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Abstract

BACKGROUND—Personalized medicine is the provision of focused prevention, detection, 

prognostic, and therapeutic efforts according to an individual’s genetic composition. The 

actualization of personalized medicine will require combining a patient’s conventional clinical 

data with bioinformatics-based molecular-assessment profiles. This synergistic approach offers 

tangible benefits, such as heightened specificity in the molecular classification of cancer subtypes, 

improved prognostic accuracy, targeted development of new therapies, novel applications for old 

therapies, and tailored selection and delivery of chemotherapeutics.

CONTENT—Our ability to personalize cancer management is rapidly expanding through 

biotechnological advances in the postgenomic era. The platforms of genomics, proteomics, single-

nucleotide polymorphism profiling and haplotype mapping, high-throughput genomic sequencing, 

and pharmacogenomics constitute the mechanisms for the molecular assessment of a patient’s 

tumor. The complementary data derived during these assessments is processed through 

bioinformatics analysis to offer unique insights for linking expression profiles to disease detection, 

tumor response to chemotherapy, and patient survival. Together, these approaches permit 

improved physician capacity to assess risk, target therapies, and tailor a chemotherapeutic 

treatment course.
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SUMMARY—Personalized medicine is poised for rapid growth as the insights provided by new 

bioinformatics models are integrated with current procedures for assessing and treating cancer 

patients. Integration of these biological platforms will require refinement of tissue-processing and 

analysis techniques, particularly in clinical pathology, to overcome obstacles in customizing our 

ability to treat cancer.

Throughout the present “era of postgenomics,” technological breakthroughs and 

bioinformatics-based analysis have briskly expanded our ability to unravel the molecular 

composition and function of disease. These advancements in molecular assessment have 

heightened the anticipation for their application to improving patient care through 

personalized medicine (1). Cancer, despite sharing common aberrant physiological 

alterations, is a diverse constellation of disease processes (2). Various manifestations of 

cancer are immensely heterogeneous with respect to metastatic potential and resistance to 

treatment (3). Both of these factors contribute to the failure of modern cancer therapies to 

durably repress recurrence in patients, as evinced by the stagnant mortality rates over the 

past 3 decades (4). Thus, the heterogeneous nature of cancer and the shortcomings of 

currently available therapeutics suggest the potential for a central role for a personalized 

approach to cancer management. Indeed, the paradigm-shifting concept of targeting a 

dysregulated kinase in chronic myelogenous leukemia has focused therapeutic development 

on the comprehension of molecular mechanisms (5).

Current standards of cancer management are ripe for personalization, because opportunities 

for molecularly assessing mutational dysregulation exist throughout the clinical course of 

disease progression (Fig. 1). Even before the occurrence of malignant transformation, the 

interplay between genetic composition and environmental factors shapes an individual’s 

predisposition for cancer. Screening for these genetic factors can provide clinicians with the 

insight necessary to recommend modifications to behavior, lifestyle, and diet, while 

monitoring for disease onset. Upon malignant transformation, the management approach 

transitions from modifying risk to preventing progression. The bioinformatics-based 

analyses discussed in this review aim to integrate data from a patient’s clinical presentation 

and the molecular-expression profile of the patient’s tumor with molecular information from 

external databases. This multisource integrative approach to cancer management promises to 

provide unparalleled ability to assess risk, target therapies, and tailor treatments throughout 

the disease course.

We describe existing molecular-profiling platforms and review applications that may prove 

useful for current or future contributions to personalized cancer management. We consider 

the complementary nature of data generated through the various modalities, including 

transcriptomics, proteomics, single-nucleotide polymorphism (SNP)3 profiling and 

haplotype mapping, high-throughput genomic sequencing, and pharmacogenomics. We 

subsequently detail the role of bioinformatics in combining complex, multivariate molecular 

data to refine networks of interconnectivity among classifications of morphologically 

distinct neoplasms, identify and validate biomarkers, and aid in the characterization of 

3Nonstandard abbreviations: SNP, single-nucleotide polymorphism; miRNA, microRNA; FDA, Food and Drug Administration; 
COSMIC, Catalogue of Somatic Mutations in Cancer; FFPE, formalin-fixed, paraffin-embedded; qPCR, quantitative real-time PCR.
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patients’ risk, prognosis, and therapeutic response. Finally, we consider the broadened role 

for clinical pathology in mediating the delivery of personalized cancer management.

Molecular Avenues toward Personalized Medicine

Genomic-assessment methods spawned by the sequencing of the human genome have 

catalyzed an increasingly molecular approach to studying the foundations of human disease. 

Indeed, profiling platforms that provide insight into the role of genetic sequences, RNA and 

protein concentrations, and activities of metabolic enzymes in the development of cancer are 

becoming prominent fixtures in the clinical management of cancer. These molecular-

profiling techniques promise to complement current practices of clinical evaluation to permit 

a more comprehensive staging and assessment of tumor progression. Continuing on this path 

of complementarity should pave the way toward more personalized diagnoses, prognoses, 

and predictions of the response to treatment.

Current platforms for molecular assessment include transcriptomics, proteomics, SNP 

profiling and haplotype mapping, high-throughput genetic sequencing, and 

pharmacoproteomics. Each of these approaches relies on different formats of biological 

input; accordingly, each has unique advantages and limitations with respect to personalized 

medicine. By developing a comprehensive understanding of the strengths and weaknesses of 

these routes, we can better leverage the information they provide in a collaborative fashion 

(Table 1).

TRANSCRIPTOMICS: GENOMIC-EXPRESSION PROFILING

Given that many neoplastic processes are caused by mutations in the genetic code and 

subsequent errors in transcription, there have been concerted efforts to identify alterations in 

levels of gene expression that are associated with tumorigenesis. These transcriptomic 

studies rely on DNA-microarray technology to provide information on aberrant gene 

expression in human cancer. The 2 forms of microarray methods—those that detect cDNA 

and oligonucleotide methods—are provided in a variety of commercial and noncommercial 

platforms. The principle detection method, however, remains the same—mRNAs isolated 

from a patient’s tumor biopsy or from surgically resected tissue samples are used to create 

fluorescently labeled cDNA. These cDNA probes hybridize with complementary sequences 

bound to microarrays to produce a fluorescent signal. The observed intensity of each gene’s 

signal is proportional to the concentration of the original transcript in the tissue sample. The 

mechanics of microarrays and their utility in analyzing gene expression in cancer are 

thoroughly reviewed elsewhere (6).

Growing from a seminal study that classified acute leukemias on the basis of genomic 

expression (7), the widespread integration of microarray technology into biomedical and 

clinical oncologic research has led to the identification of the transcriptional status of many 

different tumors. Additional studies have subsequently identified gene expression signatures 

that serve as biomarkers, aid in prognostic prediction, and guide chemotherapeutic selection. 

Minna et al. have comprehensively summarized recent studies that have used expression 

profiling to derive biomarkers that predict a tumor’s response to chemotherapy (8). 

Additionally, the large quantities of data produced by these studies have prompted the 
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development of Internet-based resources, such as the Oncomine Research Platform (http://

www.oncomine.org/), to catalogue transcriptome profiles from published gene expression 

analyses into a rapidly accessible database.

Two other elements of transcriptomic assessment in cancer that deserve specific mention are 

the emerging field of microRNA (miRNA) and the study of epigenetic regulation. Genomic 

miRNAs are short non-coding sequences of 20–22 nucleotides that exert their regulatory 

effects by binding to a complementary 3′ untranslated region of mRNA sequences. Studies 

continue to identify miRNA mutations that can alter the homeostatic regulation of gene 

expression by acting either as oncogenes (MIR155,4 microRNA 155) or as tumor 

suppressors (MIR15A, microRNA 15a; MIR16–1, microRNA 16–1) (9). Moreover, 

microarray expression-profiling methods used for mRNAs have been developed for analysis 

of noncoding miRNAs (10). Preliminary analyses with this technology have screened both 

healthy and tumor tissues to identify signatures capable of stratifying patients into predictive 

prognostic cohorts and treatment subgroups (11, 12). Recent work has suggested an 

additional route of miRNA regulation, in which reductions in miRNA concentrations in 

tumors are frequently due to epigenetic modifications, particularly hypermethylation (13).

Dysfunctional epigenetic regulation is conventionally thought to have a broader role in 

tumor development, most commonly through alterations in DNA methylation (14). The 

classification of these aberrant methylation patterns and the identification of 

hypermethylation markers in cancer promise to improve clinical identification and 

management of individual cancers, as well as affect the personalized application of 

epigenetics-based treatment regimens, such as 5-azacytidine (Vidaza) and 5-aza-2′-

deoxycytidine (decitabine) (14). Although inappropriate methylation remains the most 

comprehensively studied epi-genetic modification associated with tumorigenesis, histone 

alterations, such as lysine acetylation and serine phosphorylation, may ultimately become 

therapeutic targets for reprogramming a malignant cell’s epigenetic code (14).

The capability for multistudy, cross-institutional corroboration and the reproducibility of 

genomic-expression data currently make transcriptomics one of the most broad-scale, 

inclusive, and accurate means for personalizing oncologic care. These strengths account for 

the increasing reliance of expression profiling in assessing chemotherapeutic decisions, 

despite the often-cited potential disconnect between transcript concentrations and protein 

translational and functional status (15). Another limitation of transcriptomics, as well as of 

other molecular-assessment platforms, is the lack of access to patient biosamples, which can 

lead to the use of samples of heterogeneous quality and type. The lack of a unified, multi-

institutional “tumor tissue library” with well-annotated clinical information continues to 

dampen the impact of transcriptomics on the individualization of cancer management. 

Finally, proper transcriptomic analysis requires the pathologic discrimination of relevant 

tumor cells from a heterogeneous background. This hurdle, however, is often overcome with 

4Human genes: MIR155, microRNA 155; MIR15A, microRNA 15a; MIR16-1, microRNA 16-1; CYP2D6, cytochrome P450, family 2, 
subfamily D, polypeptide 6; CYP2C19, cytochrome P450, family 2, subfamily C, polypeptide 19; APC, adenomatous polyposis coli; 
BRCA1, breast cancer 1, early onset; BRCA2, breast cancer 2, early onset; ERBB2 (HER-2), v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian); HOXB13, homeobox B13; IL17RB, interleukin 17 
receptor B.

Overdevest et al. Page 4

Clin Chem. Author manuscript; available in PMC 2015 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.oncomine.org/
http://www.oncomine.org/


such techniques as laser-capture microdissection and fluorescence-activated cell sorting that 

help isolate cells pertinent to a tumor’s etiology.

PROTEOMICS

Proteomics, although in an early stage of exponential growth, currently offers extensive 

capabilities for performing system-wide analyses targeted at elucidating functional protein 

interactions and discovering novel biomarkers for cancer therapeutics. Given that activated 

protein-signaling cascades represent the final stage of genomic expression, most modern 

therapies have been designed to target and disrupt dysfunctional cellular signaling. Thus, the 

insight that proteomics can provide into the functional status of known neoplastic signaling 

networks will prove to be of great benefit for tumor classification and subsequent selection 

of treatment based on pharmacoproteomics (15).

The protein microarray, a technology comparable to the widely used DNA microarray, 

stands as the cornerstone of proteomics research because of its efficiency in analyzing 

multiple proteins and their interactions with nucleic acids, lipids, and other small molecules 

(16). This style of targeted proteomics aims at characterizing the abundance, modification, 

activity, localization, and interaction of protein-signaling cascades that are widely 

dysregulated in cancer (16). The format of proteomic microarrays is tailored to the intended 

focus of the proteomics investigation, e.g., forward-phase arrays with antibodies 

immobilized to a surface or reversed-phase arrays with immobilized analytes (or each 

patient’s protein samples). Details of protein microarray formats can be found elsewhere 

(16, 17).

The potential of proteomic analysis has yet to be fully realized because of technological 

boundaries and limitations in applicability. Because the exact number of polypeptides 

produced in humans is uncertain, we are left with estimates that range from hundreds of 

thousands to millions, if one also counts splice variants and posttranslational modifications 

that can occur for a given protein species (18). The absence of currently unidentified 

proteins on modern protein arrays may lead to results that are inconclusive, underpowered, 

or have numerous false negatives. Further complicating array analysis is the fact that the 

relative abundances of polypeptides vary by orders of magnitude (18). Some studies have 

suggested that approximately 90% of proteins exist at moderate to low concentrations (19), 

potentially below thresholds for separation and detection. Thus, correlating plypeptide 

quantities obtained with current proteomics techniques to actual protein concentrations 

while accounting for the interactions of unknown protein species is a biological and 

computational hurdle. Additional insights into the existence and interactions of polypeptides 

are sorely needed to decrease the complexity of the nearly intractable algorithms required to 

account for these shortcomings.

SNP PROFILING AND THE HapMap PROJECT

SNP mapping arose out of a necessity to perform large-scale genomewide detection of 

genetic variants among patients. Coinciding with this need for efficient genomic analysis 

have been substantial technological advances that enable the discovery of disease 

associations among 10 × 106 SNPs in the entire human genome. For example, several 
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commercial SNP arrays already can accurately survey >500 000 SNPs in the human genome 

(20). Combinations of specific alleles proximate to SNPs within a single chromosome are 

compiled into haplotypes. Screening for such haplotypes can then be used as efficient 

methods for ascertaining patterns of DNA sequence variation potentially linked with disease 

(21).

The task of constructing haplotype maps of human disease has been undertaken by the 

International HapMap Consortium, which aspires to provide linkage analysis of SNP 

variants to the public (21). Selective profiling of genes through haplotype mapping remains 

relatively inexpensive, a substantial benefit given the cost of genomewide sequencing. The 

ability to apply SNP profiling as a rapid and accurate means to survey populations for 

biomarkers is yet another beneficial characteristic.

Nevertheless, SNP profiling and haplotype mapping suffer from several limitations. 

Although understanding genetic variations helps to anticipate tumorigenic predisposition, a 

sole reliance on this approach generally does not provide information on functional 

mechanisms of disease or any associated therapeutic targets. Additionally, inferring an 

association from the binary nature of SNP genotype information often requires a large 

number of patients, e.g., a few thousand, to detect any genetic effects of relevant SNP 

biomarkers. SNP profiling also cannot account for any potential effects of 

posttranscriptional modifications or epigenetic factors (22). Such modifications can alter a 

protein’s isotype, its function in downstream signaling, interactions with other intracellular 

molecules, and localization within a cell. These variable alterations are not predictable from 

analyses of genomic sequences alone, and other approaches must be used to gather a more 

complete view of a cell’s neoplastic potential.

HIGH-THROUGHPUT GENE SEQUENCING

Breakthroughs in high-throughput sequencing methods have rejuvenated interest in scouring 

the entire genomes of patients for mutations associated with a predisposition to neoplastic 

processes. Future applications of the improved techniques can be envisioned for both direct 

sequencing and heteroduplex-detection methods (22). Such efforts as the Cancer Genome 

Anatomy Project, the Human Cancer Genome Project, the Cancer Genome Project, and the 

Cancer Genome Atlas promise to showcase the benefits of genomewide sequencing by 

uncovering novel disease-associated mutations (23). More tangibly, the results of a pilot 

study that used high-throughput, sequence-based mutational profiling in primary human 

acute myelogenous leukemia cells have demonstrate the potential of this technology to 

detect mutational errors that lead to tumorigenesis (24). The validity of these investigators’ 

high-throughput screen was supported by their identification of 6 previously described 

sequences and 7 novel sequences associated with acute myelogenous leukemia 

tumorigenesis (24). By debunking fears that chance mutations would cloud the identification 

of pathologically relevant mutations, this study establishes a foundation for future 

genomewide screens of primary tumors.

The genomic-sequencing approach suffers from limitations similar to those of the SNP-

profiling technique, however. The lack of insight into various epigenetic and gene-product 

modifications supports the argument that genomewide screening techniques should be 
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paired with functional assessments of a specific neoplastic process. High cost has persisted 

as a principal hurdle to broad-scale application of high-throughput sequencing. Although 

next-generation sequencing platforms will decrease expenses substantially (25), the sheer 

quantity of information delivered by a fully sequenced genome offers minimal guidance on 

how best to approach the task of analysis and interpretation. Distinguishing benign 

polymorphisms from tumorigenic mutations is still a formidable task, as is the ability to 

predict which detected mutations are actually transcribed and therefore biologically relevant 

(22).

PHARMACOGENOMICS

Pharmacogenomics is based on assessing a patient’s genetic profile for known 

polymorphisms in specific networks of essential genes that encode either metabolic pathway 

effectors (enzymes and transporters) or drug targets (receptors) that affect the 

pharmacokinetics of drug metabolism and distribution (26).

One such genetic screen designed for metabolic analysis is the AmpliChip (Roche 

Molecular Systems), which has been approved by the US Food and Drug Administration 

(FDA). This screening system identifies a patient’s cytochrome P450 genotype encoded by 

the CYP2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6) and CYP2C19 

(cytochrome P450, family 2, subfamily C, polypeptide 19) genes. This development 

demonstrates the utility of pharmacogenomics by fully using the genomic knowledge of 

polymorphism-based differences in isoenzymes that affect the metabolism of a host of 

drugs, including the common chemotherapeutics tamoxifen and cyclophosphamide (27). 

Pharmacogenomics thus offers a superior method for optimizing the dosage profiles of 

existing therapeutics. This approach, however, is limited by its narrowness of scope. 

Predicting the pharmacokinetics of a given therapeutic agent with our incomplete knowledge 

of polymorphisms in metabolic pathways is unlikely to encompass the full complexity 

associated with drug metabolism. Nevertheless, an increasing capacity to perform high-

throughput genomewide scans for polymorphisms in genes involved in metabolism will lead 

to a coincident increase in the utility of pharmacogenomics.

Current Genomic Applications in Personalized Cancer Management

The genomics revolution has laid a foundation for deriving genetic signatures for 

prediagnostic genetic screening, tumor classification, evaluation of patient prognosis, 

determining the risk of recurrence, and therapeutic response (Table 2). Moreover, recent 

developments in the use of in vitro drug-sensitivity data in methods of bioinformatics 

extrapolation promise to provide in silico prediction of the therapeutic response.

PREDIAGNOSTIC GENETIC SCREENING

Even before malignant transformation, the interplay between genetic composition and 

environmental factors shape an individual’s predisposition for cancer. Knowledge of this 

genetic predisposition would facilitate the design of a course of preventive management for 

modifying the risk of neoplastic progression. Such knowledge is available through genetic 

screening, which is most applicable for families with a history of oncogenic gene mutations, 
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such as in APC (adenomatous polyposis coli), BRCA1 (breast cancer 1, early onset), and 

BRCA2 (breast cancer 2, early onset), in which mutational status will guide a clinical 

decision (28). The creation of databases with comprehensive lists of genetic mutations 

known to promote tumorigenesis in humans, such as the Catalogue of Somatic Mutations in 

Cancer (COSMIC) (http://www.sanger.ac.uk/genetics/CGP/cosmic/), will undoubtedly alter 

the utility of genetic screening in the prediagnosis of cancer (29).

EARLY DETECTION

Genetic instability, abnormal gene transcription or translation, and altered protein 

production and modification lead to early transformational events that produce signaling 

changes in a cell’s molecular phenotype (30). These alterations are the foundation for 

genomic and proteomic analyses that can identify them. Following validation, these 

deviations are incorporated into biomarker measurements for detecting cancer in its nascent 

stages. Prostate-specific antigen has become a mainstay for detecting and monitoring 

prostate cancer, and the Early Detection Research Network (http://edrn.nci.nih.gov/) has 

accelerated biomarker discovery by creating cross-institutional collaborative alliances for 

identifying and verifying potential clinical biomarkers that are “. . . easy to detect, 

measurable across populations, and amenable to use in one or more of the following 

settings: detection at an early stage; identification of high-risk individuals; early detection of 

recurrence; or as intermediate endpoints in chemoprevention” (31). With the promising 

leads produced by proteomic (32), miRNA (33), and epigenetic (34) platforms, the holistic 

approach to biomarker identification is a model for the integrative initiative necessary for 

successful personalization of cancer management.

TUMOR CLASSIFICATION

The use of the microarray assessment of tumors for class prediction and discovery originated 

with the previously mentioned study of acute leukemias (7). With a newly developed 

method of “neighborhood analysis,” the investigators grouped genes highly expressed in one 

class and expressed at low levels in the comparative class into “idealized patterns of 

expression” (7). Through further bioinformatics processing, they derived a 50-gene predictor 

set for correctly assigning independent leukemia samples into acute myelogenous leukemia, 

acute lymphoblastic leukemia, or uncertain groups (7). Moreover, this study demonstrated 

the potential of assessing differential gene expression in cancers for identifying novel 

subclasses previously overlooked by conventional classification methods (7). Other 

investigators have used similar microarray platforms to apply selective assessment of gene 

expression to a variety of cancers, including diffuse large B-cell lymphoma (35), breast 

cancer (36), cancers with an unknown tissue of origin (37), and others (block 1 in Table 2).

PROGNOSIS AND PREDICTION OF PATIENT RESPONSE

Gene expression–based risk assessment for prognosis and prediction of disease recurrence is 

currently available for breast tumors through Genomic Health’s On-cotype Dx® test and 

Agendia’s MammaPrint™ assay. By screening breast tumor biopsies against the Oncotype 

Dx real-time PCR–based expression panel of 21 gene biomarkers, physicians can obtain a 

patient’s prognostic score to guide their clinical decisions (1). More than a dozen recent 
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studies and commercially available products have demonstrated the utility of genomic 

biomarkers to predict a patient’s prognosis and risk of recurrence (blocks 2 and 3 in Table 

2).

In an early study in this field, van ‘t Veer et al. used expression-microarray analysis to 

evaluate biopsies of primary tumors from patients with no signs of lymph node or organ 

metastases. The aim was to develop a gene expression signature predictive of early 

metastasis and therefore a poor prognosis (38). An unsupervised clustering of tumors 

according to their expression of approximately 5000 substantially regulated genes led to the 

identification of “good prognosis” and “bad prognosis” tumors (38). The number of 

“informative genes” was subsequently pared down to a 70-gene signature capable of 

correctly predicting disease outcome in 65 (85%) of 78 patients (38). Similar approaches for 

outcome prediction were used in trials involving non–small cell lung cancer and ovarian 

cancer (39, 40). Foresight into a patient’s likely outcome will aid in the delivery of adjuvant 

therapies to patients who require aggressive care, reduce unnecessary therapeutic toxicities 

and side effects in nonprogressing groups, and alleviate the financial toll of excessive 

treatments on the healthcare system.

IN SILICO PREDICTION OF THERAPEUTIC RESPONSE

Two innovative drug-sensitivity studies have called into question the necessity of in vivo 

models to predict chemotherapeutic response. Both studies developed bioinformatics-centric 

prediction models that use gene expression patterns of common tumors, in vitro activities of 

therapeutic compounds on these tumors, and retrospective data from matched clinical trials 

to predict and validate chemosensitivity for a variety of cancers (block 4 in Table 2) (41, 

42). Potti et al. developed a genomic “predictor signature” consisting of genes whose 

expression correlated with single-drug sensitivity and resistance in the NCI-60 set of cancer 

cell lines (41). By applying this signature to previously published clinical-response data sets, 

these investigators demonstrated that patients’ responses to both single-drug therapies and 

combination therapies could be predicted by comparing the expression of genes in patient 

tumors with expression-based signatures for in vitro chemosensitivity (41).

Concurrently, Lee et al. applied their COXEN (COeXpression ExtrapolatioN) algorithm to 

integrate drug-sensitivity data and gene expression data from the NCI-60 panel with gene 

expression data from patients’ tumors in order to identify a COXEN biomarker panel (42). 

This biomarker panel consists of genes with strongly positive or negative correlations to in 

vitro chemosensitivity. Comparison of the gene expression levels for this panel with gene 

expression profiles of patient tumors will facilitate the projection of therapeutic sensitivity 

into the clinic (42). The COXEN algorithm also demonstrates applicability for predicting 

chemosensitivity in cancer subtypes not included in the NCI-60 panel, a particular strength 

because many tumor types are not represented in the NCI-60 panel (42). In addition to its 

therapeutic-prediction capabilities, COXEN can facilitate computational drug screening, 

thus expanding our capacity to identify agents that are likely to be effective in patients. A 

trial of such screening methods identified a new potential agent for treating bladder cancer, 

NSC637993 {6H-imidazo[4,5,1-de]acridin-6-one, 5-[2-(diethylamino) ethylamino]-8-
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methoxy-1-methyl-, dihydrochloride}, which exhibited similar predicted and actual chemo-

sensitivities (42).

The major advantage of in vitro–derived genomic predictions (41, 42) is the ability to 

include prospective drugs and drug combinations in chemosensitivity predictions. This 

capability is particularly important when one considers the more than 2400 doublet 

combinations possible among the approximately 70 FDA-approved antineoplastic agents. 

The FDA has proposed guidelines for clinical-trial validation of these combinatorial 

therapies and future multidrug regimens that use combinations of current and novel 

therapeutics (43). This document acknowledges that in vitro drug validations would expedite 

current practices of drug development through the use of archival tissue samples and 

relevant clinical information from patients (43).

The potential of these in silico analyses to directly bridge in vitro chemosensitivity with 

predictions of clinical efficacy is highly attractive in its efficient use of resources. Deriving 

an approach to clinical treatment from in vitro results promises to shorten the time and 

decrease the resources necessary to match patients with a large number of treatment options. 

Eliminating the need for animal intermediates has the potential to abbreviate the time 

devoted to the research and development of novel therapeutics. Moreover, currently 

approved pharmaceuticals will find new application through cross-comparisons of in vitro 

screening chemosensitivities and tumor expression profiles.

TARGETED THERAPY

The concept of targeting therapies speaks to both identifying distinct molecular mechanisms 

for therapeutic recourse and selecting patient populations for which a particular treatment 

will be most efficacious. The success of molecularly targeted inhibitors of tumorigenic 

pathways is readily apparent in the treatment of hematogenous cancers. In these cancers, 

such as chronic myelogenous leukemia, the discovery of independent molecular drivers of 

neoplasia have aided in the development of targeted therapies (44). In the case of chronic 

myelogenous leukemia, linking the genetic lesion, a t(9;22) translocation, with the 

dysregulation of an ABL kinase led to the development of a selective kinase inhibitor, 

imatinib mesylate (Gleevec®; Novartis). Successful identification of rogue molecular-

signaling pathways is ongoing for other cancers, and novel small-molecule inhibitors and 

monoclonal antibodies continue to see moderate clinical use. From the use of gefitinib 

(Iressa®; AstraZeneca) and erlotinib (Tarceva®; Genentech) as therapies for lung cancer to 

the use of trastuzumab (Herceptin®; Genentech) and lapatinib (Tykerb®; GlaxoSmithKline) 

as therapies for breast cancer, the potential for targeting individual signaling disruptions as a 

method for chemotherapeutic treatment is evident (block 5 in Table 2).

The integration of screening results provided by biomarker panels and pharmacodiagnostic 

tests will substantiate treatment decisions based on data from clinical trials (45). In the 

application of trastuzumab for breast cancer patients, determining whether the HER-2 

protein is overproduced or whether ERBB2 [v-erb-b2 erythroblastic leukemia viral oncogene 

homolog 2, neuro/glioblastoma derived oncogene homolog (avian)] (HER-2) amplification 

can predict the efficacy of treatment (45). Screening tests such as Her-ceptest™ (Dako) for 

assessing HER-2 overproduction in tumor biopsies and fluorescence in situ hybridization 

Overdevest et al. Page 10

Clin Chem. Author manuscript; available in PMC 2015 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis for ERBB2 amplification increase the likelihood for success in treatment groups. 

Moreover, screening patients for pertinent molecular dysregulations will bolster our 

knowledge of mutational frequency in a given pathway and thus expand our understanding 

of its absolute relevancy within disease populations.

Bioinformatics: Techniques and Challenges

Bioinformatics translates raw molecular data extracted from patient samples into 

interpretable, accessible, and distributable information. This step in the personalization 

process is necessary for interpreting most high-throughput microarray-based biomedical 

applications and typically consists of the following steps: (a) data preprocessing, (b) 

normalization, (c) biomarker discovery, (d) statistical modeling and validation of prediction, 

and (e) follow-up clinical confirmation. Some details of implementation of these procedures 

may vary slightly between different molecular platforms, such as cDNA arrays, 

oligonucleotide arrays, or mass spectrometry (46). Nevertheless, these approaches have been 

used across most platforms and therefore provide a systematic method for transcending the 

challenges encountered during the analysis of most high-throughput biotechnology data.

DATA PREPROCESSING

High-throughput molecular data possess rich digital information for each molecular target. 

For example, a single scan of a microarray chip produces hundreds of image pixels for each 

of >20 000 transcript probes. The initial preprocessing analysis of such high-density data is 

often tightly combined and encrypted within the manufacturing steps of biotechnology 

instrumentation. This step, however, is one of the most critical in the analysis for optimizing 

the molecular information obtainable from such massive amounts of biological data. In fact, 

preprocessing algorithms generated by third parties sometimes have demonstrated 

substantially higher reproducibility and sensitivity with certain commercial microarray 

platforms than those produced by the platform manufacturer (47). Additionally, identifying 

and quantifying specific protein species from a background of fragmented-peptide mass-

spectrometry spectra are recognized as a challenging statistical and computational problem. 

The direct involvement of computational researchers in the development of these initial 

data-preprocessing steps will prove greatly beneficial.

NORMALIZATION

Normalization is required to standardize multiple data sets produced in independent 

experiments before they can be combined for analysis. This step is essential for obtaining 

data with universal applicability despite their having differing institutional origins. Before 

normalization, data are often log-transformed to make their distributions more appropriate 

for subsequent analyses. Data are then normalized via correction often with a simple 

constant factor. More sophisticated normalization methods such as nonparametric regression 

can be used if different data sets have nonlinear relationships (47).

BIOMARKER DISCOVERY AND PREDICTION MODELING

The identification and selection of biomarkers that are clinically relevant are a fundamental 

step that determines the success of downstream applications that advance personalized 
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medicine. This kind of discovery can be performed in various ways: (a) simple comparison 

of contrasting groups (e.g., disease-free survivors vs relapsed patients, responders vs 

nonresponders to a therapeutic compound), (b) analysis of a statistical association between 

patients’ outcomes and phenotypes, and (c) analysis of correlations with continuous drug-

sensitivity data, such as for GI50 (concentration inhibiting growth by 50%) in a cell line 

panel. An important key to biomarker discovery is the subsequent validation (46).

With a set of preidentified biomarkers, many different statistical approaches have been used 

in prediction modeling. Such approaches include gene voting, discriminant analysis, 

Bayesian regression or classification, random forest, Cox regression, and support vector 

machines, technical details of which are beyond the scope of this review and can be found 

elsewhere (7, 41, 42). These different prediction-modeling techniques have often been found 

to provide similar predictive powers if each is finely tuned. An integral aspect of modeling 

is to maintain extremely tight control of error and bias due to overtraining and multiple 

comparisons.

VALIDATION AND FOLLOW-UP CLINICAL CONFIRMATION

To avoid “selection bias” one must validate a trained prediction model with patient data sets 

that are completely independent of the original discovery and training data set (48). The 

follow-up preferably uses data from different places and clinical settings, because a patient 

cohort from a particular location and clinical setting may produce specific molecular results 

that may not occur in other patient populations. This step is particularly important to ensure 

the performance and accuracy of the molecular assay in clinical practice.

Considerations for Clinical Pathology

BIOSAMPLE QUALITY

The privileged access of the clinical pathology laboratory to patient biopsies and samples 

places it in a unique position to ensure sample integrity through the development and 

implementation of standardized guidelines for procuring and storing biosamples. The 

coordination of such efforts is currently facilitated by the US National Cancer Institute’s 

Office of Biorepositories and Biospecimen Research (http://biospecimens.cancer.gov/

index.asp) (49). The establishment of this department in 2005 is a testament to the priority 

placed on the necessity to preserve reliable biosamples for expediting the development of 

molecular-based diagnostics and therapeutics.

The Biospecimen Research Network, the research branch of the Office of Biorepositories 

and Biospecimen Research, seeks to conduct and collaborate on projects to help establish 

best practices for sample storage and tracking, to identify high-quality samples in existing 

repositories, and to determine the impact of specific variables during sample handling (49). 

Whereas the latter 2 aims will provide a short-term solution for the immediate use and 

interpretation of results produced from currently preserved samples, the implementation of a 

best-practices policy for bio-sample handling will have a long-standing impact on protocols 

for the procurement and storage of pathology samples. Variables such as time from sample 

excision to fixation, optimal fixation solutions and conditions (e.g., ethanol vs formalin 

fixation), and sample storage, cataloging, and retrieval each require specific attention (49).
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EXTRACTION OF MOLECULAR INFORMATION

Sustaining the recent momentum in the field of molecular cancer research requires a 

coalescence of well-annotated clinical information and molecular data derived from patient 

biosamples. An elegant and abundant cache of patient molecular material is the formalin-

fixed, paraffin-embedded (FFPE) samples that have been produced in myriad clinical trials, 

in which the patient information has been well characterized and the outcomes are known. 

Retrieval of the full molecular information in archived FFPE samples, however, is hindered 

by changes in molecular structures that occur during the fixation process.

The challenge of extracting useful molecular information despite formalin-induced protein 

cross-linkages and the addition of monomethylol groups to nucleosides has been partially 

overcome with the emergence of commercially available kits, such as the RNeasy FFPE Kit 

(Qiagen), the Paraffin Block Isolation and the RecoverAll Total Nucleic Acid Isolation Kits 

(Ambion), and the Paradise Plus Reagent System (Arcturus). These kits predominantly rely 

on proteinase K digestion to facilitate mRNA release from the bonds to cross-linked proteins 

(50). Although successful extraction of intact mRNA is tightly tied to the quality of sample 

fixation, isolation of contiguous miRNA is less dependent on fixation methods, as evinced 

by the lower cross-sample variation found in a recent study (51). The superior potential for 

extracting miRNA from such samples is primarily attributable to the short lengths of 

miRNAs (51). Such distinctions underscore the necessity for skilled clinical pathologists to 

determine which biological platform to implement for accurate tumor assessment given the 

quality of the available samples.

QUANTITATIVE REAL-TIME PCR

The power of quantitative real-time PCR (qPCR) to obtain molecular-expression profiles 

from patient tumor biopsies must be harnessed. Although microarray technology remains the 

preeminent mode for biomarker discovery, qPCR analysis serves as a useful adjunct for 

validating microarray results, in addition to functioning as a targeted method for analyzing 

specific, previously verified biomarker concentrations. As an assessment platform, qPCR 

offers rapid, single-step amplification and quantification of molecular targets that are useful 

for clarifying diagnosis, predicting recurrence, and guiding treatment (52). For example, a 

qPCR-based ratio of HOXB13 (homeobox B13) expression to IL17RB (interleukin 17 

receptor B) expression has been used to predict tumor recurrence in the setting of adjuvant 

tamoxifen monotherapy (53).

Although conventional qPCR methods are effective for assessing expression signatures for 

small batches of molecular targets, the advancement of multiplex qPCR permits 

concentrations of multiple targets to be analyzed in a single reaction (52). The consolidation 

of resources and time offered by a multiplexed qPCR model may provide the speed and cost 

efficiency necessary for individualized molecular-assessment practices to gain widespread 

clinical integration (25).

FOCUS ON EDUCATION

Efforts to emphasize the therapeutic potential of integrating molecular profiling and clinical 

assessments are necessary to accelerate the actualization of personalized care. The clinical 
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pathology laboratory is well equipped to provide physicians with the knowledge to promote 

the regular incorporation of molecular tumor analysis into standard workups; however, the 

overall success of such efforts will reside in striking a cautionary balance of promoting 

personalized medicine without overselling a concept that lacks proper verification and 

implementation standards. This sentiment resonates with groups such as the Coriell 

Personalized Medicine Collaborative (54). A Coriell study hopes to clarify the impact of 

genomic assessment on clinical outcomes while shaping the social and legal ramifications 

associated with openly accessible genomic profiling (54 ).

Conclusions

Advancements in molecular-profiling techniques have provided unprecedented insight into 

the genetic etiologies and basic molecular dysfunctions that lead to tumorigenesis. 

Moreover, bioinformatics analysis of gene expression data has produced expression 

signatures that are useful for personalizing many aspects of cancer management, including 

genetic screening, early detection, tumor classification, and prediction of prognosis and 

therapeutic response. Successful incorporation of bioinformatics-based assessments 

alongside current methods of tissue and clinical evaluation will leverage the complementary 

natures of these biological platforms. Orchestrating this collaboration is one of the steepest 

challenges facing clinical pathologists in their quest to integrate bioinformatics with 

frontline clinical care. The likely payoff for such efforts appears enormous. Through 

mediation of conventional and molecular-assessment methods, the personalization of cancer 

management stands poised for success.
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Fig. 1. Pathways in personalized cancer management
Cancer management is personalized by integrating synergistic molecular-assessment 

methods with conventional methods of clinical practice. In a prediagnostic setting, 

combining current knowledge of environmental factors with available screens for heritable 

cancer-inducing genetic mutations allows physicians an opportunity to modify preventive 

and monitoring guidelines. The onset of malignant transformation signals a transition from 

passive to active treatment in order to curtail an increase in disease burden. After diagnosis, 

the patient’s clinical data are combined with molecular-expression profile data for the tumor, 

and the data are analyzed with bioinformatics methods that draw upon archival expression 

data from external databases. This collaborative effort tailors cancer treatment by means of 

increased accuracy of risk assessment and improved methods so that therapies targeted to 

specific molecular dysregulations can be selected. Most importantly, the iterative nature of 

this approach to therapeutic assessment offers a continuous opportunity for physicians to 

reanalyze risk and select additional therapies to adapt to a patient’s changing molecular 

profile.
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Table 1

Molecular platforms for personalized medicine.

Technology Strengths Weaknesses Applications

Transcriptomics (genomic expression) • High-throughput target identification

• Accurate expression quantification

• Cost-effective large screening

• Well-established protocol for RNA 
extraction and hybridization

• Emerging insight into epigenetics 
and miRNA regulation

• Unable to detect 
posttranslational 
modifications 
and interactions

• Sample 
heterogeneity

• Limited access 
to high-quality 
preserved 
samples

• Classification 
of tumor 
subtypes 
[Weber (7 ), 
Ramaswamy 
et al. (55 )]

• Prediction of 
therapeutic 
response 
[Potti et al. 
(39 ), Lee et 
al. (42 )]

• Epigenetic 
assessment in 
cancer 
management 
[Esteller 
(14 )]

• miRNA 
expression 
signatures for 
diagnosis and 
tumor 
classification 
[Calin and 
Croce (9 )]

Proteomics (proteomic expression) • Direct functional interactions with 
drugs and molecular targets

• Difficulty in 
large-scale 
target 
identification

• Inaccurate and 
inefficient 
expression 
quantification

• Sample 
heterogeneity

• Limited access 
to high-quality 
preserved 
samples

• Testing and 
patient 
stratification 
for drug-
sensitivity 
gene 
networks 
[Araujo et al. 
(56 )]

SNP/HapMap • Cost-effective large-scale genetic- 
variation screening in patients

• Low error rate

• Well-established analysis tools

• Limited 
biological 
implications

• Difficult to find 
direct gene 
targets

• Unable to detect 
target functions

• Many disease 
applications 
in the 
HapMap 
Consortium 
(21 )

High-throughput gene sequencing • Comprehensive sequence information • Expensive 
experiment per 
sample

• Overwhelming 
quantity of data 
with high 
analysis 
challenges

• Tumor 
classification, 
CGAP,a 

HCGP [Ley 
et al. (24 )]

Clin Chem. Author manuscript; available in PMC 2015 August 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Overdevest et al. Page 21

Technology Strengths Weaknesses Applications

• No direct 
detection of 
target functions

Pharmacogenomics • Directly targets patient 
subpopulations with specific 
molecular characteristics

• Limits toxicity and untoward side-
effects

• Limited 
knowledge 
regarding global 
gene-network 
interactions

• Limited 
pharmaceutical 
alternatives for 
individuals with 
polymorphic 
variants leading 
to adverse 
reactions

• Targeted 
therapeutics 
[Evans and 
Relling (26 ), 
van Schaik 
(27 )]

a
CGAP, Cancer Genome Anatomy Project; HCGP, Human Cancer Genome Project.
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Table 2

Expression signatures and commercial products for personalizing cancer management.

Studies/products Platform Sample Cancer type

• Classification (human patient–based modeling)

 Golub et al. (7 ) Affymetrix HU600 microarray – 50-
gene predictor signature

Fresh AML/ALL

 Lymphochip [Alizadeh et al. 
(35 )]

cDNA array – 3186 genes Fresh/frozen tissue DLBCL

 [Perou et al. (36 )] cDNA array – 8102 genes Fresh/frozen tissue Breast

 Breast Bioclassifier™ 
[University Genomics (57 )]

55-Gene RT-PCR Fresh/FFPE tissue Breast

 MapQuant Dx™ [Ipsogen (58 )] Affymetrix GCS3000Dx2 microarray Fresh Breast

 Pulmotype™ [Applied 
Genomics (59 )]

IHC FFPE NSCLC

 CancerTYPE ID® 
[bioTheranostics (60 )]

92-Gene RT-PCR FFPE 39 Tumor types

 Pathwork® Tissue of Origin 
Test [Dumur et al. (37 )]

cDNA array – 1550 genes Frozen Associates tumor with 1 of 15 
tissues of origin

• Prognosis (human patient–based modeling)

 Yeoh et al. (61 ) Affymetrix U95Av2 microarray BM aspirate Pediatric ALL (classification and 
PVAD failure)

 Rosenwald et al. (62 ) 17-Gene signature cDNA microarray FFPE DLBCL

 van ‘t Veer et al. (38 ) Oligonucleotide microarray Frozen tissue Breast

 Paik et al. (63 ) 21-Gene RT-PCR FFPE Breast (recurrence after 
tamoxifen therapy)

 Rotterdam Signature [Ross et al. 
(64 )]

76-Gene signature from Affymetrix 
U133a microarray

Fresh/frozen Breast

 MammaPrint™ (based on van ‘t 
Veer study) [Agendia (65 )]

70-Gene oligonucleotide microarray Fresh/RNARetain® tissue Breast

 eXagenBC™ [eXagen (66 )] FISH FFPE Breast

 Mammostrat® [Applied 
Genomics (67 )]

IHC FFPE Breast

 PathVysion® [Abbott (68 )] FISH FFPE Breast (for HER-2 status)

 HerScan™ [Combimatrix 
Molecular Diagnostics (69 )]

DNA microarray Fresh/frozen DNA Breast (for HER-2 status)

 Pulmostrat™ [Applied 
Genomics (70 )]

IHC FFPE NSCLC

 Prostate Px [Aureon 
Laboratories (71 )]

IHC and automated pattern analysis FFPE Prostate

• Response to therapy (human patient–based modeling)

 Cario et al. (72 ) 54-Gene signature cDNA microarray BM aspirate Pediatric ALL (multi-drug 
chemotherapy)

 Okutsu et al. (73 ) 28-Gene signature cDNA microarray Mononuclear cells AML (multi-drug chemotherapy)

 Takata et al. (74 ) 14-Gene signature from cDNA 
microarray for 27648 genes

Frozen biopsy Bladder (M-VAC response)

 Frank et al. (75 ) 128-Gene signature of Affymetrix 
U133A microarray

BM aspirate CML (imatinib mesylate 
resistance)
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Studies/products Platform Sample Cancer type

 Dressman et al. (76 ) 38-Gene signature of Affymetrix 
U1332 Plus 2.0 microarray

Frozen core biopsy Breast (doxorubicin/paclitaxel

 Dressman et al. (40 ) 1727-Gene signature of Affymetrix 
U1332 Plus 2.0 microarray

Fresh/frozen tissue Ovarian (platinum resistance)

 Oncotype DX® [Genomic 
Health (77 )]

RT-PCR FFPE Breast (early stage, ER+)

 NuvoSelect™ [Ayers et al. 
(78 )]

30-Gene signature cDNA microarray Fresh/frozen Breast (TFAC chemotherapy 
efficacy)

 HERmark™ assay [Monogram 
Biosciences (79 )]

Protein expression quantification FFPE Breast (for HER-2 status)

 PharmacoDiagnostic® tests 
(EGFR, HER-2, cKit) [Dako (80 )]

IHC, FISH FFPE Colorectal (cetuximab and 
panitumumab efficacy); breast 
(trastuzumab efficacy); GIST 
(imatinib mesylate efficacy)

 TheraScreen K-Ras [Diagnostic 
Innovations (81 )]

RT-PCR Fresh/frozen/FFPE tissue Colorectal (cetuximab and 
panitumumab efficacy)

 Leumeta™ tests [Quest 
Diagnostics (82 )]

DNA, RNA, protein analysis Blood (plasma) Leukemias (CLL, CML, ALL)

 PGxPredict™ [PGx Health 
(83 )]

SNP analysis in FCGR3A Blood NHL (rituximab efficacy)

 AmpliChip® CYP450 Test 
[Roche Diagnostics (84 )]

Microarray for allelic variations in 
CYP2D6 and CYP2C19

Blood Predict phenotype for 
chemotherapy metabolism

• Response to therapy (in vitro panel–based modeling)

 Potti et al. (41 ) In vitro drug sensitivity + Affymetrix 
microarray

In vitro cell lines Cancers with common cytotoxic 
agent treatments

 Lee et al. (42 ) In vitro drug sensitivity + Affymetrix 
microarray

In vitro cell lines All cancers

• Targeted therapy (human 
patient–based modeling)

 Imatinib mesylate (Gleevec®) Small molecule tyrosine kinase 
inhibitor

CML

 Lapatinib ditosylate (Tykerb®) Small molecule tyrosine kinase 
inhibitor for HER-2/neu and EGFR

Breast cancer and lung cancers

 Gefitinib (Iressa®) Small molecule EGFR inhibitor NSCLC

 Erlotinib (Tarceva®) Small molecule EGFR inhibitor NSCLC

 Trastuzumab (Herceptin®) Humanized monoclonal antibody HER-2 overexpressing breast 
cancer

 Cetuximab (Erbitux®) Chimeric monoclonal antibody Metastastic colorectal cancer

 Panitumumab (Vectibix®) Humanized monoclonal antibody Metastastic colorectal cancer

 Bevacizumab (Avastin®) Humanized monoclonal antibody Colorectal, lung, and breast 
cancer

a
AML, acute myelogenous leukemia; ALL, acute lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; RT-PCR, real-time PCR; IHC, 

immunohistochemistry; NSCLC, non–small cell lung carcinoma; BM, bone marrow; PVAD, prednisone, vincristine, asparaginase, and 
daunorubicin; FISH, fluorescence in situ hybridization; M-VAC, methotrexate, vinblastine, doxorubicin (Adriamycin™), and cisplatin; CML, 
chronic myelogenous leukemia; ER, estrogen receptor; TFAC, paclitaxel (Taxol®), 5-fluorouracil, doxorubicin (Adriamycin), and 
cyclophosphamide; EGFR, epidermal growth factor receptor; GIST, gastrointestinal stromal tumor; HER-2, ERBB2 gene; CLL, chronic 
lymphocytic leukemia; NHL, non-Hodgkin lymphoma.

b
Human genes: FCGR3A, Fc fragment of IgG, low affinity IIIa, receptor (CD16a).
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