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Alzheimer disease is the most common form of dementia in the elderly, and the complex relationships among risk

factors produce highly variable natural histories from normal cognition through the prodromal stage of mild cognitive

impairment (MCI) to clinical dementia. We used a novel statistical approach, mixed membership trajectory models,

to capture the variety of such pathways in 652 participants in the Cardiovascular Health Study Cognition Study over

22 years of follow-up (1992–2014). We identified 3 trajectories: a “healthy” profile with a peak probability of MCI

between 95 and 100 years of age and only a 50% probability of dementia by age 100; an “intermediate” profile

with a peak probability of MCI between 85 and 90 years of age and progression to dementia between 90 and 95

years; and an “unhealthy” profile with a peak probability of progressing to MCI between ages 75 and 80 years and to

dementia between the ages of 80 and 85 years. Hypertension, education, race, and the ε4 allele of the apolipopro-

tein E gene all affected the closeness of an individual to 1 or more of the canonical trajectories. These results pro-

vide new insights into the natural history of Alzheimer disease and evidence for a potential difference in the

pathophysiology of the development of dementia.

dementia; mild cognitive impairment; mixed membership; trajectory models

Abbreviations: Apoε4, ε4 allele of the apolipoprotein E gene; CHS, Cardiovascular Health Study; MCI, mild cognitive impairment;

MMTM, mixed membership trajectory model.

Alzheimer disease is the most common cause of dementia
in the elderly; the prevalence increases exponentially between
the ages of 65 and 85 years, approaching 50% in the oldest old
(1, 2). After 90 years of age, the incidence of Alzheimer dis-
ease increases dramatically, from 12.7%/year in the 90–94
age group, to 21.2%/year in the 95–99 age group, and to
40.7%/year in those ≥100 years of age (3).
The risk of Alzheimer disease is further affected by the

presence of the ε4 allele of the apolipoprotein E gene (Apoε4),
male sex, lower education, and having a family history of de-
mentia (1, 4, 5). Medical risks include systemic hypertension,
diabetes mellitus, and cardiovascular or cerebrovascular dis-
ease (6–11). Lifestyle factors affecting risk include physical
and cognitive activity and diet (12–14). It is the interactions
among these risk factors and the pathobiological cascade of
Alzheimer disease that determine the likelihood of a clinical
expression of Alzheimer disease as either dementia or its pro-
dromal syndrome, mild cognitive impairment (MCI) (15).

These interactions vary as a function of an individual’s age,
in part because both the risk factors and dementia itself
increase the risk of death. We chose to examine a subset of
these variables and how they affect the risk of developing
dementia.
Our analysis is based on the data of the Cardiovascular

Health Study (CHS) Cognition Study, a rich database of in-
formation obtained over more than 20 years, including de-
tailed cognitive assessments in 1990–1991 (16), 1998–1999
(17), 2002–2003 (18), and annually thereafter. These data have
been used to describe the incidence and prevalence of demen-
tia and MCI (1, 6, 18, 19) and, more recently, to examine the
patterns of progression from normal cognition to MCI (15).
Familiar approaches to assessing the importance of various

risk factors for MCI or dementia involve (multinomial) logis-
tic regression analysis, survival analysis, and the like. Such
analyses (1, 6, 18, 19) have shown the importance of a range
of risk factors and risk modifiers in predicting the time to
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develop clinical dementia. However, these approaches do not
address the widely held intuition that there are a variety of
pathways or trajectories that individuals can take as part of
the natural history of Alzheimer disease (20, 21).

In order to evaluate the evidence for multiple trajectories
and to capture these different pathways if they are found, we
have adapted the innovative, data-driven, mixed membership
trajectory model (MMTM) approach of Manrique-Vallier as
described by Erosheva et al. (22) and Connor (23). This tech-
nique combines features of cross-sectional grade of member-
ship models (24) with those of longitudinal multivariate
latent trajectory models (25), and it is becoming well estab-
lished in the statistics and machine learning literature (26).

The present paper represents one of the first applications of
MMTM methodology to neuroepidemiologic data, and spe-
cifically to the studyof the development of cognitive disorders
in normal aging. The technique has allowed us to identify,
from the data, a small number of theoretically appealing ca-
nonical trajectories to dementia and MCI (analogous to latent
class or mixture modeling). In addition, we are able to deter-
mine the extent to which classic risk factors for Alzheimer
disease and MCI are associated with the closeness of an in-
dividual to each of the canonical trajectories.

METHODS

Data and subjects

The CHS began in 1989–1990 and obtained extensive clini-
cal, radiological, and laboratory data from participants recruited
from the Medicare eligibility lists in 4 US communities; details
were described previously (27). In 1992–1994, 924 of the CHS
participants in Pittsburgh, Pensylvania, underwent a structural
magnetic resonance imaging scan of the brain, and these indi-
viduals constitute the initial cohort of the CHS Cognition Study
(6).We used data from the 652 individuals in theCHSCognition
Study cohort who were alive in 1998 and who agreed to genetic
testing for Apoε4. The 168 subjects who had died prior to the
1998–1999 visit were older and more likely to be men and to
have hypertension, diabetes, and dementia than those who
were alive (Web Table 1 available at http://aje.oxfordjournals.
org/). The 103 individuals who declined genetic testing were
more likely to have hypertension than thosewho consented to
testing but were otherwise similar (Web Table 2).

Cognitive classification

In 1998–1999, the CHS attempted to identify all partici-
pants whowere demented at the time of themagnetic resonance
imaging examination in 1991–1994 or who developed de-
mentia by 1998–1999. The cohort included all participants
who had magnetic resonance imaging in 1991–1994, a Mod-
ified Mini-Mental State Examination, and Apoε4 genotyping
(28). From 2002 to 2014, the surviving, nondemented partici-
pants from Pittsburgh were evaluated on an annual basis by
using the standard study procedures. For those individuals
who could not return to the clinic, home visits were completed.
For those individuals who refused home visits, telephone in-
terviews for cognitive status were conducted as described by
Brandt et al. (29), and the informants were interviewed by

standard procedures, including the Dementia Questionnaire
(30) and the Informant Questionnaire on Cognitive Decline
in the Elderly (IQCODE) (31).

The diagnoses of dementia and MCI were made by an ad-
judication committee that used all available cognitive and
laboratory data from each participant (17, 28). The first step
in the diagnostic process was to determine the presence of
dementia using 3 sets of criteria: the National Institute of
Neurological and Communicative Disorders and Stroke–
Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) (32, 33), the Diagnostic and Statistical
Manual of Mental Disorders (Fourth Edition) (DSM-IV) (34),
and the International Classification of Diseases, Tenth Revision
(ICD-10) (35). If any of those criteria were met, the specific
type of dementia was identified by using multiple diagnostic
criteria for Alzheimer disease (NINCDS-ADRDA (32), DSM-
IV (34)), vascular dementia (State of California Alzheimer’s
Disease Diagnostic and Treatment Centers (ADDTC) (36)),
National Institute of Neurological Disorders and Stroke–
Association Internationale pour la Recherche et l’Enseignement
en Neurosciences (NINDS-AIREN) (37)), dementia with Lewy
Bodies (38), and frontotemporal dementia (39).

MCI was classified following the CHSCognition Study di-
agnostic criteria (17). Any cognitive deficits represented a de-
cline from the previous level of functioning, but overall they
fell within normal limits. Individuals with mild alterations on
instrumental activities of daily living could be classified with
MCI, and all had impairments (defined as performance >1.5
standard deviation below age/education appropriate means)
in 1 ormore cognitive domains (i.e., 2 ormore tests abnormal)
or 1 abnormal test (which could be amemory test) in at least 2
separate domains, without sufficient severity or loss of instru-
mental activities of daily living to constitute dementia.

Theyearof onset of dementiawas set after reviewof all prior
records, including the reports of informants (e.g., Informant
Questionnaire on Cognitive Decline in the Elderly and De-
mentia Questionnaire). Once a patient was diagnosed with
dementia, follow-up was limited to telephone contact and
medical record review. A classification of MCI had no effect
on the number or intensity of follow-up visits.

Statistical model

MMTMs are related to the category of latent class models
(25, 40) that uses the data to find a small number of latent
classes and then estimates the probability of each individual’s
falling into each one of them. Unlike other similar methods,
MMTMs allow each individual to have a weighted member-
ship in each trajectory, and the individual is not forced into
one or another of the latent classes. The latent classes are
equivalent to the canonical trajectories toward MCI and de-
mentia, and we interpret the probabilities as weights of close-
ness to the canonical profiles.

The outcome variable, Y, codes the diagnosis of each indi-
vidual at each age:

Y ¼
1 if dementia
2 if MCI
3 if normal

8<
: :
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Diagnosis Y is observed at multiple ages for each individual,
from 1992 to dementia, death, or the last study visit (i.e.,
2012). There were a total of 3,569 observations from the
652 participants, an average of 5.46 per individual.

Mixed membership trajectory model. MMTMs assume
the existence of a small number of canonical profiles describ-
ing individuals’ trajectories toward specific health outcomes
over time; we describe here an MMTM with K = 3 canonical
profiles. Within the kth canonical profile (k = 1; 2; 3), the
probability of each diagnosis y, as a function of age, Pk(Y =
yjage), is modeled as a multinomial logistic regression on
each individual study participant’s age, so that Pk(Y = yjage)
is characterized by the equations:

logitPkðY > 1jageÞ ¼ β0k þ β1k age

logitPkðY > 2jageÞ ¼ β0k þ β1k age� ck:
ð1Þ

The trajectory of any specific individual is modeled as amixture
of these canonical trajectories; thus, trajectories of the individual
study participants share characteristics of all of the canonical
profiles to varying degrees. This allows us to 1) describe distinct
general tendencies of the trajectories while 2) accounting for in-
dividual variability at the same time. For individual i,

PðYi ¼ yjageÞ ¼
X3
k¼1

gikPkðYi ¼ yjageÞ: ð2Þ

In this equation, the membership weights gi = (gi1; gi2; gi3) are
nonnegative and sum to 1; an individual with weights gi = (0.5,
0.1, 0.4) would have a mixture of the trajectories, while an in-
dividual with weights gi = (0.0, 1.0, 0.0) would be a prototype
for the second trajectory. Note that equation 2 implicitly con-
tains 9 parameters: β0k; β1k; ck, for k = 1; 2; 3.

Survivorship analysis. The presence of dementia is corre-
lated with mortality; demented individuals are more likely to
die than individuals of the same age without dementia (35–
37). Because all subjects in our analysis are older than 70
years, any reference to the distribution of survival time refers
to the conditional version, given that the subjects have al-
ready lived more than 70 years. Within each canonical pro-
file, we modeled the random survival time exceeding the
age of 70 (variable S) using the Weibull distribution: w(s;
θk; δk), with scale parameter θk and shape parameter δk, k = 1;
2; 3. Our goal was to understand the survival patterns and
their impact on the trajectories to dementia using the strategy
described by Erosheva et al. (22).Wemade 2 critical assump-
tions: 1) The canonical profiles specify both the trajectories to
dementia and the mortality distributions, and 2) given the
membership vectors gi, the survival time s and the diagnosis
Y are independent. Therefore, the joint model for dementia
and mortality can be written as follows:

Pðyi;sijageÞ ¼
X3
k¼1

gikPkðyijageÞ
" # X3

k¼1

gikwðsi;θk;δkÞ
" #

: ð3Þ

Priors and additional predictors. We formulated the mod-
els within a Bayesian framework in which each parameter

is considered a random quantity. We specified prior distribu-
tions for the parameters in the analysis and estimated their
posterior distributions based on Markov chain Monte Carlo
sampling (41). We completed the Bayesian specification by
choosing prior distributions:

β0k ∼ Nð0; 100Þ for k ¼ 1; 2; 3;

β1k ∼ Nð0; 100Þ for k ¼ 1; 2; 3;

ck ∼ Nð0; 100Þ for k ¼ 1; 2; 3;

θk ∼ Gammað1; 1Þ for k ¼ 1; 2; 3;

δk ∼ Gammað1; 0:1Þ for k ¼ 1; 2; 3:

ð4Þ

The prior distributions of β0k, β1k, and ck are very flat (large
variances) and thus are uninformative about the possible val-
ues of these regression parameters, allowing the data to deter-
mine their own estimates. Given that both θk and δk must be
nonnegative, their priors can be considered diffuse but with
a realistic shape to model human survival times in excess of
70 years.
We then examined the effects of a set of time-invariant co-

variates on the closeness of individuals to each trajectory.
These7binarypredictorswere race (white), education (beyond
high school), hypertension (present), Apoε4 (present), sex
(female), diabetes (present), and heart disease (present). Hy-
pertension was defined as a systolic blood pressure greater
than 160 mm, a diastolic pressure greater than 94 mm, or cur-
rent use of antihypertensive medication. Diabetes mellitus
was defined as a fasting glucose measurement of 140 mg/
dL or greater or 200 mg/dL or greater 2 hours after a glucose
load (75 g), a history of diabetes from the medical history
questionnaire, or the current use of insulin or oral hypoglyce-
mic medications. Heart disease was considered present if the
participant had a history of angina, myocardial infarction,
stent placement, and/or coronary artery bypass surgery. The
vascular risk variables (i.e., hypertension, diabetes, heart dis-
ease) were considered present if they were identified at any
time between 1998–1999 and 2002–2004 (inclusive).
We evaluated the impact of these predictors on the proxim-

ity of individuals to the 3 trajectories, by allowing the prior
distribution of the membership vectors gi = (gi1, gi2, gi3) to
depend on the predictors X = (X1, X2, . . . , X7):

gi ¼ ðgi1; gi2; gi3Þ ∼ DirichletðαÞ for all i; ð5Þ

where

αðXÞ ¼ ðexpða01 þ a11X1 þ � � � þ a71X7Þ;
expða02 þ a12X1 þ � � � þ a72X7Þ;
expða03 þ a13X1 þ � � � þ a73X7ÞÞ:

ð6Þ

We also assume uninformative prior distributions for the co-
efficients in equation 6,

ajk ∼ Nð0;100Þ for j¼ 0; 1; : : :; 7 and k ¼ 1; 2; 3: ð7Þ

The full Bayesian model is therefore composed of equation 3
and the priors specified in equations 4–7. From equation 6
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and the properties of the Dirichlet distribution, we can see
that

log
Eðgi1Þ
Eðgi2Þ¼ða01�a02Þþða11�a12ÞX1þ���þða71�a72ÞX7

log
Eðgi1Þ
Eðgi3Þ¼ða01�a03Þþða11�a13ÞX1þ���þða71�a73ÞX7

log
Eðgi2Þ
Eðgi3Þ¼ða02�a03Þþða12�a13ÞX1þ���þða72�a73ÞX7;

so that we can interpret the difference (ajk− ajh) as the effect
of variable Xj on the population log odds of the event “indi-
vidual i has a trajectory near profile k” versus the event “in-
dividual i has a trajectory near profile h.”

RESULTS

Tables 1 and 2 show the estimated parameters determining
the 3 canonical trajectories toMCI/dementia and the 3 canon-
ical survival trajectories, respectively.

The canonical trajectories to MCI and dementia are shown
in Figure 1, which presents the probability of being cogni-
tively normal, having MCI, or having dementia for each of
the 3 profiles: 1) healthy, 2) intermediate, and 3) unhealthy.
These curves should not be viewed as if they were survival
functions. Each line represents the cross-sectional probability
of having a particular diagnosis at a given age. Within any
given profile, the sum of the probabilities for each diagnosis
for a given age equals 1.00. Refer also to Web Figure 1.

The healthy profile (Figure 1A) shows the canonical trajec-
tory of individuals whose peak probability of transitioning to
MCI occurs between 95 and 100 years of age. This group has
only a 50% probability of progressing to dementia by age
100; 21% of the sample was closest to this trajectory. The in-
termediate profile (Figure 1B) shows the canonical trajectory
of individuals having a peak probability of progressing to
MCI between 85 and 90 years of age, with a peak probability
of progressing to dementia between 90 and 95 years of age
(29% of the sample was closest to this trajectory). Finally,
the unhealthy profile (Figure 1C) shows the typical or canon-
ical trajectory of individuals who have a peak probability of
progressing to MCI between age 75 and 80 years and a peak
probability of progressing to dementia between the ages of 80
and 85 years (50% of the sample). Note that the use of the
terms “healthy,” “intermediate,” and “unhealthy” is to ease
discussion of the findings and is not based on other data.

The results of the analysis including the 7 time-invariant
predictors (refer to equation 6), as well as the survival com-
ponent described in equation 3, are presented in Web Ta-
bles 3–5. The effects of sex, diabetes, and heart disease on
the log ratios of the membership vectors were not statistically
significant (i.e., the 95% confidence intervals for all these co-
variates include 0.0). Thus, the results discussed below are
from the simpler model excluding those predictors.

Table 3 provides information on the influence of the 4 sig-
nificant confounding factors (race, education, hypertension,
Apoε4) on the closeness of single individuals to each canon-
ical trajectory in the form of confidence intervals for a log-
odds measure of closeness to one trajectory compared with
another. From the table, we can see that race (white) had

Table 1. Mixed Membership Trajectory Model With 4 Time-Invariant Predictors, Showing Posterior Means and

StandardDeviations for the Parameters of the 3Canonical Trajectories, Cardiovascular Health StudyCognition Study,

1992–2014

Meaning Parameter k = 1,a mean (SD) k = 2,b mean (SD) k = 3,c mean (SD)

Intercept β0k 38.011 (0.521) 47.913 (0.161) 38.904 (0.172)

Effect of age β1k −0.388 (0.054) −0.531 (0.031) −0.483 (0.027)

MCI/dementia threshold ck 1.799 (0.334) 4.197 (0.307) 1.647 (0.135)

Abbreviations: MCI, mild cognitive impairment; SD, standard deviation.
a Healthy profile.
b Intermediate profile.
c Unhealthy profile.

Table 2. Mixed Membership Trajectory Model With 4 Time-Invariant Predictors, Showing Posterior Means and

Standard Deviations for the Parameters of the 3 Canonical Survival Trajectories, Cardiovascular Health Study

Cognition Study, 1992–2014

Meaning Weibull Parameter k = 1,a mean (SD) k = 2,b mean (SD) k =3,c mean (SD)

Scale θk 3.887 (0.376) 5.397 (0.616) 4.050 (0.256)

Shape δk 29.059 (0.951) 29.610 (0.799) 25.217 (0.499)

Abbreviation: SD, standard deviation.
a Healthy profile.
b Intermediate profile.
c Unhealthy profile.
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the consequence of moving individuals away from the un-
healthy profile. Having more than a high school education re-
sulted in increased closeness to the healthy profile relative to
the unhealthy profile. Hypertension was associated with
greater closeness to the unhealthy profile relative to the inter-
mediate profile, while the presence of even a single copy of
Apoε4 increased the closeness of individuals to the unhealthy
profile (Table 3).
Figure 2 shows the effects of varying individual parame-

ters on the closeness to the canonical trajectories. Figure 2A
shows the predicted average trajectories (dotted lines) of 5
study participants with different characteristics determined
by the 4 time-invariant predictors. This plot refers to 5 imag-
inary individuals whose trajectories are estimated by using
the average parameters of the model. The plot is useful to

describe what happens as the values of the predictors change.
Each trajectory was obtained by using the posterior means of
the parameters ajk of equation 6 that determine the values of
the membership vectors to be used in equation 3. An individ-
ual with white race, education beyond high school, no hyper-
tension, and no copies of Apoε4 has a predicted trajectory
relatively close to the healthy canonical profile. As we change
the values of the 4 time-invariant predictors, one by one, we
see that the predicted individual trajectories move toward the
unhealthy canonical profile.
Figure 2B shows the individual trajectories of 2 CHS Cog-

nition Study participants, estimated by the posterior means of
the membership vectors gi. Their trajectories are estimated by
using subject-specific estimates from the model. The trajec-
tory closer to the unhealthy profile belongs to an individual
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Figure 1. The probability of being cognitively normal, havingmild cognitive impairment (MCI), or having dementia for each of the 3 profiles (healthy (A),
intermediate (B), and unhealthy (C)), Cardiovascular Health Study Cognition Study, 1992–2014. In each plot, the solid lines represent the probability of
beingnormal, the dashed lines represent theprobabilityof havingMCI, and thedotted lines represent theprobabilityof havingdementia. Thebandsaround
each of the probability curves are the pointwise posterior 95% credible intervals, and they describe the uncertainty of the estimation of the trajectories.
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who is a black, less educated, and hypertensive and who had
at least 1 copy of Apoε4. By contrast, the trajectory closer to
the healthy profile belongs to an individual who is white, bet-
ter educated, and normotensive and who had no copies of
Apoε4.

In order to evaluate our decision to include 3 canonical tra-
jectories in our model, we used the method of posterior predic-
tive checking (28), replicating the original diagnoses to obtain
1,000 different simulated data sets. Themodel with 2 canonical
profiles systematically overestimated the number of individuals
who were diagnosed with MCI at least once in their life (pos-
terior predictive P < 0.01), while data sets simulated from the
model with 3 canonical profiles did not show a significant dif-
ference from the original data set (posterior predictive P =
0.24). (Refer to Web Figures 2 and 3.) We also attempted a
model with 4 canonical profiles, which produced a fourth addi-
tional canonical profile that essentially duplicated the healthier
one. In addition, this model significantly increased the costs of
computation. Based on these results, we concluded that the
model with 3 canonical profiles gave us the best tradeoff be-
tween interpretationof thedata andcostsof computation. Ingen-
eral, selection of the optimal number of canonical trajectories
for MMTMs remains an open question (26).

DISCUSSION

To the best of our knowledge, we have provided for the first
time a data-driven description of multiple pathways toward

Table 3. Mixed Membership Trajectory Model With 4 Time-Invariant

Predictors, Showing Posterior Means and 95% Credible Intervals

for the Parameters Representing the Effects of Time-Invariant

Predictors on the Closeness of Individual Trajectories to the

Typical Profiles, Cardiovascular Health Study Cognition Study,

1992–2014

Predictor Mean 95% Credible Interval

Race

Healthy vs. intermediate 0.39 −0.015, 0.84

Healthy vs. unhealthy 1.21 0.82, 1.62a

Intermediate vs. unhealthy 0.83 0.47, 1.26a

Education

Healthy vs. intermediate 0.26 −0.15, 0.81

Healthy vs. unhealthy 0.50 0.10, 0.92a

Intermediate vs. unhealthy 0.24 −0.17, 0.66

Hypertension

Healthy vs. intermediate 0.18 −0.22, 0.62

Healthy vs. unhealthy −0.26 −0.60, 0.07

Intermediate vs. unhealthy −0.43 −0.79, −0.13a

Apoε4

Healthy vs. intermediate 0.12 −0.31, 0.60

Healthy vs. unhealthy −0.71 −1.12, −0.26a

Intermediate vs. unhealthy −0.83 −1.23, −0.40a

Abbreviation: Apoε4, ε4 allele of the apolipoprotein E gene.
a Significant effect of covariate on closeness to trajectory.
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Figure 2. The effects of varying individual parameters on the closeness to the canonical trajectories, Cardiovascular Health Study Cognition
Study, 1992–2014. A) Three canonical trajectories to dementia (solid lines), from top to bottom: unhealthy, intermediate, and healthy. The plot
also shows the predicted average trajectories (dotted and dashed lines) of 5 individuals with different characteristics determined by the 4 time-
invariant binary predictors. The trajectories were obtained by using the posterior means of the parameters ajk of equation 6, which determine
the values of the membership vectors to be used in equation 3. An individual with white race, education beyond high school, no hypertension,
and no copies of the ε4 allele of the apolipoprotein E gene (Apoε4) has a predicted trajectory relatively close to the healthy canonical profile (bottom
dotted line). As we change the values of the 4 time-invariant predictors one by one (in order, from bottom to top: Apoε4, hypertension, education,
race), we see that the predicted individual trajectories move toward the unhealthy canonical profile. B) Individual trajectories of 2 Cardiovascular
Health Study Cognition Study participants. Their trajectories are estimated by using subject-specific estimates from themodel. The trajectory closer
to the unhealthy profile belongs to an individual who was black, less educated, and hypertensive and who had at least 1 copy of Apoε4.
The trajectory closer to the healthy profile belongs to an individual who was white, better educated, and normotensive and who had no copies of
Apoε4.
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dementia among individuals over the age of 70 years, using a
MMTM analysis. The results provide new insights into the
natural history of Alzheimer disease, and they may also pro-
vide evidence for a potential difference in the pathophysiol-
ogy of the development of dementia as a function of age.
We identified 3 separate canonical trajectories and then

measured the impact of 7 time-invariant covariates, 4 of
which were statistically significant, on the closeness of indi-
viduals to each of these profiles. Approximately 29% of the
individuals included in this analysis are closest to what we
refer to as the intermediate canonical trajectory; that is, in
their membership vector (gi1; gi2; gi3), the second element
is larger than the other 2. These individuals have a peak prob-
ability of progressing to MCI between the ages of 85 and 90
years, with the peak probability of progressing to dementia
between 90 and 95 years of age. By contrast, the unhealthy
canonical trajectory revealed a peak probability of MCI be-
fore the age of 80 years, with a peak probability of dementia
before the age of 85 years. Nearly one-half of the CHS Cog-
nition Study samplewas closest to this profile. Finally, almost
one-quarter of the individuals in the CHS Cognition Study
were estimated to be closest to the healthy profile. For this
group of individuals, the peak probability of MCI occurred
after the age of 95 years, with approximately 50% of the in-
dividuals with this trajectory meeting criteria for MCI. By the
age of 100 years, approximately 50% of the individuals with
this trajectory had been diagnosed with dementia, but the
peak probability of dementia never reached 100%, even after
the age of 100 years.
Thus, what we had thought might be a unique, common

trajectory from normal cognition to dementia is, in fact, a col-
lection of individual histories that can be characterized by
their similarity to a small number of canonical trajectories.

From the perspective of the MMTM, the risk factors (hyper-
tension, race, education, Apoε4) should not be viewed as af-
fecting the risk of MCI and dementia, but rather as affecting
the extent to which each individual’s pathway toMCI and de-
mentia is closer to one or more of the canonical trajectories.
White race and higher education are associated with an in-
creasedclosenessto thehealthy trajectory,whereasadiagnosis
of hypertension or the presence of a single copy of Apoε4
increased the closeness of individuals to the unhealthy trajec-
tory. We can view the results of the analysis of survivorship
and of the effects of the 4 binary covariates on closeness to
specific canonical profiles as an indirect validation of the 3
profile model. That is, the fact that the individuals with an un-
healthy trajectory are also the ones most likely to die sooner is
consistent with the observation that demented individuals
have a higher risk of death (31) (Figure 3).
The subjects in the CHS Cognition Study were at least 70

years of age at the time that we began the observation window
for this analysis (about 1992–1994). Thus, we cannot say
whether there are additional trajectories that might be appar-
ent had we begun observation earlier, for example, at the age
of 50 or 55 years. Further, we cannot know whether earlier
observation might have altered the shape of the 3 canonical
trajectories that we have here. In addition, there is the very
provocative possibility that the “groundwork” for these tra-
jectories was laid years, if not decades, earlier. For example,
midlife hypertension imposes significant risk for dementia 25
years later. Unfortunately, the CHS did not begin observation
until the participantswere at least 65 years of age. Nevertheless,
what is clear is that this type of modeling can be successful only
with the extensive observation time that was available in stud-
ies like the CHS Cognition Study. Studies that have relatively
brief follow-up time or (perhaps more important) cognitive as-
sessments that are less frequent than we had in the CHS Cog-
nition Study may not be able to do these sorts of natural history
analyses.
The covariates in the model do not fully explain trajectory

membership, suggesting that other factors may also influence
individual trajectories. Thesemay include, for example, changes
in brain structure/function, alcohol use, and access and adher-
ence to medication regimens. Data derived from magnetic res-
onance imaging scansmay be useful in future analyses and have
already proven their worth in Cox proportional hazard modeling
(42, 43). On the other hand, use of alcohol/drugs and medica-
tion usage/adherence are time varying predictors, and we had
decided to delay including such variables in this first use the
MMTM framework in the context of MCI and dementia.
It is of some interest that diabetes and prevalent heart dis-

ease did not affect the “closeness” of individual participants
to one trajectory or another, in spite of the fact that both of
these factors significantly increase risk for the development
of clinical dementia (4, 6–9). In the case of diabetes, although
the 95% confidence interval did include 0, the direction of the
effect was away from the healthy trajectory and toward the
unhealthy and intermediate trajectories. Furthermore, the up-
per limit of the 95% confidence interval was close to 0 (i.e.,
0.06 and 0.08) suggesting the possibility that, with a larger
number of subjects (and perhaps a lower age range to capture
more of the diabetic participants), this effect might have been
statistically significant. Moreover, vascular disease is a risk
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Figure 3. The survival functions for the individuals in the healthy
(solid line), intermediate (dotted line), and unhealthy (dashed line) tra-
jectories, Cardiovascular Health Study Cognition Study, 1992–2014.
The gray shading indicates 95% credible intervals.
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for death, and it may be that those individuals with heart dis-
ease who are still alive at this age are the “healthiest” from the
CHS cohort, and this may have minimized any impact of
these conditions on the analysis. Second, it is not the case
that diabetes and heart disease do not affect the risk to de-
velop dementia. Rather, they do not appear to have an impact
on the shape of or closeness to the 3 trajectories over and
above the effects accounted for by the other covariates, in
particular, older age. Nevertheless, it is critical to understand
these relationships, and thus replication and extension of our
findings with a larger cohort would be ideal.

Our results emphasize the value ofMMTMs as a novel, an-
alytical tool, and they demonstrate their ability to identify pat-
terns within large data sets that might have otherwise gone
unnoticed. Nevertheless, there are several limitations to our
study. First, MMTMs cannot easily account for time-varying
covariates and, thus, additional work is needed to develop
computationally efficient methodologies for the incorpora-
tion of time-varying covariates into the models and to allow
for the visualization of the impact of these covariates. Sec-
ond, our data have a restricted age range based on the recruit-
ing and enrollment plan of the CHS. Third, we did not follow
participants after they were classified as demented and, thus,
cannot account for changes from dementia back to MCI.

In spite of these limitations of the current instantiation of
theMMTM technique, it is a powerful tool. MMTMs use pat-
terns within the data to identify distinct canonical profiles; the
results are not constrained by any a priori assumptions about
the trajectories. These techniques are highly innovative in
that they are able to 1) account for “reversing” states (i.e.,
moving from MCI back to normal cognition, as might be
expected following use of antidementia medications, for ex-
ample); 2) express each individual’s pathway as a weighted
combination of the canonical trajectories; and, 3) determine
the extent to which risk factors for cognitive impairment af-
fect the “closeness” of an individual to each of the canonical
trajectories. This tool has the potential for meaningful appli-
cation in a variety of domains related to MCI and Alzheimer
disease, and it holds the promise to reveal important data-
driven insights into the natural and treated history of
Alzheimer disease and dementia.
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