
Genome analysis

MetaSV: an accurate and integrative

structural-variant caller for next generation

sequencing

Marghoob Mohiyuddin1,†, John C. Mu1,†, Jian Li1, Narges Bani Asadi1,

Mark B. Gerstein2, Alexej Abyzov3, Wing H. Wong4,5 and

Hugo Y.K. Lam1,*

1Bina Technologies, Roche Sequencing, Redwood City, CA 94065, USA, 2Program in Computational Biology and

Bioinformatics, Yale University, New Haven, CT 06520, USA, 3Department of Health Sciences Research, Center for

Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA, 4Department of Statistics, Stanford University,

Stanford, CA 94035, USA and 5Department of Health Research and Policy, Stanford University, Stanford, CA 94035,

USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Inanc Birol

Received on December 30, 2014; revised on March 27, 2015; accepted on April 7, 2015

Abstract

Summary: Structural variations (SVs) are large genomic rearrangements that vary significantly in

size, making them challenging to detect with the relatively short reads from next-generation

sequencing (NGS). Different SV detection methods have been developed; however, each is limited

to specific kinds of SVs with varying accuracy and resolution. Previous works have attempted to

combine different methods, but they still suffer from poor accuracy particularly for insertions. We

propose MetaSV, an integrated SV caller which leverages multiple orthogonal SV signals for high

accuracy and resolution. MetaSV proceeds by merging SVs from multiple tools for all types of SVs.

It also analyzes soft-clipped reads from alignment to detect insertions accurately since existing

tools underestimate insertion SVs. Local assembly in combination with dynamic programming is

used to improve breakpoint resolution. Paired-end and coverage information is used to predict SV

genotypes. Using simulation and experimental data, we demonstrate the effectiveness of MetaSV

across various SV types and sizes.

Availability and implementation: Code in Python is at http://bioinform.github.io/metasv/.

Contact: rd@bina.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

SVs have been implicated in contributing to genomic diversity as

well as genomic disorders (Stankiewicz and Lupski, 2010).

Therefore, a significant amount of work has been done on detecting

SVs. Generally, a tool for detecting SVs uses one or more of the fol-

lowing signals from read alignments: split-read [reads with split

alignments, e.g. Pindel (Ye et al., 2009)], read-pair [abnormal

paired-end alignments, e.g. BreakDancer (Chen et al., 2009)], depth-

of-coverage [abnormal coverages, e.g. CNVnator (Abyzov et al.,

2011)], junction-mapping [alignments to known SV breakpoints,

e.g. BreakSeq2 (Abyzov et al., 2015; Lam et al., 2010)] or assembly

around potential breakpoints [e.g. MindTheGap (Rizk et al.,

2014)]. However, there is no signal that comprehensively detects all

types of SVs since each has a niche of SV types and sizes where it
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works well. This necessitates the development of tools which inte-

grate multiple methods to improve SV detection.

Prior work (Lam et al., 2012; Mills et al., 2011) has shown that

variant calls made by multiple tools and methods generally are more

accurate. For this reason, tools have been developed to employ mul-

tiple methods, e.g. DELLY (Rausch et al., 2012), LUMPY (Layer et

al., 2014) and those that merge the results from multiple tools, such

as SVMerge (Wong et al., 2010). However, LUMPY and DELLY

are unable to detect insertions and SVMerge ignores the SV reso-

lution of individual tools when merging calls. Our work, therefore,

attempts to address the limitations of existing SV merging tools for

detecting SVs of different types and sizes with high accuracy and

resolution.

2 Methods

MetaSV uses multiple SV-detection methods and tools to find a

high-confidence and precise SV callset. The novelty of MetaSV lies

in the combination of the following key ideas: calls reported by mul-

tiple orthogonal methods are generally better quality and that local

assembly with dynamic programming can be used to refine the SV

breakpoints.

2.1 Multi-method SV detection
MetaSV proceeds in the following steps (Fig. 1):

• Intra-tool merging: Potential duplicate calls generated by the

same tool are merged here. Note that two calls are considered

duplicate if they have significant overlap.
• Inter-tool merging: Calls which are generated by multiple tools

are merged together. While determining the breakpoints for calls

common to multiple tools, priority is given to methods known to

be precise, e.g. split-read over read-pair. Note that this method-

aware merging is crucial to ensuring that the breakpoints of the

SVs reported are as precise as possible.
• Local assembly: Local assembly is performed on the SV regions

reported by the tools to gather additional evidence as well as de-

termine the SV sequences. The SPAdes (Bankevich et al., 2012)

assembler is used due to its unique ability to use paired-end infor-

mation for assembly.
• Breakpoint resolution: The assembled SV sequences are aligned

against the reference to detect or refine the breakpoints using dy-

namic programming (Abyzov and Gerstein, 2011).
• Genotyping: Read coverage around the SV breakpoints are used

to determine the zygosity of the SVs. The final output is then gen-

erated as a VCF file with the genotypes for each SV.
• Annotation: MetaSV standardizes the inputs as well as the out-

puts in VCF. Each SV is annotated to indicate the corresponding

calls made by the individual tools and to classify its confidence

level. SVs which are detected by multiple tools, are considered

high-confidence.

2.2 Insertion detection enhancement
The overall sensitivity of MetaSV by simply merging calls from mul-

tiple tools is upper bounded by the sensitivity of the union of all SVs

detected by the individual tools. Therefore, for long insertions,

which are underestimated by existing tools due to ascertainment

bias, we augmented MetaSV with a soft-clip based method to boost

insertion detection sensitivity. Soft-clips in read alignments are used

to generate a set of candidate insertion intervals. These intervals are

processed during the local assembly step to generate the final set of

insertion locations. Even though assembly would not be able to de-

termine insertion lengths for long insertions due to short read length,

their locations can still be predicted accurately, which provides valu-

able information for interpretation. The Supplementary Text de-

scribes our method in more detail.

3 Results

We demonstrate the effectiveness of MetaSV using the VarSim simu-

lation and validation framework (Mu et al., 2014). Simulated

2�100 bp NGS reads were generated at 50� coverages for the

NA12878 genome using published variant sets. The reads were

aligned using BWA-MEM. For comparing reported SVs against the

ground truth, we use a reciprocal overlap of 90% and a wiggle of

100 bp which captures accuracy at a high breakpoint resolution.

The SV size cutoff was set to 100 bp since smaller variants are a tar-

get of indel callers such as GATK’s HaplotypeCaller. Our results

show that each method has varying performance in different SV size

ranges. By integrating multiple methods, MetaSV achieved a steady

performance across all sizes (Fig. 2). We report accuracy as F1-score,

which is the harmonic mean of sensitivity and precision. For this

dataset, MetaSV achieved an F1-score of 96.2% (sensitivity and pre-

cision were 93.7 and 98.8%, respectively) for deletions, indicating

high accuracy and resolution. For insertions, it achieved an F1-score

of 84.7% (sensitivity and precision were 85.3 and 84.1%, respect-

ively) comparing to less than 65% for all the individual tools ana-

lyzed. Insertion length was omitted from the accuracy analysis since

long insertions cannot be assembled completely with NGS reads.

Nevertheless, the significantly enhanced detection of insertion events

can definitely improve interpretation largely as they may cause

impactful disruption in the genome. Finally, genotyping accuracies

of 95.2 and 95.5% were achieved for deletions and insertions,

respectively.

Figure 2 shows detailed accuracy comparisons for both deletion

and insertion detection across different SV sizes and tools. For dele-

tions (Fig. 2a), MetaSV performance was the highest across all SV

sizes. In most cases, it improves upon the best performing individual

tool for a given size. For insertions (Fig. 2b), the improvement due

to MetaSV was more significant since all tools (with the exception

Fig. 1. High-level view of the MetaSV methodology
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of Pindel) almost detect no insertions due to inherent limitations of

the methods used. Therefore, almost all improvement in accuracy is

due to our insertion detection enhancement—our soft-clip based ap-

proach is very sensitive while the assembly step for insertion detec-

tion yields high precision in contrast to Pindel which had low

precision. As with deletions, small insertions are more difficult to

detect, in general. Detailed accuracy comparisons for other SV types

are discussed in the Supplementary Text.

In order to study the impact on accuracy and runtime of varying

coverages, we generated additional simulation datasets with

2�100 bp reads at 10� and 30� coverages. We also generated

2�250 bp reads at 50� coverage to investigate the impact of

increasing read length for the same coverage. Although accuracy

dropped for lower coverages, MetaSV was still the most stable and

most accurate, with deletion F1-scores of 89.1 and 95.8% for 10�
and 30� coverages, respectively. For 250 bp read length, F1-scores

of 96.8 and 80.9% were achieved for deletions and insertions, re-

spectively—insertion accuracy dropped slightly over 100 bp reads

due to reduced read count for the same coverage. Furthermore, it

took around 25 h to run all the four aforementioned tools for

MetaSV as well as MetaSV on a single node with dual-hexcore

X5675 Intel Xeon processors for 50� coverage. Because MetaSV is

parallelized in all its steps, its speed should scale linearly with the

number of available cores.

In addition to simulation, we used the publicly available

Illumina Platinum Genomes sequencing data for NA12878 as a real

testbed. Due to the lack of high-confidence comprehensive SV calls,

particularly for insertions, false positive rates cannot be accurately

determined using real data. Therefore, only sensitivity for deletions

was reported here. For deletions, a sensitivity of 90.2% was

achieved against the Complete Genomics high-confidence callset for

NA12878 (Drmanac et al., 2009) generated using their analysis

pipeline version 2.0, which is similar to our simulation results.

Complete Genomics was used since it is an orthogonal sequencing

platform, providing a less biased validation.

4 Conclusions

MetaSV significantly improves the accuracy of SV-calling by inte-

grating orthogonal methods and tools. In addition, it is augmented

with soft-clip based insertion detection for significantly higher ac-

curacy compared with the state of the art.

We consider MetaSV as a proof of concept of the effectiveness of

using an ensemble approach for calling SVs. The approach is not

limited to only using the four aforementioned tools—it can be easily

adapted to use additional or even a different set of tools.
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Fig. 2. Accuracy comparisons for deletions and insertions. Accuracy metrics are shown on a per size bin basis in the plots. The tables below the plots show the

aggregate accuracy scores. If a tool does not support detecting the SV type, an NA is indicated in the table. Each tool name is color coded to match the color code

in the plots. DELLY’s suboptimal deletion performance was due to its lower breakpoint resolution. For insertions, although Pindel’s sensitivity was close to

MetaSV, it had a significantly lower precision and overall accuracy
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