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To increase both the yield potential and stability of crops, integrated breeding strategies are used that have mostly a direct genetic
basis, but the utility of epigenetics to improve complex traits is unclear. A better understanding of the status of the epigenome and its
contribution to agronomic performance would help in developing approaches to incorporate the epigenetic component of complex
traits into breeding programs. Starting from isogenic canola (Brassica napus) lines, epilines were generated by selecting, repeatedly for
three generations, for increased energy use efficiency and drought tolerance. These epilines had an enhanced energy use efficiency,
drought tolerance, and nitrogen use efficiency. Transcriptome analysis of the epilines and a line selected for its energy use efficiency
solely revealed common differentially expressed genes related to the onset of stress tolerance-regulating signaling events. Genes
related to responses to salt, osmotic, abscisic acid, and drought treatments were specifically differentially expressed in the drought-
tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine-4 of histone 3, further supported the
phenotype by targeting drought-responsive genes and facilitating the transcription of the differentially expressed genes. From these
results, we conclude that the canola epigenome can be shaped by selection to increase energy use efficiency and stress tolerance.
Hence, these findings warrant the further development of strategies to incorporate epigenetics into breeding.

The need to improve crop yield in both quantity (yield
potential) and stability (actual yield) to meet the increas-
ing demand for food, feed, and plant-derived materials is
a major challenge. Very different complementary tech-
nologies are used to optimize yield and to develop crops
with increased resilience against adverse environmental
growth conditions (Botella et al., 2008; Cattivelli et al.,
2008; Jhaet al., 2014). Plant breeding programs are a basic
component of this improvement process encompassing a
wide range of technologies, such as exploration of the
genetic potential by intraspecific and interspecific crosses,
combination of genetic pools in hybrid breeding, mu-
tational breeding, molecular breeding, and transgene
technologies.

Rather recently, epigenetics has been investigated as a
potential breeding platform (Springer, 2013). Epigenetic
variations or heritable changes in gene expression that
are not linked to changes in the DNA sequence, but as-
sociated with differences in DNA methylation or histone
modifications, provide an alternative source of pheno-
typic variability. A vast and growing number of studies
implicate DNA methylation and histone modification in
the modulation of gene expression in general, control of
developmental transitions, and plant responses to biotic
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and abiotic stresses (He et al., 2003; Raissig et al., 2011;
Dowen et al., 2012; Perrella et al., 2013). However, our
current understanding of the stability and heritability of
epigenetic variation is limited. As such, how to imple-
ment epigenetics-related strategies into breeding remains
an open question.
In plants, transgenerational inheritance has been

shown for single-gene epialleles, such as SUPERMAN
(Jacobsen and Meyerowitz, 1997) and CYCLOIDEA
(Cubas et al., 1999), and for a transcription factor (TF)
that controls fruit ripening in tomato (Solanum lyco-
persicum; Manning et al., 2006). For complex traits, such
as flowering time, plant height, and primary root length,
stable transgenerational epigenetic variations could be
induced and linked to the identification of epigenetic
quantitative trait loci (Johannes et al., 2009; Cortijo et al.,
2014). Additional evidence supporting the impact of
transgenerational epigenetic variation in breeding and
the concept of shaping the epigenome to improve
complex traits has been provided (Hauben et al., 2009).
Starting from an isogenic canola (Brassica napus) popu-
lation, individual plants were selected for reduced res-
piration, and subsequently, the self-fertilized progeny
with the highest energy use efficiency were retained.
This step was repeated twice with the progeny obtained
from the previous selection cycle to fix the epigenome
and to select epigenetically altered progeny with distinct
physiological and agronomical properties that remained
stable for at least eight generations.
Here, selection for energy use efficiency (Hauben

et al., 2009) and drought tolerance were combined to
isolate epilines. To unravel the biology of the enhanced
energy use efficiency and drought stress tolerance, al-
terations in the transcriptome and epigenome in two of
these epilines as well as one of the energy use-efficient
epilines, the previously described line LR77 (Hauben
et al., 2009), were analyzed in depth at the physio-
logical, biochemical, and molecular levels. The LR77
line will be referred to hereafter as the EUE line.

RESULTS

Selection of Canola Lines with Improved Drought
Stress Tolerance

Epilines were generated from the doubled haploid
Athena spring canola cultivar by a repeated selection
procedure similar to that described previously (Hauben
et al., 2009; De Block and Van Lijsebettens, 2011). By
screening explants of isogenic lines, variations in
complex traits in the isolated progeny are expected to
result from epigenetic differences (epialleles). Hypo-
cotyl explants from 2-week-old seedlings were evalu-
ated for respiration, and the shoot tips were kept for
rooting. To induce a moderate drought stress, the hy-
pocotyl explants were cultured on medium containing
5% (w/v) polyethylene glycol (PEG) 6000. Under these
conditions, the respiration of the hypocotyl explants
was higher than that of explants grown without PEG.
Rooted shoot tips from 10 seedlings with the lowest

hypocotyl explant respiration were transferred to the
greenhouse for seed production by self-fertilization.
Noteworthy, in this experimental setup, the plants were
never exposed to PEG. Two of the self-fertilized progeny
with the lowest respiration and the highest NAD(P)H
content were retained. The selection procedure was re-
peated in three subsequent generations (Supplemental
Fig. S1A). Respiration and NAD(P)H content were de-
termined in the progeny of the last selection, and two
epilines with low respiration and high NAD(P)H content,
referred as the PEG1 and PEG2 lines, were kept for fur-
ther analyses (Table I).

As described previously, lines with low respiration
and high NAD(P)H content had reduced photorespir-
ation (Hauben et al., 2009) under both control and PEG-
induced stress conditions (Supplemental Table S1).

Under greenhouse conditions, the PEG lines could
not be distinguished from the control plants regarding
size, flowering time, and seed set. To assess their per-
formance under drought stress, we subjected control
and PEG plants to a drought stress regime starting on
day 14 after sowing by withholding water supply until
wilting symptoms (8 d) became apparent, followed by
rewatering for 2 d. The PEG lines had increased rosette
diameters (Fig. 1A). Under well-watered conditions, the
shoot fresh weights were similar in PEG and control
plants (Fig. 1B). The drought regime slowed down the
growth of all lines, yet to a significantly smaller extent
(25% versus 55% growth reduction) in the PEG lines,
demonstrating an improved drought stress tolerance
(Fig. 1B). The drought tolerance and energy use effi-
ciency of the PEG lines were inherited stably for up to
seven generations when seed upscaling was done by
self-fertilization under nonselective conditions.

Nitrogen use efficiency (NUE) is an important agri-
cultural trait that is possibly linked with drought toler-
ance (Sadras and Richards, 2014). The NUE of PEG and
control lines was determined in a root length measure-
ment assay on mediumwith low (35 mL L21) or standard
(210 mL L21) nitrogen content. Plants with a high NUE
form more lateral roots and have a higher total root
length than plants with a low NUE. The seedlings of the
PEG lines had a 40% higher total root length than control
seedlings when grown on medium with low nitrogen
content (Supplemental Fig. S1B).

Table I. Respiration (TTC-H), energy content (NADH + NADPH), and
energy use efficiency (EE) of hypocotyl explants

Three repetitions per assay and 35 plants per repetition were used.
Values shown are percentages versus control. EUE line data were as
published by Hauben et al. (2009). Significance was determined by
ANOVA with Dunnett’s posttest: *, P , 0.05; **, P , 0.01; ***, and
P , 0.001; TTC-H, reduced 2,3,5-triphenyltetrazolium chloride; ND,
not determined.

Control Conditions +PEG

Lines TTC-H NAD(P)H EE TTC-H NAD(P)H EE

PEG1 91*** 103* 113*** 95*** 114*** 120***
PEG2 90*** 99 110*** 94*** 108** 115***
EUE 92.5*** 103* 111** ND ND ND
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In the EUE line, the seed yield was enhanced under
optimal and moderate drought stress conditions, the
photorespiration was reduced, the respiration had de-
creased, and the energy levels had increased. This line
had been identified by selection for increased energy
use efficiency and had been shown to have a decreased
global DNA methylation level and altered histone
modification patterns (Hauben et al., 2009). In this line,

the growth was reduced by only 40% compared with
55% in its control upon an identical drought treatment
as used for the PEG lines, which was significant but less
pronounced than that of the drought tolerance mea-
sured in the PEG lines (Fig. 1C). Whereas the PEG lines
had a pronounced NUE, the EUE line did not form
significantly more roots than the control on medium
with low nitrogen content and, thus, did not use
nitrogen more efficiently.

Gene Expression Changes in PEG and EUE Lines

To assess the molecular footprint caused by the se-
lection procedures for increased energy use efficiency
in the presence or absence of PEG and to identify
candidate genes responsible for the enhanced drought
tolerance phenotypes of the selected lines, we per-
formed genome-wide transcriptome analyses on con-
trol and selected plants. Both PEG lines (two biological
replicates) and EUE lines (three biological replicates)
with their respective controls were analyzed. Actively
transcribed polysomal RNA pools from plants in dif-
ferent biological replicate experiments were isolated
and subjected to RNA sequencing (RNA-seq) analysis.

As a complete and annotated genome sequence for
canola (AACC genome) is not available yet, the genomes
of the diploid species Brassica rapa (turnip; AA) and
Brassica oleracea (cabbage; CC), of which the hybridiza-
tion formed the amphidiploid canola species, were used
as reference sequences. To optimize the mapping effi-
ciency, RNA-seq reads were mapped to a set of 60,756
nonredundant B. rapa and B. oleracea transcripts (see
“Materials and Methods”). Details of the mapping effi-
ciency and coding sequence coverage are provided in
Supplemental Table S2. Genes with low read coverage
(see “Materials and Methods”) were excluded, finally
retaining 35,892 genes (59% of all B. rapa and B. oleracea
transcripts) to be examined. Differential transcript levels
were identified using the edgeR package (false discovery
rate , 0.05, fold change . 1.5; Robinson et al., 2010).

PEG1 plants displayed an altered expression in 1,158
genes, of which 706 induced and 452 repressed when
compared with the control plants (Table II; Supplemental
Table S3). In the PEG2 line, 478 genes were differentially
expressed compared with the control line, of which 352
were up-regulated and 126 were down-regulated (Table
II; Supplemental Table S3). The differential expression of
arbitrarily selected genes was validated by quantitative
reverse transcription-PCR (Fig. 2; Supplemental Table
S4). The PEG1 and PEG2 lines displayed a significant
overlap (355 genes; P , 1e-150) and a high expression
correlation (r = 0.97) among the shared differentially
expressed genes (DEGs; Fig. 2A), indicating that the se-
lection altered the expression of a specific set of genes. In
the EUE plants, screened solely for high energy use ef-
ficiency, a total of 1,099 DEGs were identified when
compared with the corresponding control, among which
1,048 were up-regulated and 51 were down-regulated
(Table II; Supplemental Table S2). Consistent with the

Figure 1. Fresh weight of plants selected for high energy use efficiency
(EUE lines) and drought tolerance (PEG lines). A, Control and PEG1
plants exposed to drought. The photograph was taken at the end of the
experiment (24 d after sowing). For the experimental conditions, see
“Materials and Methods.” B and C, Box-plot comparisons of the fresh
weight of control, PEG1, and PEG2 plants (B) and of control and EUE
plants (C) grown under control (blue) and drought (red) conditions 24 d
after sowing. The whiskers are at the 10th and 90th percentiles, and the
horizontal bar in each box shows the mean.
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partially similar selection strategy, a large number of
DEGs (289 genes) were common in the EUE and PEG
lines (Supplemental Fig. S2).
To gain insight into the functional categories of the

DEGs, we used their Arabidopsis (Arabidopsis thaliana)
orthologs as a proxy (Table II; Supplemental Table S3).
For 83% of all B. rapa and B. oleracea genes, an Arabidopsis
orthologous gene was found. Comparison of the clas-
sification of the Arabidopsis orthologs of PEG1, PEG2,
and EUE of the DEGs in the Gene Ontology (GO) terms
related to the biological processes and molecular func-
tions revealed the overrepresentation of the same terms,
as expected given the high number of shared genes (Fig.
2C; Supplemental Table S5). Signal transduction, re-
sponse to stress, transport, TF activity, protein binding,
and kinase activity terms were significantly (more than
1.5-fold; P , 0.05) enriched, suggesting the onset of
signaling events related to stress tolerance adaptation
(Fig. 2C; Supplemental Table S5).
Accordingly, the DEGs of the PEG and EUE lines

(Arabidopsis proxies) used as input for the signature

tool in Genevestigator (see “Materials and Methods“;
Hruz et al., 2008) demonstrated the relatedness with
stress-linked perturbation profiles (Supplemental Table
S6), including several drought stress experiments. The
highest relative drought similarity scores were observed
with the PEG1 line, followed by PEG2 and EUE
(Supplemental Table S6). These transcriptomic signa-
tures were largely in agreement with the higher drought
stress tolerance of the PEG lines than that of the EUE
lines (Fig. 1, B and C) and confirm the efficient selection
procedure in the presence of PEG. A subsequent hierar-
chical clustering of the RNA-seq data with the Arabidopsis
water stress-related transcriptome data sets (Supplemental
Table S7) allowed a more detailed comparative analysis
(Fig. 2D; Supplemental Fig. S3). There is a clear cor-
relation with salt, osmotic, abscisic acid (ABA), man-
nitol, and drought treatments provoking expression
changes (Fig. 2D; Supplemental Fig. S3). Indeed, of the
responsive PEG1, PEG2, and EUE genes, 67.3%, 64.3%,
and 62.7% were differentially expressed, respectively,
in at least two of the compared subselected data sets

Table II. RNA-seq results

Brassica spp. Linesa Arabidopsisb

Line All Up-Regulated Down-Regulated All Up-Regulated Down-Regulated

PEG1 1,158 706 452 844 503 341
PEG2 478 352 126 360 257 103
EUE 1,099 1,048 51 768 719 49

aNonredundant B. rapa and B. oleracea genes. bUnique orthologous genes.

Figure 2. Transcriptome changes related to energy use efficiency and drought tolerance. A, Venn diagram of DEGs in the PEG1
and PEG2 lines. B, Quantitative reverse transcription-PCR validation of the DEGs. Values are means 6 SD (n = 3). For PEG1 and
PEG2, log2 fold change (FC) values were calculated from RNA-seq data. C, Functional categorization of shared DEGs by anno-
tation for the GO biological process (BP) and molecular function (MF) categories. The enriched (greater than 1.5-fold) functional
categories are in boldface. *, P , 0.05. D, Hierarchical clustering analysis of the PEG Arabidopsis orthologous genes and a subset
of drought stress-related transcriptome data sets (24 h of salt/osmotic/mannitol/drought and 3 h of ABA; Supplemental Table S7).
TF (red) or kinase (blue) functional GO annotations for individual genes are indicated on the right.
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(24-h salt, 24-h osmotic, 24-h mannitol, 3-h ABA, and
24-h drought treatments), confirming that PEG and
energy use efficiency selection target, at least in part,
drought tolerance-linked pathways.

Altered Histone 3 Lysine-4 Trimethylation Distribution in
the Drought-Tolerant Canola Line

To investigate the epigenetic effect on the histone
mark distribution of the energy use efficiency/PEG se-
lection, we performed a chromatin immunoprecipita-
tion sequencing (ChIP-seq) analysis. Dynamic changes
in the occurrence of the histone 3 lysine-4 trimethylation
(H3K4me3) mark are associated with the regulation of
drought stress-responsive gene expression (Kim et al.,
2008; Ding et al., 2012; Sani et al., 2013). Native ChIP
with an anti-H3K4me3 antibody and without antibody
(background control) was done on PEG1 and control
plants. Details of the sequencing and mapping to the B.
rapa and B. oleracea genomes separately are provided in
Supplemental Table S8. The H3K4me3 distribution and
differential binding in control and PEG1 lines were
analyzed with the model-based analysis of chromatin
immunoprecipitation sequencing (MACS; Zhang et al.,
2008).

Using the MACS callpeak module, H3K4me3-
enriched B. rapa and B. oleracea regions were identified in
both the control and PEG1 lines and annotated to the
nearest neighboring gene (Table III; Supplemental Tables
S9 and S10). As expected for a histone protein modifi-
cation, a uniform distribution of H3K4me3 was observed
across all chromosomes of B. rapa (Fig. 3) and B. oleracea
(Supplemental Fig. S4). More detailed analysis of the
genomic H3K4me3 distribution in both B. oleracea and
B. rapa in relation to the linked genes revealed that 26.2%
of the enriched regions were located at the 59 side (1 kb or
intergenic), 66.2% in gene bodies, and 7.6% in the
39 overlapping region (Supplemental Tables S9 and S10).
A total of 73.4% of the H3K4me3 marks were located in
the 59 1-kb (19.3%) and 59 coding (54.1%) regions (Fig.
3B), consistent with the H3K4me3 distribution reported
in Arabidopsis (Zhang et al., 2009; Roudier et al., 2011).

For differential H3K4me3 distribution analysis, the
MACS bdgdiff module was used (see “Materials and
Methods”). Comparison of the MACS callpeak-generated
H3K4me3 pileup tracks of the control and PEG1 lines
revealed that the majority of the H3K4me3-bound re-
gions were common and not significantly different be-
tween the two lines (Fig. 3A; Supplemental Fig. S4).
A few regions displayed an enhanced H3K4me3 signal
in the control line, but many appeared enriched in

H3K4me3 signal in the PEG1 line (Table III; Fig. 3A;
Supplemental Fig. S4; Supplemental Tables S11 and
S12). The above analyses were done on one biological
replicate, because the H3K4me3 association of different
regions was validated by quantitative PCR after ChIP on
independent biological replicates of plant material of the
control, PEG1, and PEG2 lines. For all regions, enrich-
ment was higher in the PEG1 line than in the control,
confirming the differential H3K4me3 binding and illus-
trating that PEG selection alters the H3K4me3 distribu-
tion (Fig. 3C). Moreover, enriched binding was seen in
the PEG2 line in the same regions as those found in the
PEG1 line (Fig. 3C), suggesting that the episelection di-
rects the H3K4me3 alteration of a specific set of genes.
Remarkably, six out of the eight genes with an enriched
binding in the PEG1 line were also enriched in the PEG2
line. That not all the tested genes give an enriched
binding in the PEG2 line can be explained by the weaker
drought tolerance of the PEG2 line than that of the PEG1
line (Fig. 1B), as also reflected in the RNA-seq analyses
(see above).

Annotation of the PEG1-enriched H3K4me3 regions to
the nearest gene, followed by functional enrichment
analysis of the Arabidopsis orthologous genes, uncovered
overrepresented GO terms similar to the DEGs (Fig. 3D;
Supplemental Tables S5, S11, and S12), further demon-
strating the selectivity of the energy use efficiency and
PEG selection toward stress tolerance-related signaling
processes. In agreement, exploration of the Arabidopsis
drought stress-related transcriptomes (Supplemental
Table S7) revealed substantial changes in the PEG1
H3K4me3-enriched or differentially H3K4me3-marked
(DHM) orthologs (Supplemental Fig. S5). Approxi-
mately 45% of the DHMs were differentially expressed
in the osmotic treatment (24-h) data set, representing a
significantly higher percentage of all osmotic treatment-
responsive genes than that of the PEG1 DEGs (20%
versus 6%) and indicating that the DHM distribu-
tion targets additional drought stress-responsive genes
(Supplemental Fig. S5). Together, our data demonstrate
that the PEG lines display DHM distribution and that
this epigenetic factor may constitute a causative factor
of the increased PEG drought stress performance.

Interdependence of Differential Gene Expression and
H3K4me3 Distribution

As the presence of specific histone marks might di-
rectly affect gene expression, the DHM data were
searched for genes that were differentially expressed in
the PEG1 line. In total, both data sets shared 219 genes

Table III. Number of total and differentially H3K4me3-bound regions (and genes) identified in PEG1 and
control plants

Total Regions (Genes) Differential Regions (Genes)

Species Control PEG1 Control Enriched PEG1 Enriched

B. rapa 27,673 (21,844) 31,464 (23,925) 8 (8) 3,131 (2,872)
B. oleracea 36,371 (26,617) 40,707 (28,492) 38 (36) 1,806 (1,748)
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(Fig. 4; Supplemental Table S13), revealing a small but
significant overlap (P = 4.9e-10). Comparative analy-
sis of this overlapping subset of genes with the
Arabidopsis abiotic stress transcriptome data sets
(Supplemental Table S7) strengthened, as confirmed by
the GO classification, the link with the drought stress
response and the overrepresentation of TFs and kinases
(Fig. 4B; Supplemental Table S5). Among the differen-
tially expressed TFs, the B. oleracea (ERC) ERC42165,
B. rapa (ERF) ERF62736, and ERF5709 loci, encoding the
Brassica WRKY33, ETHYLENE-RESPONSIVE FACTOR104
(ERF104), and NO APICAL MERISTEM, ARABIDOPSIS
TRANSCRIPTION ACTIVATION FACTOR, AND
CUP-SHAPED COTYLEDON090 orthologs, respectively,
were found to be enriched with H3K4me3. Read cov-
erage along the 59 coding regions in the PEG1 sample
was higher than that of the control (Fig. 4D). Likewise,
enriched H3K4me3 occupancy was detected in the 59
regions of ERC26284 and ERF77038 loci, the Brassica
spp. MITOGEN-ACTIVATED PROTEIN KINASE
KINASE9 and CREATINE PHOSPHOKINASE32 ortho-
logs (Fig. 4D). In agreement with the described con-
nection of H3K4me3 with gene activation (Roudier
et al., 2011), most (76.7%) of the differentially marked
genes were up-regulated (Fig. 4, B and C; Supplemental
Table S13). Surprisingly, part of the H3K4me3-enriched
genes appeared to be down-regulated in both the PEG1
line and the Arabidopsis drought stress-related expres-
sion profiling data (Fig. 4B). Interestingly, repressed
genes, in contrast to induced ones, displayed an atypi-
cal H3K4me3 enrichment at the 39 ends of transcripts
(Supplemental Fig. S6). This unanticipated distribution
and its effect on the expression of the generally considered
activating H3K4me3 mark needs further investigation.

Previously, a role for H3K4me3 in gene repression was
reported (Weiner et al., 2012). Altogether, these data
suggest that the differential H3K4me3 distribution
sensitizes the PEG lines to enhanced drought stress
tolerance, partly by directly affecting the expression of
stress tolerance genes.

Identifying Drought-Related Signaling Networks

The enrichment of both kinases and TFs in the RNA-
seq (DEG) and ChIP-seq (DHM) data sets and in their
overlap (DHM+DEG; Figs. 2, C and D, 3D, and 4B;
Supplemental Fig. S5; Supplemental Table S5) hints
at a regulatory role in conferring the improved
drought stress tolerance phenotypes. In the DEG and
DHM+DEG data sets, there is a significant enrichment
in kinases that are involved in osmotic stress signaling
events, such as class I receptor-like, class IV calcium
response (group 4.2), and mitogen-activated protein
(groups 4.1 and 4.5) kinases (http://plantsp.genomics.
purdue.edu; Supplemental Table S14; Marshall
et al., 2012; Kissoudis et al., 2014). The TF classifi-
cation shows an overrepresentation of primarily the
APETALA2-ETHYLENE-RESPONSIVE ELEMENT-
BINDING PROTEIN (AP2-EREBP) and WRKY fami-
lies (Supplemental Table S15; Lindemose et al., 2013).

Screening of the 1,000-bp upstream promoter re-
gions of all DEGs and DHM genes for the W-box,
DROUGHT-RESPONSIVE (DRE) elements, and
ABSCISIC ACID-RESPONSIVE (ABRE) motifs identi-
fied putative WRKY, AP2-EREBP DEHYDRATION-
RESPONSIVE ELEMENT BINDING (DREB) family, and
basic Leu zipper TFs downstream of drought-responsive

Figure 3. Genome-wide H3K4me3 distribution in the PEG lines. A, H3K4me3 distribution across the 11 B. rapa chromosomes
(CHR). B, Gene body and flanking 1-kb region distribution of the H3K4me3 marks in B. oleracea and B. rapa. All genes were
aligned from start to end and divided into 20 equal bins. Upstream and downstream 1-kb regions were divided into 10 equal
bins. C, ChIP-quantitative PCR validation of enriched H3K4me3 binding (DHM genes) in PEG1 and PEG2 lines. The relative
enrichment compared with the control was determined using two ChIP-seq-identified nonenriched regions (C1 and C2). Error
bars indicate SD (n = 3). D, Functional categorization of PEG1-enriched H3K4me3 genes by annotation for the GO biological
process and molecular function categories. The enriched (greater than 1.5-fold) functional categories are in boldface (P, 0.05).
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genes (see “Materials and Methods”). The number and
identity of the DEGs and DHM genes retrieved by both
simple and conserved noncoding sequence (CNS)-based
mapping (Van de Velde et al., 2014) of these cis-regulatory
elements are provided in Supplemental Table S16. Re-
garding the DEGs, 55.1%, including 23.7% high-
confidence CNS-displaying DEGs, appeared to be puta-
tive target genes, whereas for the DHM+DEG genes,
higher mapping fractions were observed, namely 61.6%
simple and 18.9% CNS-based targets. Moreover, DEGs
and DHM genes containing W-box, DRE sites, and ABRE
motifs retained TF, kinase, and drought stress-associated
GO term enrichments. In addition, a significant overrep-
resentation for all three motifs was evident in the CNS-
based DEG and DHM genes (Fig. 5; Supplemental Table
S16), confirming roles for WRKY, AP2-EREBP DREB, and
basic Leu zipper TFs as master regulators in the energy
use efficiency/PEG selection-improved drought stress
tolerance signaling.

To gain a hierarchical insight into the signaling and
regulatory events, we used the DEG and DHM genes as
query genes to retrieve pairwise regulatory (motif) in-
teractions, protein interactions, and kinase-substrate in-
teractions from the literature and several databases (see
“Materials and Methods”; De Bodt et al., 2012; Zulawski
et al., 2013; Jones et al., 2014; Lumba et al., 2014; Van de
Velde et al., 2014). From the resulting 3,987 pairwise
interactions, an integrative network was constructed,

linking 1,841 genes/proteins (44.6% of all DEGs and
DHMs). The generated network included 289 TFs that
regulate 1,143 downstream DEGs and DHM genes and
190 kinases that interact with 125 proteins and phos-
phorylate 203 targets (Supplemental Table S17). Cluster-
ing (see “Materials and Methods”) allowed the isolation
and closer inspection of discrete subnetworks. The most
extensive subnetwork, comprising 875 genes/proteins,
illustrated the high connectivity between the DEGs and
DHM genes and retained GO term enrichments for TF
and kinase activity (Supplemental Fig. S7). Interestingly,
we observed a significant overrepresentation of genes
displaying responses to water deprivation, to osmotic
and salt stresses, and to ABA stimulus (Supplemental Fig.
S7). When first-neighbor interactions of individual genes
were extracted, PEG1 differentially expressed and/or
H3K4me3-enriched kinases and TFs also appear as
main regulators in several drought stress tolerance-
related subnetworks (Fig. 5B; Supplemental Fig. S8;
Supplemental Table S17). As an example, the network of
WRKY53, a mitogen-activated protein kinase substrate,
displays, besides regulatory interactions with other
WRKY TFs, links with the dehydration stress-responsive
TFs ERF5 and MYB15 and the REGULATORY
COMPONENTS OF ABSCISIC ACID RECEPTOR1
(Miao et al., 2004; Ding et al., 2009; Park et al., 2009;
Dubois et al., 2013; Fig. 5B). Moreover, WRKY53 is known
to be regulated by histone methylation (Ay et al., 2009).

Figure 4. Relationship between the
differential H3K4me3 distribution and
the transcript levels. A, Venn diagram
of the annotated DHM genes and
DEGs in the PEG1 line. B, Clustering of
orthologous DEGs and DHM genes of
Arabidopsis with drought stress-related
transcriptome data sets (24 h of salt/
osmotic/mannitol/drought and 3 h of
ABA; Supplemental Table S7). TF (red)
and kinase (blue) functions of GO an-
notations for individual genes are
indicated on the right. C, Box-plot
displaying the log2 fold change (FC)
expression of the H3K4me3-enriched
genes of the PEG1 line. D, Genome-
View representation (Abeel et al.,
2012) of selected DEGs and DHM
genes showing the read coverage in
PEG1 versus the control line. The reads
are piled up with forward reads above
and reverse reads below the axis. Total
coverage is gray shaded. Scaling was
done relative to the maximum number
of reads. The read number is given in
the middle of the enriched regions. The
coding regions are indicated as gray
boxes and the PEG1-enriched regions
as pink boxes above the reads. Bars =
0.5 kb.
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Together, these analyses support a model (Fig. 6) in
which DEG and DHM key genes, primarily TFs and
kinases, regulate downstream responses. Considering
the role of the H3K4me3 dynamics in drought stress
gene responsiveness (Kim et al., 2008; Ding et al., 2012),
the strong regulatory interconnection observed among
DEGs and DHM genes (Supplemental Fig. S7) suggests
that the cascade conferring the improved drought stress
tolerance in the PEG epilines becomes activated upon
stress exposure (Fig. 6; Supplemental Fig. S8).

DISCUSSION

Epigenetic Selection for Energy Use Efficiency and
Drought Tolerance

Molecular analysis of selected energy use-efficient (EUE
lines) and drought-tolerant (PEG lines) plants highlights
the directed epigenome and transcriptome changes and
provides evidence for the episelection and an explanation
for the enhanced drought stress tolerance of the epilines.
RNA-seq analysis of control and PEG lines demonstrated
the modified expression of a specific set of genes. In two
independently selected PEG lines, a high overlap of
shared DEGs was observed. Moreover, functional anno-
tation and comparison with Arabidopsis transcriptome
studies revealed a significant representation of genes
linked to osmotic stress and ABA signaling. In favor of
the efficiency of the combined selection strategy for both
energy use efficiency and drought tolerance, the differ-
ential gene expression profiles of the PEG lines correlated
better with water deprivation stress data than the EUE
line selected solely for high energy use efficiency. Inter-
estingly, the altered gene expression rendered the PEG
lines more drought stress tolerant without negatively af-
fecting growth or yield under optimal conditions (as ob-
served in field trials), making them promising candidates
for engineering enhanced stress tolerance.
The repeated selection for energy use efficiency

solely or energy use efficiency and drought tolerance
over several generations starting from isogenic popu-
lations of canola is an effective and fast process: from a

population of approximately 200 plants, stable epilines
with the selected phenotype were obtained after three
generations. The altered gene expression in both the
EUE and PEG lines obtained by screening explants of
isogenic plants that are maintained and taken to the
next generation when displaying the desired trait
suggests an epigenetic feature. As already shown
(Hauben et al., 2009), this screening resulted in the
isolation of genetically identical, but epigenetically
different, canola populations that were transgenera-
tionally stable for over eight generations with respect
to their phenotypes. Here, we demonstrate that this
selection strategy enables the modulation of stress
genes in the absence of a stimulus, indicating that the
transgenerational trait inheritance occurs indepen-
dently of any priming and memory (Molinier et al.,
2006; Whittle et al., 2009). Similar to the EUE line, the
drought tolerance of the PEG lines was inherited stably

Figure 6. Proposed network by CORNET (see “Materials and Methods”)
conferring drought stress tolerance in the PEG epilines. Nodes depict
DEGs (white) and/or DHM genes (red border), with triangles and dia-
monds representing TFs and kinases, respectively.

Figure 5. Network analysis of DEGs
enriched in H3K4me3. A, Cis-regulatory
element enrichment analysis using
1-kb promoter sequences. Enrichment
of W-box, DRE site, and ABRE motif
occurrence in conserved noncoding
sequences upstream of DEGs and/or
DHM genes. Sequence logos used in
mapping are shown below the graph.
*, Not significant (P . 0.05). B, Gene
regulatory and interaction subnetwork.
The module represents pairwise first-
neighbor interactions of the WRKY53
TFs with other PEG1 DEGs and/or DHM
genes (see “Materials and Methods”;
Supplemental Table S17). PPI, Protein-
protein interaction.
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over at least seven generations. In isogenic populations,
the epigenome is diverse and undergoes dynamic
changes. During the screening process, some of these
epigenetic states, epialleles, could be selected and fixed.
Fixation of epialleles will reduce the epigenetic varia-
tion of the selected phenotype/trait in the population,
as can be seen by the narrowing of the variation of the
selected phenotype/trait in the population after each
selection cycle (Hauben et al., 2009). It is very unlikely
that mutations are responsible for the selected pheno-
types, because the line to which the selections were
applied was a double haploid that was derived from a
single microspore and was maintained under controlled
conditions to avoid unwanted cross-pollinations. After
each seed upscaling, the progeny were tested for purity
using specific phenotypic and molecular markers.
Moreover, the high frequencies with which the epilines
were selected (1022) make selection by mutation very
improbable. To assess potential genomic differences
between a selected epiline and the original control line
from which the epiline was derived, a variant-calling
procedure was done on the available RNA-seq data
of the PEG1 line and its control. Very few DNA poly-
morphisms were identified that probably do not
cause mutations underlying the selected phenotypes
(Supplemental Text S1).

Transcript Levels and H3K4me3 in the Epilines

The effectiveness of the episelection strategy was
supported by the ChIP-seq analysis of control and PEG1
plants. Functional annotation of the H3K4me3-enriched
genes in PEG1 plants and comparison with Arabidopsis
transcriptome studies confirmed a significant represen-
tation of osmotic stress-linked genes. Moreover, in the
PEG2 line, several regions with enriched H3K4me3
binding corresponded with those found in the PEG1 line,
further favoring the specificity of the PEG selection to fix
certain epialleles. In plants, changes in histone methyla-
tion mark distribution have been implicated in response
to a range of abiotic stresses, including drought, osmotic,
and salt stresses (Sokol et al., 2007; van Dijk et al., 2010;
Kim et al., 2012; Sani et al., 2013; Zong et al., 2013). In all
these studies, histone mark changes resulted from sen-
sitization for stress responsiveness. In contrast, our se-
lection strategy isolated epilines with a directed altered
H3K4me3 distribution under optimal nonprimed condi-
tions: only the hypocotyl explants of the seedlings were
used for screening stress tolerance, whereas the shoot
tips that were rooted and transferred to the greenhouse
were never exposed to the stress. More research is
needed to understand the mechanism of the epiallele
selection, fixation, and transgenerational inheritance, for
example by studying the epigenome of the populations
generated in the three subsequent selections steps.

In plants, a positive correlation has been found be-
tween H3K4me3 and gene transcription (Roudier et al.,
2011). Accordingly, most DEGs with enriched H3K4me3
mark distribution are up-regulated in the PEG lines.

However, until now, it has been unclear whether the
H3K4me3 pattern is the cause or the consequence of
the increased gene expression (Sani et al., 2013). Besides the
overall positive correlation between H3K4me3 and gene
expression, a small set of down-regulated PEG genes
also display H3K4me3 enrichment. The lack of corre-
lation between H3K4me3 and enhanced gene expres-
sion was also described in other studies (Weiner et al.,
2012; Sani et al., 2013). Moreover, the positive correla-
tion between H3K4me3 and gene expression is much
weaker for genes with a high expression than for those
with a low expression (Sani et al., 2013). In budding
yeast (Saccharomyces cerevisiae), a repressive role for
H3K4me3 has been reported (Weiner et al., 2012). A
limited, but substantial, set of diamide stress-repressed
genes were found to have increased H3K4me3 levels.
Interestingly, this unexpected chromatin mark enrich-
ment appeared to target a specific gene class, the ribo-
somal protein genes (Weiner et al., 2012). Among the
small number of H3K4me3-enriched transcriptionally
repressed PEG genes (47 genes), no specific gene group
seems overrepresented. Notably, whereas H3K4me3
occurs at the 59 ends of transcribed and PEG-induced
genes, the repressed PEG genes displayed an atypical
H3K4me3 enrichment distribution at the 39 ends. This
unanticipated distribution and its possible effect on
expression need further investigation. Additionally,
studies might connect the H3K4me3 enrichment of PEG
lines with osmotic stress-responsive up-regulated and,
possibly, down-regulated genes.

Chromatin modification is not necessarily correlated
directly with transcriptional regulation, but it can gen-
erate a context for the interplay with other factors at a
developmental stage or in an environmental condition.
Elevated H3K4me3 levels may not affect transcription
immediately, but could act as preparatory/sensitizing
marks for a fast and genome-wide gene transcription
responsiveness upon stress perception (Jaskiewicz et al.,
2011). Considering the high number of H3K4me3-
enriched osmotic stress-responsive genes without al-
tered expression in the PEG1 line, examination and
comparison of their expression profiles upon stress ex-
posure might be interesting. In summary, our study
demonstrates that epilines with distinct characteristics
can be selected from a pool of isogenic seeds, implying
that the implementation of epigenetics in breeding is
promising.

MATERIALS AND METHODS

Plant Material, Generation of Lines, and Physiological and
Biochemical Analyses

Athena is an elite canola (Brassica napus) breeding line of Bayer CropScience.
Canola lines with improved energy use efficiency and drought stress tolerance were
selected as described previously with some minor modifications (Hauben et al.,
2009). Seedlings from an isogenic doubled haploid line were grown for 2 weeks on
agar in one-half-strength Murashige and Skoog medium supplemented with
2% (w/v) Suc. Seedling shoot tips were placed on the medium for rooting, whereas
five hypocotyl explants per seedling were cultured for 5 d on callus-inducing me-
dium containing 5% (w/v) PEG-6000 (Fluka BioUltra; Sigma-Aldrich) before cellular
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respiration was measured (Hauben et al., 2009). Rooted shoot tips of seedlings with
the lowest respiration were transferred to the greenhouse for seed production by
self-fertilization and subjected to two additional identical selection rounds. Respi-
ration and photorespiration of the obtained lines were measured as described
(Hauben et al., 2009).

Intracellular NADH and NADPH were quantified as described (Nakamura
et al., 2003) with the following modifications. For the reaction solution,
5% (v/v) of the Cell Counting Kit-8 (Dojindo Laboratories) was diluted in 25 mM

potassium phosphate buffer (pH 7.4) containing 0.1 mM 1-methoxyphenazine
methosulfate (Sigma-Aldrich) and 0.1% (v/v) PEG sorbitan monolaurate (Tween
20). The explants were placed in the reaction solution and incubated at 26°C for
30 min to 1 h. The absorbance of the reaction solution was measured at 450 nm
[optical density at 450 nm = 0.281 for 10 mM NAD(P)H].

NUE was scored by quantifying the root formation on medium with a low
nitrogen content (35 mL L21) versus medium with a standard nitrogen content
(210 mL L21). Hoagland medium (Hoagland and Arnon, 1938) with 1.2%
(w/v) plant agar (Duchefa) was poured into square Nunc bioassay dishes
(Thermo Scientific). After solidification of the agar, the top half of the medium
was removed and seeds were sown on top of the agar layer. The plates were
incubated vertically for 8 d (at 23°C, 80 mmol m22 s21 light, and a 16-h-light/
8-h-dark regime). The roots that grew on the surface of the agar were quantified
by scanning the plates and analyzed with ImageJ (http://imagej.nih.gov/ij/).

Drought tolerance was analyzed by measuring the fresh weight of shoots of
24-d-old normally watered and drought regime-treated plants. After 13 d,
plants under the drought regime were no longer watered for 8 d, until wilting
symptoms became apparent, followed bywatering for 2 d, after which the fresh
weight was determined.

Polysomal RNA Isolation

Polysomal RNAwas isolated according to an adapted protocol (de Jong et al.,
2006). Ground and liquid nitrogen frozen material of leaf 4 from 26-d-old control
and selected lines was solubilized in an equal volume of extraction buffer (pH
8.5) containing 0.2 M Tris, 0.1 M KCl, 70 mM magnesium acetate, 50 mM EGTA,
0.25 M Suc, 10 mM dithiothreitol, 100 mg mL21 cycloheximide (Sigma-Aldrich),
and 100 units mL21 SUPERase-In (Ambion). The slurry was allowed to thaw on
ice and gently mixed to enhance homogenization. The suspension was strained
through two layers of Miracloth (Merck Millipore) via successive centrifugation
for 1 min at 100g (4°C) and 5 min at 1,000g (4°C) in 50-mL sterile tubes. The
cleared supernatant was centrifuged for 15 min at 8,400g (4°C) to pellet addi-
tional debris, made to 1% (v/v) Triton X-100, and incubated on ice for 10 min.
After centrifugation at 20,800g (4°C) in an Eppendorf tabletop centrifuge, the
supernatant was loaded in SW41 Ultra-Clear tubes (Beckman Coulter) on dis-
continuous Suc gradients that consisted of 0.6 mL of 1.65 M Suc and 1 mL of 1 M

Suc, both buffered with 103 concentrated Suc salt buffer (pH 8.5, autoclaved)
containing 0.4 M Tris, 1 M KCl, 0.3 M magnesium acetate, and 50 mM EGTA. To
maintain RNA integrity, 10 mM dithiothreitol, 100 mg mL21 cycloheximide, and
100 units mL21 SUPERase-In (Ambion) were added to these Suc solutions. The
gradients were centrifuged for 4 h at 150,000g (4°C) in an ultracentrifuge (type
L8-50 M/E; Beckman Coulter) to pellet the polysomes. The polysomal pellets
were resuspended in 100 mL of extraction buffer, and polysomal RNA was
isolated with an RNeasy kit (Qiagen). The quantity of polysomal RNA was
measured with a Nanodrop spectrophotometer (Thermo Scientific), and the
quality was examined with a Bioanalyzer 2100 (Agilent Technologies) and the
RNA 6000 Nano Assay kit (Agilent Technologies).

RNA-seq Analysis

The RNA-seq analysis was done at the Beijing Genome Institute. Com-
plementary DNA (cDNA) sequencing libraries were prepared from polysomal
RNA by means of the mRNA-Seq Sample Preparation Kit (Illumina) and run
on a genome analyzer (GAIIx; Illumina), yielding 90-bp paired-end reads
that were quality controlled with FastQC (version 0.10.0; http://www.
bioinformatics.bbsrc.ac.uk/projects/fastqc/), which showed that the quality
decreased in the last 10 bp of the reads. With the FASTX trimmer of the FASTX
toolkit (version 0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/), 10 bases
were trimmed at the 39 side, yielding high-quality 80-bp paired-end reads.

As a reference for the read mapping, a nonredundant gene set was built as
follows. Orthologous pairs were formed by an all-against-all BLASTN (Altschul
et al., 1990) comparison between the nucleotide sequences of the in silico
predicted gene sequences of Brassica rapa and Brassica oleracea (in-house data)
and by retrieval of the reciprocal best hits, resulting in 21,260 orthologous

pairs and 39,496 singletons (nonorthologs). Because of the higher annotation
quality of B. rapa, the B. rapa ortholog was taken as the orthologous pair
representative in every orthologous pair. These 21,260 orthologous pair rep-
resentatives together with the 39,496 singletons form the nonredundant ref-
erence gene set that contains 60,756 genes.

In the next step, the high-quality 80-bp paired-end reads were mapped to
the nonredundant gene set with GSNAP [unique mapping with maximum
number of paths to print set to 1 (-n 1 -Q) and maximum of five mismatches
(-m 5) allowed]. These options enforce, when used together, that reads that
cannot be mapped in a unique manner, are not written to the output file (Wu
and Nacu, 2010). All reads were retained that mapped uniquely and concor-
dantly, and the number of reads mapping to each transcript was calculated
with samtools idxstats (Li et al., 2009). The corresponding count table was
filtered on a minimum average read count of five over the lines analyzed and
then was given as an input to edgeR (Robinson et al., 2010) for differential
expression testing.

Quantitative Reverse Transcription-PCR

Total RNA was extracted with the RNeasy Plant Mini Kit (Qiagen) and
treated with DNase I prior to cDNA synthesis. cDNA was prepared from
DNase I-treated total RNA with the iScript cDNA Synthesis Kit (Bio-Rad)
according to the manufacturer’s instructions. The relative transcript abun-
dance of selected genes (for genes and primers used, see Supplemental Table
S4) was determined with the LightCycler 480 system and the LC480 SYBR
Green I Master kit (Roche Diagnostics). Two biological and three technical
repeats were measured. To obtain relative expression values, the amplifica-
tion data were analyzed by means of qBase+ (Hellemans et al., 2007)
with the second derivative maximum method and three reference genes for
normalization.

Native ChIP

The native ChIP protocol was adapted (Bernatavichute et al., 2008) as
follows. Material from leaf 4 of 26-d-old wild-type and PEG1 plants was
harvested, frozen in liquid nitrogen, and ground to powder (1.5 g). Plant tissue
was resuspended in 15 mL of HBM buffer (25 mM Tris-HCl, pH 7.5, 440 mM

Suc, 10 mM MgCl2, 0.1% [v/v] Triton-X, 10 mM b-mercaptoethanol, 2 mM

spermine, 1 mM phenylmethanesulfonyl fluoride [PMSF], 1 mg mL21 pepsta-
tin, 1 mg mL21 aprotinin, and 1 mg mL21 leupeptin), homogenized, and filtered
twice through Miracloth (Merck Millipore). After centrifugation at 1,000g for
5 min (4°C; SS-34 Sorvall; Thermo Scientific), the pellet was resuspended in 5 mL
of NIB buffer (20 mM Tris-HCl, pH 7.5, 250 mM Suc, 5 mM MgCl2, 5 mM KCl,
0.1% [v/v] Triton-X, 10 mM b-mercaptoethanol, 1 mM PMSF, 1 mg mL21 pep-
statin, 1 mg mL21 aprotinin, and 1 mg mL21 leupeptin), applied to a 15%/50%
Percoll (GE-Healthcare) gradient in NIB buffer, and centrifuged at 500g for
20 min (4°C; SS-34 Sorvall). Isolated nuclei were washed three times in NIB
buffer and flash frozen in liquid nitrogen in HBC buffer (25 mM Tris-HCl, pH 7.5,
440 mM Suc, 10 mM MgCl2, 0.1% [v/v] Triton-X, 10 mM b-mercaptoethanol, and
20% [v/v] glycerol). Nuclei from each preparation were diluted 2-fold in di-
gestion buffer (20 mM Tris-HCl, pH 7.5, 0.22 M Suc, 50 mM NaCl, 5 mM MgCl2,
1 mM CaCl2, and 5 mM sodium butyrate), centrifuged at 600g for 5 min (4°C;
model 5415R; Eppendorf), and resuspended in 0.25 mL of digestion buffer for
micrococcal nuclease (30 units; Affymetrix) digestion for 10 min at 37°C stopped
with 10 mM EDTA. Mononucleosomes were released by treating nuclei with
0.1% (v/v) Triton-X for 2 h in the cold and then pelleting the debris by cen-
trifugation at 9,300g for 5 min (4°C; 5415R; Eppendorf). The supernatants were
diluted to 0.5 mL in incubation buffer (20 mM Tris-HCl, pH 7.5, 50 mM NaCl,
5 mM EDTA, 0.1% [v/v] Triton-X, 20mM sodium butyrate, 0.1 mM PMSF, 1mgmL21

pepstatin, 1 mg mL21 aprotinin, and 1 mg mL21 leupeptin) and incubated
overnight in the cold with and without 2.5 mg of the anti-H3K4m3 antibody
(#07-473; Merck Millipore). Then, 50 mL of Dynabeads Protein G (Invitrogen)
was added, incubated for 3 h in the cold, and washed three times with 500 mL
of wash buffer (50 mM Tris-HCl, pH 7.5, 10 mM EDTA, 5 mM sodium butyrate,
0.1 mM PMSF, 1 mg mL21 pepstatin, 1 mg mL21 aprotinin, and 1 mg mL21 leu-
peptin) with increasing concentrations of NaCl (50, 100, and 150 mM) subse-
quently. The final wash was done in TE buffer (10 mM Tris-Cl, pH 8, 500 mM

NaCl, and 1 mM EDTA), and immunocomplexes were eluted and reverse cross-
linked by incubation overnight at 65°C in 0.25 mL of 10 mM Tris-HCl (pH 8),
1 mM EDTA, 0.5 M NaCl, 1% (w/v) SDS, and 1 mL of RNase A (100 mg mL21).
Eluates were incubated with 100 mg of Proteinase K for 2 h at 42°C, and the
DNA was extracted by phenol/chloroform/indole-3-acetic acid, followed by
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purification with the Qiaquick PCR purification kit and DNA quantification
with the Quant-iT dsDNA High Sensitivity kit (Invitrogen).

ChIP-seq Analysis

ChIP DNA libraries were prepared according to the manufacturer’s pro-
tocol and sequenced on a HiSeq2500 (100 paired-end reads; Illumina). The
sequencing data were quality controlled with FastQC. Overrepresented se-
quences were removed using FASTX-clipper from the FASTX toolkit. The
reads were mapped to the reference genomes of B. rapa and B. oleracea using
GSNAP with default settings (Wu and Nacu, 2010). Reads that could not be
assigned to a unique position in the genome were removed.

Peak calling was done with MACS version 2.0 (Zhang et al., 2008). The
genome size (-g) was set at 2.0e8 and 3.7e8 for B. rapa and B. oleracea, re-
spectively. Other parameters were set at their default values using the BAMPE
format option. For differential histone mark-binding analysis, the MACS
version 2.0 bdgdiff module with default settings was used. Peaks were an-
notated by overlapping the peak summits reported by MACS with the B. rapa
or B. oleracea annotation. A peak was assigned to the closest gene, taking into
account both upstream and downstream regions of the genes. When a peak
was located within the boundaries of a gene, it was assigned to this gene.

Quantitative ChIP-PCR

Quantitative PCR experiments were carried out on H3K4me3 ChIP-isolated
genomic DNA from control and selected epilines and done as technical trip-
licates on equal DNA concentrations with the LightCycler 480 system and the
LC480 SYBR Green I Master kit (Roche Diagnostics). Primers used for PCR
amplification were designed surrounding the mid region of nonenriched (C1
and C2) and enriched regions identified by the sequencing (Supplemental
Table S4). ChIP values of H3K4me3 binding were normalized by means of
nonenriched regions.

Computational Analyses

The overlap significance of gene sets was calculated with a hypergeometric
distribution test. Orthologous Arabidopsis genes (The Arabidopsis Information
Resource 10) of the B. rapa and B. oleracea genes were identified by an all-
against-all BLASTN (E-value cutoff of 1e-5; Altschul et al., 1990) and by re-
trieval of the reciprocal best hits. Functional GO classification and enrichment
analysis of the Arabidopsis orthologs were done with BAR (Toufighi et al.,
2005) and PLAZA 2.5 (Van Bel et al., 2012).

For comparative transcriptome analysis, the Genevestigator signature tool
was utilized and hierarchical clustering analyses were performed. The 300
strongest DEGs (highest absolute log2 fold changes) were extracted separately
for the PEG1, PEG2, and EUE lines and used as input for the signature tool in
Genevestigator (Hruz et al., 2008), thereby selecting all perturbation experi-
ments on the ATH1 microarray platform (relative log2 fold scaled data) to
retrieve similar experiments. Raw Affymetrix Cell Intensity files were
obtained from the Gene Expression Omnibus database (ncbi.nlm.nih.gov/
geo/; GSE5628, GSE5621, GSE5622, GSE5623, GSE39384, GSE16474,
GSE36789, and GSE22107) and ArrayExpress (ebi.ac.uk/arrayexpress/;
E-MEXP-2435 and E-MEXP-2377). Data were normalized with Robust Multi-
array Average (Bolstad et al., 2003; Irizarry et al., 2003a, 2003b) with the affy
package of R/Bioconductor (Gautier et al., 2004). Probe sets were annotated
according to the latest Brainarray (http://brainarray.mbni.med.umich.edu/
Brainarray/; Dai et al., 2005) custom chip definition file provided for Arabi-
dopsis (The Arabidopsis Information Resource G version 18.0.0). Differential
gene expression was analyzed by the limma package (Smyth, 2004). Genes
were hierarchically clustered (single linkage) by Pearson correlation in the
open-source analysis software MultiExperiment Viewer version 4.9.0 (Saeed
et al., 2003).

Genes were annotated as TFs when found at least twice in the databases
DATF (Guo et al., 2005), PlnTFDB (Pérez-Rodríguez et al., 2010), AtTFDB
(Yilmaz et al., 2011), and PlantTFDB (Jin et al., 2014). For the annotation of
kinases, the PlantsP database (Tchieu et al., 2003) was used.

For promoter analysis, sequences were restricted to the first 1,000 bp up-
stream from the translation start site or to a shorter region when the adjacent
upstream gene was located at a distance smaller than 1,000 bp. Known motifs
from the integrated AGRIS, PLACE, and AthaMap (Van de Velde et al., 2014)
databases were mapped with the dna-pattern program without allowing
mismatches (Thomas-Chollier et al., 2008).

For network analysis, Arabidopsis orthologous DHM genes and DEGs
were used as query genes to retrieve pairwise interaction information from
different sources. Protein-protein interactions were extracted from CORNET2.0
(De Bodt et al., 2012; cornet.psb.ugent.be/) using experimental and predicted
interactions from all available databases. Predicted interactions were filtered to a
minimum of two independent references. Additional protein interaction sources
were MIND (Jones et al., 2014; associomics.org/), eTRAIN (Lumba et al., 2014),
and kinase-substrate interactions from PhosPhAt4.0 (Zulawski et al., 2013;
phosphat.uni-hohenheim.de/). Regulatory interactions were downloaded from
AGRIS (Yilmaz et al., 2011; Arabidopsis.med.ohio-state.edu/) and supple-
mented with predicted conserved TF motif interactions (Van de Velde et al.,
2014). Interactions were filtered on a minimum of two independent references
(confirmed; AGRIS) and motif conservation among four species. Additional
regulatory interactions were retrieved from the EVEX database (Van Landeghem
et al., 2012; evexdb.org/). All interactions were loaded into Cytoscape, and the
FAG-EC algorithm (Li et al., 2008) was run with default settings for network
clustering.

The data discussed in this article have been deposited in the National Center
for Biotechnology Information Gene Expression Omnibus (Edgar et al., 2002)
and are accessible through the Gene Expression Omnibus accession number
GSE65578.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. PEG line selection scheme and NUE analysis.

Supplemental Figure S2. Comparative transcriptome analysis of EUE and
PEG plants.

Supplemental Figure S3. Hierarchical clustering analysis of RNA-seq and
Arabidopsis drought stress-related transcriptome studies.

Supplemental Figure S4. H3K4me3 distribution across the B. oleracea ref-
erence.

Supplemental Figure S5. Heat map of differential expression levels of the
Arabidopsis orthologous DHM genes in drought stress-related tran-
scriptome data sets and the PEG1 line.

Supplemental Figure S6. Enriched H3K4me3 mark distribution in DEGs of
PEG1.

Supplemental Figure S7. Cytoscape representation of the largest module
obtained by clustering of the compiled interactome, kinase substrate,
and regulatory data of the PEG1 DEGs and/or enriched DHM genes.

Supplemental Figure S8. Gene regulatory and interaction subnetwork of
the CREATINE PHOSPHOKINASE32 kinase.

Supplemental Table S1. Photorespiration of selected epilines.

Supplemental Table S2. RNA-seq mapping details.

Supplemental Table S3. DEGs in the PEG and EUE lines.

Supplemental Table S4. List of primers.

Supplemental Table S5. Functional categorization of DEGs and DHM genes.

Supplemental Table S6. Genevestigator similarity analysis report of the
DEGs of the PEG and EUE lines.

Supplemental Table S7. Arabidopsis transcriptome data sets (used for
generating Supplemental Table S6).

Supplemental Table S8. ChIP-seq count and mapping results.

Supplemental Table S9. H3K4me3 distribution in the PEG control line.

Supplemental Table S10. H3K4me3 distribution in the PEG1 line.

Supplemental Table S11. H3K4me3 enrichment in the PEG control line.

Supplemental Table S12. H3K4me3 enrichment in the PEG1 line.

Supplemental Table S13. List of DEGs and DHM genes in the PEG1 line.

Supplemental Table S14. Kinase classification and enrichments.

Supplemental Table S15. Transcription factor classification and enrichments.
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Supplemental Table S16. Simple and conserved cis-regulatorymotif mapping.

Supplemental Table S17. List of pairwise protein and regulatory interac-
tions between DEGs and/or DHM genes.

Supplemental Text S1. Variant calling between the PEG1 line and its control.
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