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Multi-fidelity modelling
via recursive co-kriging
and Gaussian–Markov
random fields
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We propose a new framework for design under
uncertainty based on stochastic computer simulations
and multi-level recursive co-kriging. The proposed
methodology simultaneously takes into account
multi-fidelity in models, such as direct numerical
simulations versus empirical formulae, as well as
multi-fidelity in the probability space (e.g. sparse grids
versus tensor product multi-element probabilistic
collocation). We are able to construct response sur-
faces of complex dynamical systems by blending
multiple information sources via auto-regressive
stochastic modelling. A computationally efficient
machine learning framework is developed based on
multi-level recursive co-kriging with sparse precision
matrices of Gaussian–Markov random fields. The
effectiveness of the new algorithms is demonstrated in
numerical examples involving a prototype problem in
risk-averse design, regression of random functions, as
well as uncertainty quantification in fluid mechanics
involving the evolution of a Burgers equation from
a random initial state, and random laminar wakes
behind circular cylinders.

1. Introduction
Progress in perceptibly diverse areas of science, such
as numerical analysis and scientific computing, design
optimization, uncertainty quantification and statistical
learning, has started to carve an emerging trend in
engineering design, in which decision-making becomes
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increasingly more data-driven rather than merely relying on empirical formulae and expert
opinion. A set of versatile tools, ranging from experiments to stochastic simulations can offer
invaluable input towards not only performance optimization but also risk assessment, cost
effectiveness and operational aspects of a design. A smart management of these powerful
resources is expected to play a vital role, especially in the case of novel, high-performance
unconventional designs where simple empirical extrapolation can provide no guarantee of
optimality. However, employing ensembles of high-fidelity experiments or computer simulations
for performing data-driven design optimization for realistic cases may easily become a task of
prohibitive cost. A viable solution to this problem is offered by considering surrogate modelling.

A surrogate model can be simply thought of as an intermediate agent that absorbs information
coming from a realization of what we consider to be as the true response of a system (up to
measurement error), and is able to perform inexpensive predictions as to what the true response
might look like in regions where no a priori information is available. Modern statistical learning
techniques have opened the path for constructing sophisticated surrogates that are able to
accurately capture intrinsic features of the response of complex engineering systems [1–3]. At the
heart of surrogate-based modelling, we find classical statistical methods, such as Gaussian process
regression, members of which are the so-called kriging and co-kriging predictors [2,4].

Initially introduced in geostatistics by the pioneering work of Matheron [5] and Krige [6],
kriging has been a flexible and reliable tool in spatial statistics and has extensively served a
widespread spectrum of applications, ranging from classical data assimilation in environmental
sciences to modern machine learning techniques in robotics. However, it was the seminal work
of Sacks et al. [7] that introduced kriging in the context of design and analysis of computer
experiments, and consequently led to a rapidly growing field of application in which kriging
has been used as a predictive tool for constructing response surfaces of engineering systems by
exploring the spatial correlation between the output of deterministic computer codes. Simpson
et al. [8] provide a comprehensive summary of the evolution and recent advancements of this
metamodelling approach in the context of multidisciplinary design optimization.

Of particular importance to our study is the work of Kennedy & O’Hagan [9] that introduced
the use of first-order auto-regressive stochastic models for predicting the output of a complex
computer code when fast approximations are available. We recognize that this approach
establishes a coherent mathematical framework for blending heterogeneous variable-fidelity
information sources, creating a natural setting for multi-fidelity modelling. Forrester et al. [10]
adopted this methodology to build a two-level co-kriging scheme and successfully applied it for
optimizing the drag/dynamic pressure ratio of a transonic aircraft wing.

Although the auto-regressive scheme of Kennedy & O’Hagan [9] has served well many
disciplines and applications, it suffers from the same limitations as any kriging/co-kriging
method. The biggest practical limitation stems from the need to repeatedly invert large, dense,
ill-conditioned covariance matrices at the machine learning stage, where the metamodel is
trained on a set of known observations. To address this issue, we have aligned our work with
some new interesting findings that can significantly enhance the computational efficiency of
kriging/co-kriging. First, the treatise of Le Gratiet & Garnier [11] suggests that co-kriging schemes
arising from the Kennedy & O’Hagan model [9] with s-levels of variable-fidelity information
sources can be effectively decoupled, and equivalently formulated in a recursive fashion as
s-independent kriging problems. This allows for the construction of predictive co-kriging schemes
by solving a sequence of simpler kriging problems that involve covariance matrices of smaller
dimensions (and potentially lower condition numbers), which can be learned from the data
by performing optimization in lower dimensional spaces (compared with the coupled setting
of Kennedy & O’Hagan [9]). Nevertheless, the machine learning problem for fitting a kriging
metamodel to the data at each recursive step still requires the factorization of a dense covariance
matrix. To this end, we note that the popular choice of Cholesky decomposition scales with the
number of n observed data points as O(n3), thus rendering the learning process infeasible for
large n. An efficient alternative approach for constructing and learning covariance kernels for
spatial statistics was recently put forth by Lindgren et al. [12]. Their idea uses Hilbert space
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approximation theory to construct sparse representations of the inverse covariance of a Gaussian–
Markov random field (GMRF) that solves a certain stochastic partial differential equation (SPDE).
As a consequence, the kriging/co-kriging formulation can be recast in a form that exploits the
sparsity in the inverse covariance, leading to significant computational savings at the model
learning stage, which now scales as fast as O(n3/2) [12].

The aim of this work is to establish a new mathematical framework for surrogate-based
building of response surfaces that simultaneously takes into account multi-fidelity in models
(e.g. high-fidelity direct numerical simulations versus low-fidelity empirical formulae) as well
as multi-fidelity in probability space (e.g. high-fidelity tensor product multi-element probabilistic
collocation versus low-fidelity sparse grid quadratures). We incorporate elements of statistical
learning in an auto-regressive co-kriging methodology to cross-correlate ensembles of multi-
fidelity surrogates from which we can accurately and efficiently extract the response of
complex nonlinear stochastic dynamical systems. This framework targets a seamless integration
of surrogate-based optimization and uncertainty quantification, providing a launch pad for
contemporary engineering design under uncertainty.

This paper is structured as follows. In §2, we outline the basic mathematical concepts upon
which the proposed framework is built. In particular, §2a describes the setting of multi-fidelity
modelling and introduces the core concept of Gaussian process regression in the form of kriging,
co-kriging and multi-level recursive co-kriging. We then define a general auto-regressive setting
under which multi-fidelity in models and multi-fidelity in probability space can be addressed in
unison. Subsequently, §2c presents an overview of the use of GMRFs through the SPDE approach
to construct sparse approximations to the inverse covariance in order to boost the efficiency
of machine learning algorithms at the model fitting stage. The capabilities of the proposed
methodology are demonstrated through four benchmark problems. First, we consider a prototype
problem in risk-averse design, in which we seek the optimal dimensions of a structural column
with uncertain material properties that undergoes random bending and axial excitation. Second,
we present results on the regression of a random function using an ensemble of multi-fidelity
surrogates. Third, we study a prototype problem in multi-fidelity uncertainty quantification
involving the evolution of viscous Burgers dynamics from a random initial state. Finally, we
conclude with presenting an uncertainty quantification problem in fluid dynamics that involves
stochastic incompressible flow past a circular cylinder.

2. Methods
We provide a brief overview of the methods we employ for constructing response surfaces
by blending information sources of variable fidelity. The core concepts of our methodology lie
within the broad topics of Gaussian process regression and machine learning. To this end, we
begin our presentation with the univariate regression case, illustrating how spatially correlated
variables can be estimated using ordinary kriging. The idea is then extended to the multivariate
case, introducing the formulation of ordinary co-kriging. In particular, we focus our attention
on the auto-regressive model first put forth by Kennedy & O’Hagan [9] in the context of
predicting the output of a complex expensive high-fidelity code by using fast lower fidelity
approximations. We show how this model can be generalized to construct a unified framework
that can simultaneously address multi-fidelity in models as well as multi-fidelity in probability
space. Finally, we conclude our presentation by introducing two concepts that enhance the
feasibility and efficiency of computations. The first part relies on the recent contributions of Le
Gratiet & Garnier [11], who proved that the s-level auto-regressive model of Kennedy & O’Hagan
[9] can be equivalently formulated as s-independent kriging problems. This could potentially
lead to substantial computational savings for cases where one may encounter many information
sources of variable fidelity. The second part is based on the findings of Lindgren et al. [12], who
employed Galerkin projection techniques to construct covariance models of GMRFs. This enables
fast computations that leverage on the sparsity of the resulting discrete operators, thus suggesting
an efficient algorithmic framework for handling big data at the model inference stage.
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random variables
x ∈ Rm

design variables
x ∈ Rn

system quantity of interest (QoI)
Y (x; x)

Figure 1. Schematic of the multi-fidelity design under uncertainty framework: the quantity of interest Y(x; ξ ) is a random
field in the design space, realizations of which could originate from information sources of variable fidelity (such as computer
codes, experiments, expert opinion, etc.). A response surface S(x) encodes the dependence of a derived quantity of interest
f (Y(x; ξ )) on the input design variables x and uncertain parametersξ . The ability to efficiently construct response surfaces (e.g.
S(x)=E[f (Y(x; ξ ))]) allows one to asses the system’s performance as a function of the random inputs and identify optimal
configurations based on the desired design criteria (table 1). (Online version in colour.)

Table 1. Examples of possible design criteria.

design criteria

maxx E[f (Y(x; ξ ))] and minx Var[f (Y(x; ξ ))] [13]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

minx ‖p(Y; x)− q(Y)‖, where q(Y) is the PDF of a target performance [14]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

minx R[f (Y(x; ξ ))], whereR is a risk measure [15]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Multi-fidelity modelling
Consider a general system whose response can be evaluated using different models. The response
typically depends on a set of design parameters x ∈R

n and is subject to uncertainties encoded by
a set of random parameters, ξ ∈R

m. Given a set of design criteria, our goal is to construct the
corresponding response surface that quantifies the dependence of a derived quantity of interest,
f (Y(x; ξ )), on the input design variables x and uncertainties ξ (figure 1). Design criteria come in
different flavours and generally reflect our priorities and objectives in identifying configurations
of the design variables x that qualify as optimal. For example, one may pursue to maximize the
performance of a system for a wide range of operating conditions [13], identify a design with a
probability density function (PDF) that matches a target performance [14], or minimize the risk
associated with undesirable realizations [15] (table 1). All concepts introduced in the subsequent
sections aim to address single-objective design optimization problems, where the quantity of
interest is the output of a scalar function of the inputs. This can serve as a basis for extending
the proposed methodology to multi-objective problems, where the quantity of interest could be a
multi-dimensional vector, or even a continuous field.

The process usually referred to as multi-fidelity modelling, elaborates on efficiently
constructing response surfaces by correlating surrogate models of different fidelity. On one side
of the fidelity spectrum, one may have cheaper surrogate models, which are fast to compute but
less trustworthy (e.g. potential flow solvers, empirical formulae, etc.), while on the other side we
have high-fidelity models that enjoy our outmost trust but can be very expensive to compute
(e.g. direct numerical simulations, experiments, etc.). In many cases, exploring the correlation
between the two allows us to efficiently construct an accurate representation of the response
surface by performing relatively few evaluations of an expensive high-fidelity model and more
evaluations of a cheaper surrogate. A linking mechanism that undertakes the task of information
fusion naturally arises in the context of multivariate Gaussian regression. Next, we introduce this
concept in the context of ordinary kriging and co-kriging.

(i) Kriging

Here we present a brief overview of the kriging predictive scheme. The reader is referred
to [1,2,4,7] for a detailed exposition of the subject. The main idea here is to model scattered
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observations of a field Y(x) as a realization of a Gaussian random field Z(x). These observations
could be corrupted by model error or measurement noise that is described by a Gaussian process
E(x), leading to an observation model of the form

Y(x)=Z(x)+ E(x). (2.1)

Consequently, the random field (Z(x), Y(x))T has a multivariate normal distribution[
Z(x)
Y(x)

]
∼N

([
μ

Aμ

]
,

[
Σ ΣAT

ATΣ AΣAT +ΣE

])
, (2.2)

where, μ= E[Z] is the mean value of Z, Σ is the covariance of Z, ΣE is the covariance of the noise
E(x), and A is a simple matrix that restricts the random field Z(x) to the locations of observed data
y. Additional assumptions on μ(x) may distinguish a linear spatial prediction model into simple
Kriging (if μ is assumed to be known), ordinary Kriging (if μ is unknown but independent of x),
and universal Kriging (if μ is unknown and is represented as a linear combination of deterministic
basis functions) [4].

Starting from the conditional distribution of Z|Y, we can derive equations for the expectation
μZ|Y(x), and covariance ΣZ|Y(x) of the ordinary kriging predictor as

μZ|Y(x)=μ+ (ΣAT)(AΣAT +ΣE )−1(y− Aμ) (2.3)

and
ΣZ|Y(x)=Σ − (ΣAT)(AΣAT +ΣE )−1(ATΣ). (2.4)

Typically, the covariances Σ and ΣE are parametrized by a set of hyperparameters, {θ , θE },
that can be learned from the data y by maximizing the posterior π (y|θ , θE ) using maximum-
likelihood estimation (MLE) or in a fully Bayesian setting (e.g. Markov Chain (MC) integration).
This essentially introduces a machine learning problem for computing the optimal values of the
unknown parameters {μ, θ , θE } from the data.

The noise process E(x) accounts for epistemic uncertainties that lead to differences between
our observables and the real response of the system because of inaccurate or uncertain
modelling assumptions. In the experimental setting this may correspond to noise or bias in the
measurements, whereas in the numerical setting it may account for round-off or truncation errors
of the numerical scheme. In general, modelling the nature of E(x) results in an intrinsically hard
problem that is beyond the scope of this study. Without loss of generality, in what follows we
will assume that E(x) is a zero-mean Gaussian white noise process with variance σE , i.e E(x)∼
N (0, σE I). This should not be confused with aleatoric uncertainties that arise from randomness in
the input parameters of the system that will be taken into account by the random vector ξ (figure 1
and §2b).

(ii) Co-kriging

The idea of kriging is naturally extended to the multivariate setting, in which the observation
model for Y(x) depends on more than one covariates. Here, we present a brief overview of the
approach of Kennedy & O’Hagan [9], which introduced a co-kriging model based on a first-order
auto-regressive relation between model output of different levels of fidelity.

Suppose we have s-levels of variable-fidelity model output (yt(x))s
t=1 at locations x ∈Ds

t=1
sorted by increasing fidelity and modelled as observations of a Gaussian field (Zt(x))s

t=1. Then,
ys(x) denotes the output of the most accurate and expensive model, while y1(x) is the output of
the cheapest least accurate surrogate at our disposal. The auto-regressive co-kriging scheme of
Kennedy & O’Hagan [9] reads as

Zt(x)= ρt−1(x)Zt−1(x)+ δt(x), t= 2, . . . , s, (2.5)

where δt(x) is a Gaussian field independent of {Zt−1(x), . . . , Z1(x)}, and distributed with
expectation μδt and covariance Σt, i.e. δt ∼N (μδt , Σt). Also, ρ(x) is a scaling factor that quantifies
the correlation between the model outputs (yt(x), yt−1(x)). In a Bayesian setting, ρ(x) is treated as a
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random field with an assigned prior distribution that is later fitted to the data through inference.
Here, to simplify the presentation we have assume that ρ is a deterministic scalar, independent of
x, and learned from the data through maximum-likelihood estimation (see §2d).

The derivation of this model is based on the Markov property

{Zt(x), Zt−1(x’) |Zt−1(x)} = 0, ∀ x �= x’, (2.6)

which, according to Kennedy & O’Hagan [9], translates into assuming that given Zt−1(x), we can
learn nothing more about Zt(x) from any other model output Zt−1(x’), for x �= x’.

The resulting posterior distribution at the tth co-kriging level has a mean and covariance
given by

μZt|yt,yt−1,...,y1 (x)=μt + (ΣtAt
T)(AtΣtAt

T + σtI)−1(yt − Atμt)

and ΣZt|yt,yt−1,...,y1 (x)=ΣZt + ρ2
t−1ΣZt−1 + ρ2

t−1ρ
2
t−2ΣZt−2 + · · · + (Π s−1

t=1 ρt)2ΣZ1 ,

⎫⎬
⎭ (2.7)

where μt is the mean value of Zt(x), Σt is a covariance matrix comprising t blocks, representing all
cross-correlations between levels {t, t− 1, . . . , 1} and ΣZt =Σt − (ΣtAt

T)(AtΣtAt
T + σtI)−1(AT

t Σt)
is the covariance of the co-kriging predictor at level t. Also, σt is the variance of the noise
at level t, and At is a simple matrix that restricts a realization of the Gaussian field Zt(x) to
the locations of observed data yt(x) at level t. Similar to ordinary kriging, the set of unknown
parameters {μt, ρt−1, . . . , ρ1, θt, . . . , θ1, σt, . . . , σ1} are determined from the data using machine
learning techniques. To simplify the presentation, we have assumed that the scaling factor ρ

attains scalar values, hence it does not depend on x. In general, we introduce a spatial dependence
by using a representation in terms of a basis φ(x), i.e. ρ(x)=∑M

i=1 wiφ(x), where the M unknown
modal amplitudes w can be determined through optimization. For cases that exhibit a smooth
distribution of the cross-correlation scaling, only a few number of modal components should
suffice for capturing the spatial variability in ρ(x), thus keeping the computational cost of
optimization to tractable levels.

Although this co-kriging framework provides an elegant way of blending variable-fidelity
model output, it may easily become computationally infeasible if many levels of fidelity and/or
a large number of data observations are available. The computational barrier is imposed by the
need to repeatedly invert the full covariance matrix Σt at the model fitting stage, with the number
of different fidelity levels resulting to an increasing matrix size, while large observation datasets
introduce ill-conditioning. These are well-known limiting factors for kriging but they become
even more evident for co-kriging models where the total number of observations is the sum
of the observations at all fidelity levels. However, recent findings of Le Gratiet & Garnier [11]
provide an equivalent formulation that overcomes the computational complexity issues of the
Kennedy and O’Hagan model by decoupling the aforementioned s-level co-kriging scheme into
s-independent kriging problems. The resulting recursive scheme is proved to provide a predictive
mean and variance that is identical to the coupled Kennedy and O’Hagan model, although it
could potentially lead to a drastic reduction of the size and condition number of the covariance
matrices that need to be inverted.

The key idea behind the derivation of Le Gratiet & Garnier [11] is to replace the Gaussian
process Zt−1(x) in equation (2.5) with a process Z̃t−1(x) that is conditioned by all the known
observations {yt−1, yt−2, . . . , y1} up to level (t− 1), while assuming that the corresponding
experimental design sets (Di)

t−1
i=1 have a nested structure, i.e D1 ⊆D2 ⊆ · · · ⊆Dt−1. Then, the

problem at the tth-level reduces to an ordinary kriging predictor with mean and covariance
given by

μZt|yt,yt−1,...,y1 (x)= ρt−1μZt−1|yt−1,...,y1 (x)+ μt + (ΣtAt
T)(AtΣtAt

T + σtI)−1

[yt − At(ρt−1μZt−1|yt−1,...,y1 (x)+ μt)]

and ΣZt|yt,yt−1,...,y1 (x)= ρ2
t−1ΣZt−1 +Σt − (ΣtAt

T)(AtΣtAt
T + σtI)−1(AT

t Σt).

⎫⎪⎪⎬
⎪⎪⎭ (2.8)
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Here, we note that the hypothesis of nested design sets can be relaxed only at the expense of a
more tedious derivation, and the corresponding expressions of the recursive co-kriging predictor
and variance can be found in [16].

To underline the potential benefits of this approach, we note that the matrix Σt in the Kennedy
and O’Hagan model (see equation (2.7)) has size

∑s
t=1 nt ×

∑s
t=1 nt, where nt is the number

of observations at the tth fidelity level. On the other hand, the recursive co-kriging approach
involves the inversion of s covariance matrices (Σt)s

t=1 (see equation (2.8)) of size nt × nt, where
nt is the number of observations yt(x) at level t [11]. Moreover, we note that at each recursive
level, the number of unknown parameters to be learned from the data reduce to {μt, ρt−1, θt, σt}
compared with the large parametric set of {μt, ρt−1, . . . , ρ1, θt, . . . , θ1, σt, . . . , σ1} of the coupled
Kennedy and O’Hagan scheme.

(b) Multi-fidelity in models and in probability space
We can build further upon the presented co-kriging framework to formulate a general
methodology that can simultaneously address multi-fidelity in physical models as well as multi-
fidelity in probability space. As it is often the case in realistic design scenarios, the output of a
system may well be sensitive to a set of inputs ξ that exhibit random variability. Consequently,
decision-making towards identifying an optimal design is typically informed by exploring the
measures of uncertainty that describe the response of the underlying stochastic dynamical system.
This response is often characterized by non-Gaussian statistics that can be estimated numerically
by using appropriate sampling and integration techniques. The potential non-Gaussianity in the
system response should not be confused with the Gaussian nature of the kriging/co-kriging
predictors. The former is an inherent property of the dynamical system that generates the
observed data, while the latter introduces a modelling framework for information fusion.

Similar to having multi-fidelity in models, methods of different fidelity can also be
incorporated in probability space to provide an accurate quantification of uncertainty introduced
by random input. This structure is schematically illustrated in figure 2, where m models of
variable fidelity in physical space are driven by random input, hence producing a random
response surface Ym(x; ξ ). In return, any uncertainty quantification measure of Ym(x; ξ ), such as for
e.g. the expectation E[Ym(x; ξ )] or the risk R[Ym(x; ξ )], can be estimated using a set of p variable-
fidelity methods (figure 2). In our framework, the challenge of high stochastic dimensionality
is reflected by the accuracy and efficiency of the approximation methods employed to quantify
uncertainty in the system. Essentially, this is a high-dimensional integration problem arising in
the computation of quantities such as expectation, variance, risk measures, etc. To this end, the
practical scalability of our approach can directly benefit from established techniques for high-
dimensional integration, such as MC integration [17] or ANOVA decomposition methods [18]
(figure 3).

This construction results in a family of response surfaces that can be organized hierarchically
in a p×m matrix, where physical model fidelity is increased along the columns and probability
space model fidelity increases along the rows (figure 4). Then, it is meaningful to allow
information fusion along the {→}, {↓}, {↑→}, {↓→} directions by employing the auto-regressive
co-kriging framework presented in §2a(ii). For example, moving along the purely vertical
direction {↓} results to the following auto-regressive expression for the expectation E[f (Ym(x; ξ ))]:

Ek+1[f (Yl(x; ξ ))]= ρk+1,lEk[f (Yl(x; ξ ))]+ δk+1,l(x), k≤ p, l≤m, (2.9)

where the k-index increases with the fidelity of the estimator of E[f (Y(x; ξ ))] in probability
space, while the l-index increases with model fidelity in physical space. Note that the recursive
co-kriging scheme allows for sequentially decoupling the inference process to a number of
independent steps. The last of these steps should always involve the quantity of interest
Ep[f (Ym(x; ξ ))], as our goal is to construct an accurate representation of the highest fidelity
model. However, the intermediate steps need not involve Ep[f (Ym(x; ξ ))], as their purpose is to
sequentially improve the predictor at a level (k < p, l < m) by conditioning on observations of a
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multi-fidelity in models

Ym (x; x ) Ep [( f Y1 (x; x ))]

E1 [( f Y1 (x; x ))]

E0 [( f Y1 (x; x ))]

Y1 (x; x )

Y0 (x; x )

model m
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multi-fidelity in probability space
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Figure 2. Multi-fidelity in models and in probability space: m models of variable fidelity in physical space are driven by
random input, producing a random response surface Ym(x; ξ ). For example, the expectation of a derived quantify of interest
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probabilistic collocation (ME-PCM [20]), sparse grids (SG [21]), ANOVA decompositionmethods [18],multivariate decomposition
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Figure 4. Family of response surfaces resulting from simultaneously addressing multi-fidelity in models and in probability
space. Physical model fidelity is increased along the columns (red arrow) and probability space model fidelity increases along
the rows (blue arrow). The yellow arrow represents a possible optimal information fusion path in the combined fidelity space.
(Online version in colour.)

lower level. Essentially, equation (2.9) provides an example of an intermediate step in which the
predictor of level (k+ 1, l) is enhanced with any correlated information contained in level (k, l).

This structure gives rise to the very interesting task of identifying an optimal path traversal
between different models for building an accurate representation of the target response surface.
This is an open question that we plan to address in a future study. A possible way of attacking
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this problem is through stochastic dynamic programming techniques for guiding an optimal
allocation of available computational resources [23]. Alternatively, one could employ random
graph theory to identify optimal information/entropy diffusion paths, where each graph node
is weighted by the fidelity and corresponding cost of each model, while edge weights represent
the degree of correlation between different models.

Here, we underline that the auto-regressive structure essentially explores spatial cross-
correlations between two different fidelity levels, with the target goal being the construction of an
accurate estimate for the highest fidelity level. This implies that the user should be able to provide
a consistent labelling of different fidelity levels, suggesting that information fusion is considered
to be meaningful only when moving from a lower to higher fidelity. If the lower fidelity levels
cannot provide information that is spatially correlated to the highest fidelity observations, the
co-kriging predictor is likely to return an estimate comparable with a standard kriging scheme
through the highest fidelity points. However, the proposed auto-regressive framework provides
a mechanism for detecting this pathology, and that is done by monitoring the scaling factor ρ

appearing in the auto-regressive scheme (which is learned from the data). Values of ρ away from
1 provide an indication of weak correlation between two levels, thus suggesting revision of the
available models.

(c) Gaussian–Markov random fields and the stochastic partial differential
equation approach

Kriging and co-kriging methods provide predictive schemes that are constructed by exploring
spatial correlations between variables. A key part of this process is fitting a parametric covariance
model to the observed data using machine learning and optimization techniques. The main cost
of this procedure is the factorization of dense and often ill-conditioned covariance matrices for
estimating the likelihood functions that guide the machine learning algorithm. Here, we provide
a brief overview of a method that can effectively reduce the cost of inferring covariance models
from input data, leading to efficient kriging and co-kriging predictive schemes.

A popular choice of a kernel characterizing the covariance of a random field u(x) stems from
the Matérn family [2,4],

C(x, x′)= 21−νσ 2

(4π )d/2Γ (ν + d/2)κ2ν
(κ‖x− x′‖)νKν (κ‖x− x′‖), x ∈R

d, (2.10)

where ν determines the mean-square differentiability of u(x), κ is a scaling parameter related to
the correlation length of u(x), denoted by ρ, and defined as ρ =√8ν/κ . Also, σ 2 is the marginal
variance of the process, while Γ (·) and Kν (·) are the Euler gamma and modified Bessel function
of the second kind, respectively. We note that for ν = 0.5, the Matérn covariance simply reduces
to the exponential covariance kernel, while when ν→∞ we recover the Gaussian kernel [2,4].

A powerful result by Whittle [24] shows that a random field u(x) with a Matérn covariance is
a solution to the fractional SPDE

(κ2 −∇2)α/2u(x)= τ 2W(x), x ∈R
d, α = ν + d

2
, κ > 0, ν > 0, (2.11)

where W(x) is Gaussian white noise, and τ is a scaling parameter. Admissible solutions to
equation (2.11) are referred to as Matérn fields and are proved to be the only stationary solutions to
this SPDE [24].

A key idea put forth by Lindgren & Rue in [12] is to employ Hilbert space approximation
theory to approximate the solution to equation (2.11) using a projection onto a finite dimensional
space spanned by basis functions φ1(x), . . . , φN(x) as

u(x)=
N∑

k=1

φk(x)wk, (2.12)

where {wk} are a set of unknown Galerkin expansion coefficients.
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(a) (b)

Figure5. Sparsity patterns of GMRFprecisionmatrices (α= 2): (a) Q2 in a two-dimensional square domaindiscretizedby eight
quadrilateral elements using a fifth-order polynomial expansion basis. (b) Q2 in a two-dimensional square domain discretized
by four quadrilateral elements using a second-order polynomial expansion basis with the corresponding degrees of freedom
being re-ordered using the Cuthill–McKee bandwidth reduction algorithm [26]. (Online version in colour.)

A critical observation of Lindgren & Rue in [12], citing the work of Rozanov [25], states that a
random field has a Markov property if and only if the reciprocal of its spectrum is a polynomial.
Thereby, the Matérn fields generated by equation (2.11), inherit the Markov property when α

assumes integer values. Exploiting this Markov property, Lindgren & Rue [12] were able to use
the finite dimensional approximation of u(x) given in equation (2.12) to construct a GMRF with
precision matrix Q that approximates the Gaussian field u(x) in the sense that Q−1 is close to
the covariance of u(x), denoted by Σ [12]. The main advantage here is that the Markov property,
along with the choice of a suitable basis, results in a sparse precision matrix Q (figure 5), and,
thus, enables the use of fast numerical methods for sparse matrices. This allows us to recast the
kriging/recursive co-kriging formulae (equation (2.3), (2.8)) in terms of sparse GMRF precision
matrices obtained from a finite-element discretization of the SPDE (equation (2.11)) in the design
space. To this end, the fully discrete form of the SPDE reads as

Hw= g, (2.13)

where H= κ2M+ S is the discrete Helmholtz operator, M and S are the mass and stiffness
matrices, w is a vector containing the unknown Galerkin coefficients of the expansion in
equation (2.12), while g is the projection of the right-hand side Gaussian white noise forcing term.
Then, according to Lindgren & Rue [12], the sparse GMRF precision matrix of the finite-element
solution to equation (2.11) can be obtained recursively for integer values of α as

Q1 =H (2.14)

Q2 =HM−1H (2.15)

...

and Qα =HM−1Qα−2M−1H. (2.16)

In what follows, we assume that α= 2. As the design space for all cases considered in this
study is two-dimensional, this corresponds to assuming that the predicted response surfaces have
continuous derivatives up to second order in the mean-square sense. Here, we also note that
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deriving proper stochastic boundary conditions for closing the SPDE of equation (2.11) is an active
area of research. In practice, equation (2.11) is typically solved using zero Neumann boundary
conditions, although this results in numerical boundary layer errors on the covariance of the
solution that decay to zero at a distance equal to the correlation length of the random field u(x)
away from the boundary [12]. This drawback can be alleviated by smoothly extruding the domain
boundaries away of the region of interest, and avoiding spatial discretizations with sharp corners.

The main advantage of using GMRFs through the SPDE approach is that the model inference
and kriging prediction stages can be completed simultaneously with O(m3/2) cost for arbitrary
geometries in two dimensions, and with O(m2) cost for two-dimensional spatio-temporal kriging
problems and arbitrary geometries in three dimensions [12], where m is the sum of both the
number of observed data points as well as the points where kriging/co-kriging predictions are
sought. This can be achieved by employing a Cholesky or pivoted Cholesky decomposition
for sparse matrices, the efficiency of which depends on the bandwidth of the precision matrix.
In order to further exploit this property, we can re-order the degrees of freedom in Q using a
bandwidth reduction procedure, such as the Cuthill–McKee algorithm [26] (figure 5b).

Despite the fact that GMRF-based inference schemes are not a necessary ingredient of the
proposed mixed multi-fidelity methodology, they can provide an effective way of handling
big data in two and three dimensions, thus circumventing one of the main limitations of the
kriging/co-kriging methods, i.e the general O(m3) cost of factorizing dense, ill-conditioned
covariance matrices. In higher dimensions, one may still adopt this approach by using, for
example, a global expansion based on tensor products of an orthogonal basis. Of course, such
analysis introduces some limitations, as it is restricted to hypercube domains, and the observed
data need to be located (or interpolated) at the collocation points introduced by the global
expansion. An alternative approach to addressing high-dimensionality is to employ a data-
driven dimensionality reduction technique. To this end, one may construct latent variable models
through principal component analysis (PCA), nonlinear PCA, projection-pursuit methods and
ANOVA decomposition methods [3] towards identifying a new optimal set of input coordinates
that spans a space of lower dimension. Finally, it is worth mentioning that the SPDE approach
can be straightforwardly extended to construct more general GMRF models that are capable of
addressing complex response features, such as anisotropy and non-stationarity [12].

(d) Sampling strategies and workflow
In this work, we have employed standard infill strategies, mainly relying on uniform random
sampling or Latin Hypercube sampling (LHS). In the context of performing inference using
GMRFs through the SPDE approach, we construct a tessellation of the input space using
triangular/quadrilateral finite-elements in two dimensions, or prismatic/hexahedral/tetrahedral
elements in three dimensions, where both sampling and test locations define vertices in the mesh
and are chosen with the goal of maintaining a non-degenerate geometric aspect ratio within
each element.

In general, a space filling strategy such as LHS can typically serve as a good starting point,
followed by a subsequent refinement that is guided by the objectives and problem at hand. For
example, if the goal is to locate the global minimum of the response surface one may employ a
sampling strategy based on maximizing the expected improvement of the recursive co-kriging
predictor [27]. A discussion on possible ways of determining a good allocation of points among
different levels has been provided in the treatise of Le Gratiet & Garnier [16], although we believe
this is still an open question that is tightly related to the given problem and objectives.

In view of available multi-fidelity data, algorithms 1–4 summarize the main implementation
aspects of the proposed multi-level co-kriging framework, formulated using sparse GMRF
precision matrices. Namely, we provide pseudocode for the main co-kriging recursion loop
(see algorithm 1), the hyperparameter learning through maximum-likelihood estimation (see
algorithm 2), the computation of the negative log-likelihood function of the co-kriging posterior
(see algorithm 3), and the computation of the co-kriging variance (see algorithm 4).
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Algorithm 1. Multi-level recursive co-kriging with GMRFs.

% Loop through all recursion levels (lowest to highest fidelity)
for t= 1 : s do

% Load input design variables and observations at level t (x ∈Dt)
x← input design data and prediction points
At← simple restriction matrix (see Sec:ii)
yt(Atx)← observed data
% Compute the mass and stiffness matrices of a finite-element (FEM)
% discretization of the design space
[M, S]← FEM_discretization()
% Learn the co-kriging hyperparameters {μt, ρt−1, κt, τt, σt} through MLE
{θopt, μopt, Q−1

c }←MLE_optimization(x, yt, At, M, S, t)
% Evaluate the co-kriging predictor and variance at level t from Eq. 2.8
% and proceed to the next level t= t+ 1
μZt|yt,yt−1,...,y1←μopt

ΣZt|yt,yt−1,...,y1←Variance(θopt, Q−1
c , t)

% Finally, return the co-kriging predictor and variance at the highest level of fidelity
return μZs|ys,ys−1,...,y1 , ΣZs|ys,ys−1,...,y1

Algorithm 2. Maximum-likelihood estimation for hyperparameter learning.

procedure MLE_OPTIMIZATION(x, yt, At, M, S, t)
if t > 1 then

y�← yt − ρt−1AtμZt−1|yt−1,yt−2,...,y1

μt←μt + ρt−1μZt−1|yt−1,yt−2,...,y1

θ�←{μt, ρt−1, κt, τt, σt}
else

y�← yt

θ�←{μt, κt, τt, σt}
% Learn the optimal hyperparameters that minimize the negative
% log-likelihood of the co-kriging posterior
{θopt, μopt, Q−1

c }←min
θ�

NegLogLikelihood(θ�, y�, At, M, S)

return {θopt, μopt, Q−1
c }

3. Results

(a) A prototype problem in risk-averse design
Consider a rectangular cross section of a short structural column, with depth x1 and width x2,
under uncertain yield stress and uncertain bending and axial loads. Assuming an elastic-perfectly
plastic material, a limit state function that quantifies a relationship between loads and capacity is
described by the random field [28]

Y(x1, x2; ξ1, ξ2, ξ3)= 4ξ1

x2
1x2ξ3

+ ξ2
2

x2
1x2

2ξ
2
3
− 1, (3.1)
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Algorithm 3. Computation of the negative log-likelihood of the co-kriging posterior.

procedure NEGLOGLIKELIHOOD(θ�, y�, At, M, S)
% Construct the discrete Helmholtz operator of the SPDE (see Eq. 2.13)
H← 1

τ2
(κ2

t M+ S)
% Construct the sparse precision matrix Qt (see Eq. 2.14),
% and the diagonal noise precision QE
Qt←HM−1H
QE← 1

σt
I

% Factorize Qt =UUT using the Cholesky decomposition
U←Cholesky(Qt)
% Compute the conditional precision Qc

Qc←Qt + AT
t QEAt

% Compute the conditional predictor μ�, using the Woodbury matrix identity
% and Cholesky back-substitution to efficiently compute Q−1

c
μ�←μt +Q−1

c AtQE (y� − Atμt)

NegLogLikelihood←−1
2
{log |Qt| + log |QE | − log |Qc|−
−[(μ� − μt)TQt(μ� − μt)+ (y� − Atμ

�)TQE (y� − Atμ
�)]}

Return {NegLogLikelihood, μ�, Q−1
c }

Algorithm 4. Computation of the co-kriging variance.

procedure VARIANCE(θopt, Q−1
c , t)

if t > 1 then
return diag(ρ2

t−1ΣZt−1|yt−1,yt−2,...,y1 +Q−1
c )

else
return diag(Q−1

c )

where the bending moment load ξ1, the axial load ξ2 and the material yield stress ξ3 are
distributed as

ξ1 ∼N (2000, 400),

ξ2 ∼N (500, 100)

and ξ3 ∼ logN (5, 0.5).

Note that lower values of Y indicate more favourable capacity-to-load ratios, while high values
correspond to critical regimes where failure may occur. Our aim here is to identify an optimal
configuration (x�

1, x�
2) in the two-dimensional design space D1 ×D2 = [2, 20]× [2, 10] that satisfies

a set of prescribed criteria. Here, we let this goal translate to identifying a design that minimizes
the area of the column with the associated design risk staying below a given threshold c. To
quantify the risk associated with a given response Y(x; ξ ), we employ a superquantile risk measure,
which for a parameter α ∈ [0, 1) is defined as [15]

Rα(Y(x; ξ ))=min
c∈R

{
c+ 1

1− α
E[max{Y(x; ξ )− c, 0}]

}
. (3.2)

For α= 0, the superquantile risk measure of a continuously distributed random field Y(x; ξ ),
reduces to the expectation operator, i.e. R0 =E[Y(x; ξ )], thus characterizing a risk-neutral
situation. However, for non-zero values α ∈ (0, 1), the superquantile risk of Y(x; ξ ) returns the
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average of the (1− α)% highest realizations of Y(x; ξ ), therefore informing a risk-averse decision-
making mindset [15].

The design problem can be formulated in a constrained minimization framework which
reads as

min
x1∈D1,x2∈D2

x1x2

subject to Rα(Y)≤ c
(3.3)

The expectation operator E[max{Y(x; ξ )− c, 0}] appearing in the computation of the
superquantile risk Rα(Y(x; ξ )) can be approximated using a variety of different probabilistic
methods of different cost and fidelity. Here, we choose to discretize the three-dimensional
parametric space of (ξ1, ξ2, ξ3) using two different models. The high-fidelity model is a
probabilistic collocation method (PCM) [20] on a tensor product grid with 10 quadrature points
along each random dimension (total of 103 quadrature points), while the low-fidelity model is a
Smolyak sparse grid level-2 quadrature (SG-L2) [21] with a total of only 58 quadrature points.

This set-up yields a simple application of the proposed multi-fidelity methodology, where we
have a single model in physical space (equation (3.1)) and two levels of fidelity in probability
space (PCM, SG-L2). Employing a two-level recursive co-kriging algorithm (see §2a(ii)), we
can explore the correlations between the two probabilistic models, and build an accurate
representation of the target response surface Rα(Y) by mainly using the realizations of the lower
fidelity model (SG-L2, 120 points in design space), guided by few realizations of the higher fidelity
model (PCM, 10 points in design space).

In figure 6, we present the computed response surface R0.8(Y) as a function of the design
variables (x1, x2) considering the 20% highest realizations of Y. The exact solution corresponds to
computing R0.8(Y) using 106 MC samples [17]. The resulting response surface becomes singular
as (x1→ 0, x2→ 0), while it attains a very flat profile in the rest of the design space. This flat
behaviour suggests that the identification of an optimal design as a solution to equation (3.3) is
highly sensitive to the accuracy of the computed response surface. Here, we have chosen a design
criterion of R0.8(Y)≤−0.99, yielding an optimal solution for (x�

1 = 13.94, x�
2 = 5.07) that does not

depend on further resolution refinement.
Although this is a pedagogical prototype case in risk-averse design under uncertainty, it does

not fully reflect the strengths of the proposed multi-fidelity framework as the two probabilistic
methods (PCM, SG-L2) both happen to produce very similar estimations of the mean E[Y]. The
next example illustrates better the capabilities of the proposed methodology in the context of
multi-fidelity regression of a random function.

(b) Multi-fidelity regression of a random function
Here, we consider a system with two input design variables x= (x1, x2), subject to external
uncertainties, described by four standard normal random variables ξ = (ξ1, ξ2, ξ3, ξ4). Let the
response of this system, denoted by Y(x; ξ ) be described by the random function

fe(x; ξ )= ξ1 sin2(5ξ1x1 + 2ξ2ξ3x2)+ 2ξ2
4 e−x1(ξ2+ξ3)(x2−0.5)2

cos2(4x1 + x2). (3.4)

Now, assume that fe(x; ξ ) returns the real high-fidelity response but is expensive to evaluate.
On the other hand, let fc(x; ξ ) be a low-fidelity cheap to evaluate surrogate model that we can
sample extensively as

fc(x; ξ )= 1.7fe(x; ξ )+ 2ξ1ξ2 sin(x1 + x2)+ 5ξ3ξ
2
4 e−x1 sin(x1 + 7x2). (3.5)

Our goal here is to employ the proposed multi-fidelity framework to construct the response
surface of the mean field S(x)=E[Y(x; ξ )]. In order to approximate the expectation operator,
we employ two methods of different fidelity in probability space. To this end, we choose our
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Figure 6. Exact response surface R0.8(Y) and co-kriging predictor constructed using 120 low-fidelity (SG-L2) and 10 high-
fidelity (PCM) observations. (x�1 , x

�
2 ) denotes the optimal solution to the optimization problem of equation (3.3), while the inset

plot shows the point-wise absolute error of the co-kriging predictor. (Online version in colour.)

high-fidelity probabilistic method to be a Smolyak sparse grid level-5 quadrature (SG-L5) [21]
that discretizes the four-dimensional parameter space using 4994 quadrature points. Similarly, the
low-fidelity method in probability space is a coarser, lSG-L2 with just 57 quadrature points [21].

Therefore, our multi-fidelity setup consists of two models in physical space (fe(x; ξ ), fc(x; ξ )),
and two models in probability space (SG-L5, SG-L2). This results in a family of response surfaces
Sij, that can be organized as(

S11 S12
S21 S22

)
=
(

ESG-L2[fc(x; ξ )] ESG-L5[fc(x; ξ )]

ESG-L2[fe(x; ξ )] ESG-L5[fe(x; ξ )]

)
. (3.6)

Figure 7 demonstrates the response surface produced using a four-level recursive co-kriging
scheme, traversing the available models and data in the order S11→ S12→ S21→ S22, i.e. from
lowest to highest fidelity. The resulting response surface is compared with an ‘exact’ solution
that is obtained by MC integration of the high-fidelity physical model fe(x; ξ ) using 106 samples.
Evidently, the highly nonlinear response of the mean field is captured remarkably well by just
using five observations of the expensive highest fidelity model S22, supplemented by a number
of inaccurate low-fidelity observations from (S11, S12, S21). This observation is further confirmed
by the uncertainty of the predictor, quantified by the co-kriging variance (figure 7, inset), which is
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Figure 7. Exact response surface S=E[Y(x; ξ )] and co-kriging predictor constructed using four levels of fidelity: 80 S11 points
(fc(x; ξ ), SG-L2), 40 S12 points (fc(x; ξ ), SG-L5), 10 S21 points (fe(x; ξ ), SG-L2) and five S22 points (fe(x; ξ ), SG-L5). The inset plot
shows the point-wise variance of the co-kriging predictor. (Online version in colour.)

bounded by 10−3. To underline the merits of using the proposed multi-fidelity approach note that
the relative L2 error between the exact solution and the four-level co-kriging predictor is 10−2.
This is in sharp contrast with the corresponding error from fitting a kriging model through the
highest fidelity observations S22, which here is as high as 0.5.

(c) Multi-fidelity uncertainty quantification in a stochastic Burgers equation
Let us consider the following prototype initial/boundary value problem for the Burgers equation
in one input dimension

∂u
∂t
+ u

∂u
∂x
= ν

∂2u
∂x2 + f (x, t) x ∈ [0, 2π ] t≥ 0,

u(x, 0; ω)= u0(x; ω)

and u(0, t; ω)= u(2π , t; ω),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.7)
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where ν = 1
2 is a viscosity parameter, while the random initial condition u0(x; ω) and the

deterministic forcing term f (x, t) are defined as

u0(x; ω)= 1+ ξ1(ω) sin(x)+ ξ2(ω) cos(x) (3.8)

and
f (x, t)= 8 sin(10x) sin(5t)+ 8 cos(7x) e− sin(t). (3.9)

For each realization of u0(x; ω), the solution u(x, t; ω) takes values in the space L2([0, 2π ], R), on
which equation (3.7) is endowed with periodic boundary conditions. Moreover, the initial state is
characterized by a unit mean and variance, i.e. E[u(x, 0; ω)]= 1, V ar[u(x, 0; ω)]= 1, ∀ x.

Our goal here is to use the proposed multi-fidelity framework to get an accurate estimate of
the kinetic energy

Ek(t; ω)= 1
2

∫ 2π

0
u2(x, t; ω) dx. (3.10)

To this end, we consider blending the output of an ensemble of variable-fidelity models in
physical and probability space. In physical space, we employ Fourier–Galerkin discretizations
of equation (3.7), where higher fidelity models are obtained by increasing the number of modes
N in the finite-dimensional representation of the solution:

u(x, t; ω)=
N∑

k=−N

ûk(t; ω) eikx. (3.11)

The uncertainty introduced by the two uniform random variables (ξ1, ξ2) in equation (3.8) is
resolved by different probabilistic approximation methods. Here, we have employed a high-
fidelity tensor product PCM, and several low-fidelity approximations based on MC integration
using relatively small numbers of samples. In particular, we have considered four levels of mixed
fidelity in physical and probability space. For the first level, labelled as S1, we have considered
a low resolution discretization in physical space using only 10 Fourier modes in equation (3.11).
This yields an inaccurate solution of equation (3.7), but results in a very low computational cost
per sample, thus motivating the use of a high-fidelity method in probability space that discretizes
the parametric space with 1600 PCM quadrature points. At the second level, S2, we employ a
slightly finer resolution in physical space using 12 Fourier modes, while we decrease the fidelity
in probability space by employing MC integration on 60 samples. Similarly, the discretization of
the third level, S3, output consists of 15 Fourier modes in physical space, and 40 MC samples.
Lastly, in the fourth level, S4, we employ a costly high-fidelity representation in physical space
using 60 Fourier modes, but all probabilistic quantities are inferred by using only 10 MC samples.

Figure 8 presents the resulting four-level recursive co-kriging predictor and variance for the
multi-fidelity reconstruction of the kinetic energy Ek(t; ω) at t= 1 as a function of the random
variables ω= (ξ1, ξ2). The inference scheme at each recursive level is formulated using sparse
GMRF precision matrices arising from a regular finite element discretization of the (ξ1, ξ2)
plane with 1600 elements. It is evident that the proposed methodology is able to return an
accurate estimate primarily based on a large number of inexpensive but inaccurate evaluations,
supplemented by just a few realizations of the accurate but expensive high-fidelity model.

In table 2, we present a comparison of the computed errors for the mean and variance of
Ek(t; ω) for several cases. Here, we would like to underline that the four-level recursive co-kriging
predictor (Case III) is able to return an accurate estimate for both quantities of interest, while
resulting in substantial computational savings, as it required about two orders of magnitude less
resources compared with a full blown high-fidelity analysis (Case IV).

(d) Stochastic incompressible flow
We consider two-dimensional unsteady incompressible flow past a circular cylinder of diameter
D, subject to a random inflow boundary condition. The flow is governed by the Navier–Stokes
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Figure 8. Stochastic Burgers equation: four-level recursive co-kriging predictor and variance for the kinetic energy Ek(t;ω) at
t= 1. S1–S4 denote the training points employed at each level of the mixedmulti-fidelity approach in physical and probability
space. The exact response surface is obtained using a high-fidelity discretization of equation (3.8) with 60 Fourier modes and
1600 PCM samples. (Online version in colour.)

equations subject to the incompressibility constraint

∂v
∂t
+ v · (∇v)=−∇p+ ν∇2v

and ∇ · v= 0,

⎫⎬
⎭ (3.12)

where v is the fluid velocity vector, p is the fluid pressure, t is time, and ν is the kinematic
viscosity of the fluid. The system is discretized in space using the spectral/hp element method
(SEM), according to which the computational domain is decomposed into a set of polymorphic
non-overlapping elements [26]. Within each element, the solution is approximated as a linear
combination of hierarchical, mixed-order, semi-orthogonal Jacobi polynomial expansions [26].
Temporal integration is based on decoupling the velocity and pressure by applying a high-order
time-splitting scheme [26].

The random inflow has a parametric expression of the form

U∞(σ1, σ2; ξ1, ξ2)= 1+ σ1 sin
(πy

9

)
+ σ2

[
ξ1 sin

(πy
9

)
+ ξ2 cos

(πy
9

)]
, (3.13)
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Figure 9. Incompressible stochastic flow past a cylinder: (a) The computational mesh consists of 412 triangular spectral
elements of polynomial order 11. (b) Standard deviation of the stream-wise velocity component at time t= 4. The quantity
of interest here is the base pressure coefficient CBP, where pB denotes the fluid pressure on the cylinder surface at 180◦ from the
stagnation point (base pressure), while U∞ and p∞ are the free-stream velocity and pressure, respectively.

Table 2. Stochastic Burgers equation: Computed mean, variance and relative errors for the kinetic energy Ek(t;ω) at t= 1,
and for different methods of variable fidelity in physical and probability space. Case I: High-fidelity in physical space and low-
fidelity in probability space (60 Fourier modes—10 MC samples). Case II: Low-fidelity in physical space and high-fidelity in
probability space (10 Fourier modes—1600 PCM samples). Case III: Four-level recursive co-kriging using a mixture of variable-
fidelity models in physical and probability space (number of samples from lower to higher fidelity: 100, 60, 40, 10). Case IV:
High-fidelity in both physical and probability spaces (60 Fourier modes—1600 PCM samples). Case IV is used as a reference
solution when computing relative errors.

relative error

case E[Ek] Var[Ek] mean variance

I 104.95 58.87 0.0177 0.1306
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II 172.99 149.40 0.6192 1.2063
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III 106.97 69.05 0.0012 0.0198
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IV 106.83 67.72 N/A N/A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where (σ1, σ2) are parameters controlling the amplitude of the skewness of the inflow noise
(design variables), y is the coordinate transverse to the flow and (ξ1, ξ2) are random variables
with standard normal distributions.

Our goal here is to construct the response surface for the 0.6-superquantile risk of the base
pressure coefficient R0.6(CBP) (figure 9) at Reynolds number Re=U∞D/ν = 100.

The proposed multi-fidelity modelling framework is illustrated here considering a single
model in physical space and three models in probability space. The physical model returns
realizations of the flow field solution produced by direct numerical simulations of equation (3.12)
using the SEM. All simulations are started from a zero-velocity initial condition, and are
integrated until a stable limit-cycle state is reached. This state is characterized by the well-
known von Karman vortex shedding pattern in which the unsteady separation of the flow
around the cylinder gives rise to a time-periodic base pressure signal. We choose three models in
probability space to compute the expectation operator in equation (3.2). The highest fidelity model
is probabilistic collocation on a tensor product grid (PCM) [20], the intermediate fidelity is a SG-L2
[21] and lowest fidelity model is MC integration [17]. For each model, we construct a uniform
grid in the (σ1, σ2)-plane, and perform an ensemble of simulations at each grid-point according to
the corresponding sampling strategy for integrating out (ξ1, ξ2) (table 3). Figure 10 illustrates the
PCM samples of the inflow boundary condition for different values of (σ1, σ2). This uncertainty
quantification task results to a total of 5526 Navier–Stokes simulations that were performed in
parallel on one rack of IBM BG/Q (16 384 cores) with a CPU time of about 40 min.
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Figure 10. Modelling of the stochastic inflow: probabilistic collocation (PCM) samples of the velocity inflowprofile on a uniform
6× 5 (σ1, σ2)-grid. At each grid point, a total of 64 samples is used to integrate out the randomness introduced by (ξ1, ξ2) in
equation (3.13). Note that σ1 controls the skewness of the inflow profile, while σ2 acts as a noise amplifier. (Online version
in colour.)

Table 3. Size of the uniform discretization grid in the (σ1, σ2)-plane, and number of samples per grid-point for each of the
probabilistic methods employed.

method (σ1, σ2)-grid samples/grid-point total samples

PCM 6× 5 64 1920
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SG-L2 11× 9 22 2178
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MC 21× 17 4 1428
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 11 shows the response surface for the 0.6-superquantile risk of the base pressure
coefficient R0.6(CBP), computed using a three-level recursive co-kriging. The predictive scheme
is trained using 100 low-fidelity (MC), 15 intermediate fidelity (SG-L2) and only five high-fidelity
(PCM) observation points in the (σ1, σ2)-plane. The accuracy of the co-kriging predictor is assessed
against an ‘exact’ response surface constructed by using 357 uniformly distributed observations
of the highest fidelity model (PCM), returning an error of 0.051 in the L2 norm. More importantly,
the uncertainty of the co-kriging predictor is negligible, as its variance is firmly bounded below
3× 10−5. Note that if we only used a one-level kriging scheme trained on the five high-fidelity
observations, the resulting L2 is 3.536. It is evident that incorporating information from lower
fidelity sources can drastically improve the accuracy of the metamodel.

4. Discussion
The scope of this work is to define a comprehensive mathematical framework that allows
for the seamless integration of surrogate-based optimization and uncertainty quantification in
engineering design problems. The proposed methodology targets the construction of response
surfaces of complex stochastic dynamical systems by blending multiple information sources via
auto-regressive stochastic modelling. We develop a general setting, under which multi-fidelity in
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Figure 11. Response surface of the 0.6-superquantile risk of the base pressure coefficient R0.6(CBP), computed using a
three-level recursive co-kriging scheme, on 100 low-fidelity (MC), 15 intermediate fidelity (SG-L2) and five high-fidelity (PCM)
observation points in the (σ1, σ2)-plane. The exact surface corresponds to 357 uniformly distributed observations of the highest
fidelity model (PCM). The inset plot shows the point-wise variance of the co-kriging predictor. (Online version in colour.)

models and multi-fidelity in probability space can coexist in tandem. A computationally efficient
framework is developed using multi-level recursive co-kriging and GMRFs, resulting in very
robust schemes in two- and three dimensions.

The capabilities of our implementation were tested for three different cases. In all cases, we
were able to successfully exploit cross-correlations within ensembles of surrogate models and
efficiently construct an accurate estimate for the response of the given stochastic system. In
particular, we were able to construct the response surface and identify an optimal risk-averse
design for a benchmark problem involving a short structural column with random material
properties being subject to random loads. Next, we considered the regression of a random
function, for which different fidelity models and information sources were available both in
physical and probability spaces. An accurate representation is obtained by only using a minimal
amount of expensive high-fidelity observations along with many cheap, low-quality realizations
of different surrogates. The third benchmark case we considered involved evolving the Burgers
equation from a random initial state and tracking the statistics of the kinetic energy of the system
at a later time. Our results demonstrate how the proposed multi-fidelity framework can provide
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an accurate quantification of uncertainty with orders of magnitude of decrease in computational
demands. Finally, we presented a realistic uncertainty quantification case for a laminar stochastic
wake past a circular cylinder. For this case, we were able to obtain an accurate and reliable
estimation of the response surface for the superquantile risk of the base pressure coefficient—a
quantity that is known for its high sensitivity to the flow conditions.

A limiting factor of our presentation stems from the fact that all demonstrations were confined
to two-dimensional problems. Although this significantly contributes towards enhancing the
clarity of the presented concepts, we acknowledge that it does not establish a direct link to
realistic high-dimensional design problems. To this end, the proposed framework can be extended
to hypercube design spaces, in which covariance models can be similarly trained on the data
through the SPDE approach, that can now be discretized using orthogonal tensor product
expansion bases. This technique can provide an adequate extension to handle high-dimensional
problems, however, its cost and optimality need to be carefully assessed. Our future plans
will focus on evaluating the available tools and identifying an optimal strategy for addressing
high-dimensionality in both the design and probability spaces.
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