycan structures is to use frag-

ments from each glycan. A set of consecutively linked residues is

extracted from each glycan. Both linear (three residues) and branched

(four residues) fragments are considered and for branched fragments,

additional fragments are generated by swapping l and k residues in

Figure 1. For each fragment pair from two glycans, an initial align-

ment is obtained using equivalent residue pairs in the fragment pair. A

set of optimal alignment residue pairs is identified based on the initial

alignment. If the ring centroid distance between an aligned residue

pair is >8 Å, the pair is discarded from the aligned residue pair set.

GS-align then again superposes the glycan structures by the rotation

matrix for the updated aligned residue pairs. This procedure generates

additional alignments for all combinations of fragment pairs. Indeed,

a strong complementary nature was found between the iterative max-

imum clique search and the fragment superposition; for example,

when all random glycan structure pairs were aligned, 41% of the opti-

mal alignments with the maximum GS-score were from the former

and 59% from the later.

2.3 Glycan structure similarity measurement
GS-score is a scoring function to quantify structure similarity

between two glycan structures:

GS-score ¼Max
1

NOGþRing

XNOG;ali

i

1

1þ dOG;i=dOG;0

� �2

þ
XNRing;ali

i

1

1þ dRing;i=dRing;0

� �2

0
BBBBBB@

1
CCCCCCA

2
6666664

3
7777775

(1)

where ‘Max’ denotes that the GS-score is the maximum of all possible

alignments, NOGþ Ring¼2LTarget�1 is the total number of oxygen

atoms in the glycosidic linkages (OG) and sugar rings of a target gly-

can, LTarget is the length of the target glycan, and NOG,ali and NRing,ali

are the numbers of glycosidic oxygen atoms and sugar rings in the

aligned residues, respectively. The aligned residue pairs (i.e. which

residue of glycan A is structurally aligned onto which residue of gly-

can B in a given alignment generated from the iterative maximum cli-

que search and fragment superposition) are identified using the

shortest augmenting path algorithm to solve the linear sum assign-

ment problem (LSAP) (Derigs, 1985; Gao and Skolnick, 2013). dOG,i

is the distance between the glycosidic oxygen atoms in the ith pair of

aligned residues and dRing,i is the root-mean-square deviation (RMSD)

between the sugar ring atoms (C1, C2, C3, C4, C5 and O5) in the ith

pair of aligned residues (Supplementary Fig. S2). dOG,0 and dRing,0 are

the scaling factors to normalize the aligned distances. A final align-

ment is selected by the maximum GS-score alignment.

Figure 2 shows the average GS-scores calculated from all pairs of

700 random glycan structures (Supplementary Table S1) as a func-

tion of glycan length. The raw GS-score (rGS-score) is calculated

using a constant value (3 Å) for dOG,0 and dRing,0, based on the aver-

age distance between the centroids of adjacent sugar rings (3.26 Å).

For the GS-score, glycan length-dependent scaling factors

dOG,0(LTarget) and dRing,0(LTarget) are used instead of the constant

value, so that the average GS-score is not dependent on the glycan

length for the random structure pairs. The scaling factors were

empirically obtained from curve fitting to the plots of the average

dOG and dRing between an aligned residue pair as a function of

LTarget (Supplementary Fig. S3), where LTarget is the length of the

larger glycan in a glycan structure pair. The dOG,0(LTarget) and

dRing,0(LTarget) are

dOG;0ðLTargetÞ ¼ 1:36
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTarget � 2

p
� 0:75 (2)

dRing;0ðLTargetÞ ¼ 1:64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTarget � 2

p
� 0:30 (3)

As shown in Figure 2, the mean GS-scores, normalized by the

glycan length-dependent dOG,0 and dRing,0, are almost length-

independent for the random glycan structures, but the rGS-score

decreases from 0.65 to 0.35 as the glycan length increases. The aver-

age GS-score value for a random glycan structure pair is 0.44. Table

1 shows the statistical significance of the GS-score derived from the

random glycan structures with diverse sequences and conform-

ations. The GS-score distribution for all random glycans (of differ-

ent sequences, lengths and conformations) was modeled by the

normal distribution (Supplementary Fig. S4), and the P-values of

representative GS-scores are given in Table 1. A GS-score of 0.69 is

significant at P<1�10�3.

Fig. 1. Schematic illustration of the alignment algorithm in GS-align

Fig. 2. The average raw GS-score (rGS-score) and GS-score of random glycan

pairs as a function of glycan length
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2.4 Preparation of N-glycan library
We downloaded the PDB files of X-ray crystallographic structures

containing at least one protein chain whose resolution is <3 Å.

Glycan Reader (Jo et al., 2011) was used for identification of protein

chains that include covalently linked glycans. These protein chains

were subsequently divided into N- and O-linked glycoproteins. The

coordinates and residue names of the N-glycans were individually

extracted from the glycan-containing PDB files (6320 PDB files, as of

July, 2014) using Glycan Reader. The protein coordinates of the

N-linked glycoproteins were also separately prepared from the PDB

files. The total number of N-glycans in the library was 14 414

because multiple glycans can be attached to one protein chain.

3 Results

3.1 Glycan structure alignment by GS-align
Figure 3 shows four representative examples to illustrate the align-

ment quality provided by GS-align. The representative alignments

were obtained from PDB N-glycan library search by GS-align. For

this search, a glycan structure consisting of 10 sugar residues in

PDB:1L6X was used as the query (target) structure; the target and

library glycans are colored in green and blue, respectively. The four

representative alignment pairs were chosen to have the same cover-

age of 0.9 and various GS-scores. The coverage is defined as a ratio

of aligned residues to the total number of residues in the target struc-

ture. If the distance between the centroids of sugar rings is within

5 Å, the library sugar residue is assigned as the aligned residue.

Visual inspection of the four examples shows a clear correlation

between GS-score and structural similarity. To measure the struc-

tural similarity quantitatively, we calculated the RMSD for the

aligned residues. The calculated RMSDs are 0.46, 1.29, 2.05 and

2.67 Å for the corresponding GS-scores of 0.88, 0.81, 0.68 and

0.58, respectively.

3.2 Benchmark: homologous and non-homologous

N-glycoprotein sets
Recently, Jo et al. measured pairwise glycan structure similarity

using the RMSD among N-glycan structures having the identical

sequence (35 N-glycan sequences) (Jo et al., 2013). The N-glycan

structures in homologous glycoproteins are found to be significantly

conserved compared to those in non-homologous glycoproteins

through a P-value analysis using a random glycan conformation

background. An N-glycan structure pair is called ‘homologous’ or

‘non-homologous’ depending on the sequence similarity (with a

30% cutoff) and glycosylation sites between the parent proteins.

An analysis of the cumulative fractions of homologous and non-

homologous glycans structure pairs as a function of their P-value

showed that �67% of the homologous N-glycan structure pairs

have a statistically significant level (P<0.05) of structural similar-

ity, whereas �36% of non-homologous N-glycan structure pairs

have the statistically equivalent level of structural similarity

(Jo et al., 2013).

We performed the same analysis using GS-align against the same

homologous and non-homologous sets. The only difference is that

GS-align is used for structure alignment and similarity measurement,

instead of the RMSD and P-value measurement (using the random

glycan conformations). Figure 4 shows a cumulative fraction of

glycan structure similarity as a function of GS-score for the homolo-

gous and non-homologous N-glycan structure pairs. The cumulative

percentage of non-homologous glycans is 38% at the GS-score for

which the cumulative percentage of homologous N-glycans is 67%,

showing good agreement with the previous results, as well as a clear

ability of GS-align to discriminate glycans of different conform-

ations. The GS-score (0.87) that gives these cumulative percentages

does not match the GS-score (0.57 in Table 1) at a P-value of 0.05

(used by Jo et al.) due to the different characteristics of the random

structure sets and scoring functions used in both analyses. It should

be noted that the cumulative percentages from the two sets at a

GS-score of 0.69 (P<1�10�3 in Table 1) are similar, indicating

that the N-glycan structures in both sets are not very significantly

different, although highly similar N-glycan pairs are observed more

in the homologous set.

Table 1. Statistical significance of GS-score derived from the

random structures of glycans with diverse sequences and

conformations

GS-score 0.54 0.57 0.63 0.69 0.73 0.78 0.83

P-value 1� 10� 1 5� 10� 2 1� 10� 2 1� 10� 3 2� 10� 4 2� 10 � 5 2� 10� 6

Fig. 3. Representative examples to illustrate the relationship between

GS-score and structural similarity. Each glycan structure (blue) aligned to the

target glycan (green) in PDB:1L6X_A is shown with its PDB id_chain id and

GS-score

Fig. 4. Cumulative fraction of glycan structure similarity using GS-score for

the homologous and non-homologous protein sets. The gray lines in each

plot represent individual 35 glycan sequences and thick solid lines the aver-

age over all glycan sequences
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3.3 Benchmark: PDB N-glycoprotein search
Figure 5A shows a comparison between glycan similarity and glyco-

protein similarity from a PDB N-glycan library search using a target

glycan and its parent protein (PDB:1L6X_A). We used TM-align

(Zhang and Skolnick, 2005) to measure the protein global structural

similarity which is quantified by TM-score. Above a GS-score of

0.69 (P-value<1�10� 3, a green dotted line in the figure), most of

the corresponding parent protein pairs show high structural similar-

ity in their global fold (TM-score>0.86). This indicates that glycans

tend to have significant structural similarity when their parent

proteins are structurally homologous, supporting the previous study

of Jo et al. (2013). However, there are exceptional cases. Figure 5B

shows an example in which proteins show low structural similarity

(0.27 for entire proteins and 0.38 only for the glycan-bound

domains), but their glycans have relatively high structural similarity

with a GS-score of 0.72. This example demonstrates that a similar

glycan structure can also be detected from a protein with different

topology and function (1L6X_A: human immunoglobulin c-1 chain

C region and 1PPE_E: human leukocyte elastase). Figure 5C is an

example in which proteins show a high TM-score (0.98), but their

glycans have relatively low structural similarity with a GS-score of

0.59, demonstrating that glycan structures could be diverse, even

though their parent protein structures are almost identical. In

addition, it should be noted that most of the low GS-score cases

with relatively high TM-scores of more than 0.7 in Figure 5 result

from a mismatch in glycan lengths because the GS-scores in the plot

were normalized by larger glycan structures among each pair.

Supplementary Figure S5 shows the distribution plot of the

GS-scores normalized by smaller glycan structures, indicating that

smaller glycan fragments generally show high similarity to the

fragments of the target glycan and thus a fragment assembly

method would be promising in template-based glycan structure

modeling.

3.4 Illustration for template-based glycan structure

prediction
The procedure of comparative protein structure modeling usually

consists of two main steps: (i) identifying templates (from the PDB)

to the target sequence and (ii) building a full-length model using the

templates. Like protein structure prediction, this approach could be

a promising means of predicting glycan structures (Jo et al., 2013).

Figure 6 shows a representative example to illustrate a potential

application of GS-align to template-based glycan structure predic-

tion. In this case, 1L6X_A glycan was fragmented into three partial

structures, each of which has four residues (stick representation in

green in Fig. 6A). Each glycan fragment was then used as the query

structure to search for templates in the PDB N-glycan library. To

put strict conditions on the library search, we excluded glycans

whose parent proteins have a sequence identity >30% to 1L6X_A.

In these searches, GS-score was normalized by the length of the frag-

ment glycan, rather than those of larger template glycans, thereby

aiming at detecting all template glycans containing similar structures

to the query. Figure 6A shows the best template structures (line rep-

resentation in blue) superposed onto the query fragment glycans.

When a glycan structure was assembled from the three templates,

the modeled structure is quite similar to the target glycan with a

GS-score of 0.94 (Fig. 6B).

Alternatively, one can use the entire 1L6X_A glycan to search

for templates in the PDB N-glycan library. Structural similarity be-

tween the target glycan and its best template identified based on GS-

score (normalized by larger glycan) shows a high GS-score of 0.91

(Fig. 6C). The TM-score between the parent proteins of the target

glycan and the best template is 0.25. In this case, a PDB library

glycan that maximally covers the target glycan can be a good

template even when their parent proteins’ structures are different, as

illustrated in Figure 5B.

In a practical situation in which one needs to predict a glycan

structure from its sequence, a set of PDB template glycans could first

be searched based on the sequence similarity to the target glycan

and then adequate template structures could be identified after clus-

tering all the templates. Although further intricate computational

procedures would be needed to reliably generate a final glycan

Fig. 5. Comparison of glycan similarity (GS-score) with glycoprotein similarity

(TM-score) through PDB N-glycan library search. (A) TM-score versus GS-

score plot. All PDB N-glycans and their parent proteins were structurally com-

pared with the target glycan and its parent glycoprotein (PDB:1L6X_A), re-

spectively. The green dotted line indicates a GS-score (0.69) whose P-value is

1�10�3. (B) An example where proteins show distinct folds, but the GS-score

between their glycans is high. (C) An example where proteins show similar

global folds, but the GS-score between their glycans is low. In these

examples, the two pairs of glycans have the identical coverage (0.8)

Fig. 6. An example of template-based glycan structure prediction. (A) Three

fragment structures from 1L6X_A glycan, each of which has four residues

(stick representation in green), that were individually used as the query struc-

ture to search for templates in the PDB library. Three best template glycans

(line representation in blue) were identified based on GS-score for each query

structure. (B) Structure similarity between the target glycan and a structure

assembled using the three-fragment templates in (A). (C) Structural similarity

between the target glycan (entire 1L6X_A glycan) and its best template
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Fig. 4.&ensp;Cumulative fraction of glycan structure similarity using GS-score for the homologous and non-homologous protein sets. The gray lines in each plot represent individual 35 glycan sequences and thick solid lines the average over all glycan sequences.
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Fig. 5.&ensp;Comparison of glycan similarity (GS-score) with glycoprotein similarity (TM-score) through PDB N-glycan library search. (A) TM-score vs. GS-score plot. All PDB N-glycans and their parent proteins were structurally compared with the target glycan and its parent glycoprotein (PDB:1L6X_A), respectively. The green dotted line indicates a GS-score (0.69) whose P-value is 1 &times; 10&minus;3. (B) An example where proteins show distinct folds, but the GS-score between their glycans is high. (C) An example where proteins show similar global folds, but the GS-score between their glycans is low. In these examples, the two pairs of glycans have the identical coverage (0.8).
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Fig. 6.&ensp;An example of template-based glycan structure prediction. (A) Three fragment structures from 1L6X_A glycan, each of which has four residues (stick representation in green), that were individually used as the query structure to search for templates in the PDB library. Three best template glycans (line representation in blue) were identified based on GS-score for each query structure. (B) Structure similarity between the target glycan and a structure assembled using the three-fragment templates in (A). (C) Structural similarity between the target glycan (entire 1L6X_A glycan) and its best template.


model, availability of good templates is a key factor to determine

the quality of the predicted model. This example demonstrates that

a set of substructures can be separately identified and assembled

into full glycan structures for glycan structure modeling.

3.5 Illustration for developing monosaccharide

substitution matrix
In protein bioinformatics, a substitution matrix such as PAM

(Dayhoff et al., 1983) and BLOSUM (Henikoff and Henikoff, 1992)

is used for sequence alignment. Proper usage of such a substitution

matrix can significantly improve the quality of alignments, provid-

ing more biological insights into protein evolution, structure and

function. Similarly, incorporation of information on monosacchar-

ide substitution in conserved glycan structures into glycan sequence

alignment could provide biologically more reliable alignment

results.

Figure 7 illustrates a potential application of GS-align to deriving

a monosaccharide substitution matrix. Figure 7A shows a represen-

tative example in which two different glycans (3SIO_E in green and

1CPO_A in blue) have very similar structure (GS-score¼0.90) but

different monosaccharides (a-D-mannose versus a-D-lyxose) at two

positions. As a separate example, Figure 7B shows the percentages

of other monosaccharides that can substitute a-D-mannose as highly

similar glycan structure pairs (GS-score�0.8); the percentage is

calculated using all PDB N-glycans. For comparison, the percentage

of a-D-mannose itself is also included in the table. A monosaccharide

was assigned to the substituting monosaccharide if the RMSD

between the sugar rings is �2 Å in the aligned structures.

4 Discussion and conclusion

A comparative study of biological entities is a useful approach to get

valuable insight into their biological relationships. Especially, when

their 3D structures are available, this approach can provide more

accurate information about possible distant evolutionary relation-

ships that are difficult to detect based on sequence information

alone. During the past two decades, many computational methods

have been developed for this purpose. However, most methods are

designed for protein structure comparison, and there is no currently

available tool (to the best of our knowledge) for comparing glycan

3D structures in a sequence order- and size-independent manner. In

particular, the branched nature of glycans makes it more difficult to

work with their structures. Nonetheless, considering that glycans

are one of the four fundamental classes of molecules that comprise

living systems and play an essential role in a vast array of biological

processes, there is an urgent need to develop a computational tool

for structural comparison of glycans.

Here, we introduce GS-align for glycan structure alignment and

similarity measurement. Our method works in a sequence order-

independent manner and provides size-independent scores for the

similarity of two glycan structures. We validate the reliability of our

method through PDB N-glycan library search and glycan conform-

ation comparison in the PDB homologous/non-homologous

N-glycoprotein sets. The results indicate that GS-align is a robust

computational tool to align glycan structures and quantify their

structural similarity.

GS-align was used to illustrate its potential application to tem-

plate-based glycan structure prediction. In the comparative structure

modeling, the accurate assessment of the quality of the templates

and the resulting model is essential to improve the structure predic-

tion algorithms. GS-align can play a key role in this task during the

development of glycan 3D structure prediction tools from glycan se-

quence information.

GS-align was also used to demonstrate its applicability to the

development of a monosaccharide substitution matrix for accurate

glycan sequence alignment. Aoki et al. developed a score matrix in a

manner similar to BLOSUM (Aoki et al., 2005). They defined the ap-

propriate classes of glycans and then produced glycan sequence

alignments within each class using their tree-structure local exact

matching algorithm. The alignment results were used to calculate the

frequency of sequence alignment of ‘links’, which includes two

monosaccharide names, an anomeric configuration (a or b), and con-

nection information (e.g. 1-6, 1-4). On the other hand, we attempted

to use the frequency of structural alignment of ‘residues’, which con-

sists of a monosaccharide name, its anomeric configuration and the

linkage information to any linked sugars. The current state of glycan

data is not yet complete (Aoki et al., 2005), and it may make such a

substitution matrix less reliable. To work around this problem, uti-

lizing glycan fragments (Jo and Im, 2013) instead of whole structures

could be an approach to increase the number of aligned monosac-

charides for better statistics. Although our approach needs to be

refined and statistically analyzed for validation, we expect that as in

protein structure alignment, glycan structure alignment can eventu-

ally provide glycan sequence alignments with an accuracy that would

not be achievable from sequence alignments alone, leading to better

consideration of distant evolutionary relationships. The advanced

measurement of glycan sequence similarity will also play a key role

in accurate identification of better templates for comparative model-

ing-based glycan structure prediction.

The current GS-score is based on the coordinates of sugar ring

centroids (sugar ring atoms) and glycosidic oxygen atoms for align-

ment (scoring). This approach can be efficiently used to search for

an optimal alignment focusing on the topological similarity of

glycans with significantly reduced computational costs. However,

well-aligned monosaccharides could have different orientations of

hydroxyl groups that can be modified with diverse chemical groups

(e.g. amine, acetic acid, lactic acid, phosphate, sulfate, etc.).

Therefore, it might be necessary to incorporate physicochemical fea-

tures of the hydroxyl groups and chemical modifications into the

Fig. 7. An example using GS-align for deriving a monosaccharide substitution

matrix. (A) A representative example where two different glycans have simi-

lar structure (GS-score¼0.90) but different sequences. GlcNAc: N-acetyl-D-

glucosamin, Man: D-mannose, Lyx: D-lyxose. Two unmatched residues

(Man versus Lyx) are marked with red asterisks. (B) The percentages of other

monosaccharides that can substitute a-D-Mannose in highly similar

glycan structure pairs (GS-score�0.8). For comparison, the percentage of

a-D-mannose itself is also included in the table
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Fig. 7. An example using GS-align for deriving a monosaccharide substitution matrix. (A) A representative example where two different glycans have similar structure (GS-score &equals; 0.90) but different sequences. GlcNAc: N-acetyl-d-glucosamin, Man: d-mannose, Lyx: d-lyxose. Two unmatched residues (Man vs. Lyx) are marked with red asterisks. (B) The percentages of other monosaccharides that can substitute &alpha;-d-Mannose in highly similar glycan structure pairs (GS-score &geq; 0.8). For comparison, the percentage of &alpha;-d-mannose itself is also included in the table.discussion
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current scoring function for more accurate measurement of the

structural similarity. In addition, the current GS-align cannot handle

furanoses forms (five-membered rings) of monosaccharides.

Furanoses are often ignored by researchers because they are very

minor compared to pyranose forms in overall glycan composition.

In the PDB N-glycan library used in this study, there is only one

glycan with a furanose ring. However, it is known that furanose

monosaccharides are also a common constituent of O-glycans of

plant glycoproteins and present in a number of glycoproteins of bac-

teria and protozoa (Lis and Sharon, 1993), suggesting a need of

accounting for furanose rings in the GS-align scoring function.

These will be done in future work.

Compared with the mature field of protein structure prediction

and modeling, the current status of in silico structural glycobiology

is rudimentary at best because of the paucity of computational tools.

We hope that GS-align can be applied to diverse subjects involving

structure comparison of glycans and eventually for addressing biolo-

gical questions related to glycan functions.
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Konc,J. and Janežič,D. (2007) An improved branch and bound algorithm for

the maximum clique problem. Match Commun. Math. Comput. Chem., 58,

569–590.

Lee,H.S. and Im,W. (2012) Identification of ligand templates using local struc-

ture alignment for structure-based drug design. J. Chem. Inf. Model., 52,

2784–2795.

Lis,H. and Sharon,N. (1993) Protein glycosylation. structural and functional

aspects. Eur. J. Biochem., 218, 1–27.

Lowe,J.B. and Marth,J.D. (2003) A genetic approach to mammalian glycan

function. Annu. Rev. Biochem., 72, 643–691.

Moult,J. et al. (2003) Critical assessment of methods of protein structure

prediction (CASP)-round V. Proteins, 53(Suppl. 6), 334–339.

Ohtsubo,K. and Marth,J.D. (2006) Glycosylation in cellular mechanisms of

health and disease. Cell, 126, 855–867.

Petrescu,A.J. et al. (1997) The solution NMR structure of glucosylated

N-glycans involved in the early stages of glycoprotein biosynthesis and fold-

ing. EMBO J., 16, 4302–4310.

Rabinovich,G.A. and Toscano,M.A. (2009) Turning ‘sweet’ on immunity:

galectin-glycan interactions in immune tolerance and inflammation. Nat.

Rev. Immunol., 9, 338–352.

Raman,R. et al. (2005) Structural insights into biological roles of protein-gly-

cosaminoglycan interactions. Chem. Biol., 12, 267–277.

Rudd,P.M. et al. (2001) Glycosylation and the immune system. Science, 291,

2370–2376.

Rudd,P.M. et al. (2004) Sugar-mediated ligand-receptor interactions in the

immune system. Trends Biotechnol., 22, 524–530.

Shindyalov,I.N. and Bourne,P.E. (1998) Protein structure alignment by incre-

mental combinatorial extension (CE) of the optimal path. Protein Eng., 11,

739–747.

Siebert,H.C. et al. (2003) Unique conformer selection of human growth-

regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins.

Biochemistry, 42, 14762–14773.

Van Den Steen,P. et al. (1998) Concepts and principles of O-linked glycosyla-

tion. Crit. Rev. Biochem. Mol. Biol., 33, 151–208.

Varki,A. et al. (2009) Essential of Glycobiology. 2nd edn. Cold Spring Harbor

Laboratory Press, New York.

Weigel,P.H. et al. (1997) Hyaluronan synthases. J. Biol. Chem., 272,

13997–14000.

Woods,R.J. et al. (1998) The high degree of internal flexibility observed for an

oligomannose oligosaccharide does not alter the overall topology of the

molecule. Eur. J. Biochem., 258, 372–386.

Zhang,Y. and Skolnick,J. (2005) TM-align: a protein structure

alignment algorithm based on the TM-score. Nucleic Acids Res., 33,

2302–2309.

GS-align 2659

to
to
.
),
).

	btv202-M1
	btv202-M2
	btv202-M3

