
RESEARCH ARTICLE

Knowledge-Based Analysis for Detecting Key
Signaling Events from Time-Series
Phosphoproteomics Data
Pengyi Yang1,2*, Xiaofeng Zheng1, Vivek Jayaswal3, Guang Hu1, Jean Yee Hwa Yang3,
Raja Jothi1,2*

1 Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National
Institutes of Health, Research Triangle Park, Durham, North Carolina, United States of America,
2 Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, Durham, North Carolina, United States of America, 3 Centre for Mathematical
Biology, School of Mathematics and Statistics, University of Sydney, Sydney, Australia

* pengyi.yang@nih.gov (PY); jothi@mail.nih.gov (RJ)

Abstract
Cell signaling underlies transcription/epigenetic control of a vast majority of cell-fate deci-

sions. A key goal in cell signaling studies is to identify the set of kinases that underlie key

signaling events. In a typical phosphoproteomics study, phosphorylation sites (substrates)

of active kinases are quantified proteome-wide. By analyzing the activities of phosphoryla-

tion sites over a time-course, the temporal dynamics of signaling cascades can be eluci-

dated. Since many substrates of a given kinase have similar temporal kinetics, clustering

phosphorylation sites into distinctive clusters can facilitate identification of their respective

kinases. Here we present a knowledge-based CLUster Evaluation (CLUE) approach for

identifying the most informative partitioning of a given temporal phosphoproteomics data.

Our approach utilizes prior knowledge, annotated kinase-substrate relationships mined

from literature and curated databases, to first generate biologically meaningful partitioning

of the phosphorylation sites and then determine key kinases associated with each cluster.

We demonstrate the utility of the proposed approach on two time-series phosphoproteo-

mics datasets and identify key kinases associated with human embryonic stem cell differen-

tiation and insulin signaling pathway. The proposed approach will be a valuable resource in

the identification and characterizing of signaling networks from phosphoproteomics data.

Author Summary

A key goal in cell signaling studies is to identify the set of kinases that underlie key signal-
ing events. Mass spectrometry-based technologies have emerged as a powerful tool to pro-
file proteome-wide phosphorylation events in vivo at a single amino acid resolution with
high precision. However, development of algorithms to analyze and identify signaling
events from high-throughput phosphoproteomics data is still in its infancy. Here we
propose a knowledge-based CLUster Evaluation (CLUE) approach for identifying key
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signaling cascades from time-series phosphoproteomics data. Our approach utilizes
known kinase-substrate annotations from curated phosphoproteomics databases to first
determine the optimal clustering of the phosphorylation sites and then identify enriched
kinase(s). We apply CLUE on time-series phosphoproteomics datasets and identify key
kinases associated with human embryonic stem cell differentiation and insulin signaling
pathway.

Introduction
Cell signaling controls various aspects of basic cellular processes including homeostasis, prolif-
eration, survival, and cell fate decisions, and defects in mechanisms underlying these processes
are associated with a wide range of diseases [1–3]. Protein post-translational modifications
(PTMs), which can activate or inhibit protein function/activity, have emerged as key regulators
of various signaling pathways [4]. Protein phosphorylation is a common type of PTM that
increases the functional diversity of the proteome by altering target proteins between active
and inactive forms for signal transduction and integration [5]. It is characterized by the addi-
tion of a phosphate group by a protein kinase to a serine, threonine, or tyrosine residue on a
substrate protein [6]. Traditionally, protein phosphorylation has been studied largely using in
vitro assays and, more recently, protein chip arrays [7]. However, kinase activities are often less
specific in vitro compared to in vivo [8], and, as a result, in vitro analyses often result in a large
number of false discoveries. Recent advances in mass spectrometry (MS)-based technologies
[9,10] make it possible to profile proteome-wide phosphorylation events in vivo for investigat-
ing signal transduction cascades [11], understanding complex diseases [12–14], and develop
strategies for therapeuitc intervention [15,16]. With isotopic/isobaric labelling techniques and
increasingly label-free approach, proteome-wide phosphorylation events can now be identified
and quantified at a single amino acid resolution with high precision [17,18].

A key goal in a phosphoproteomics study is to identify the set of kinases and their corre-
sponding substrates that underlie key signaling events [19]. Much progress has been made
on developing computational tools to predict substrates of a given kinase using consensus
sequence recognition motif [20,21] and incorporating additional information such as protein
structure [22] and colocalization [23]. Conversely, computational approaches have been pro-
posed to identify kinases based on substrate recognition motifs and differentially phosphory-
lated substrates [16,24–27]. It is estimated that there are over 500 kinases in human cells [28].
Most kinases phosphorylate not only many proteins but also many sites on the same protein.
By analyzing phosphorylation sites (substrates) proteome-wide over a course of time, the
dynamics of signaling cascades can be elucidated [29]. Since many substrates of a given kinase
have similar temporal kinetics, clustering phosphorylation sites into distinctive clusters can
facilitate identification of their respective kinases [8,30–33]. To identify the kinases that under-
lie key signaling cascades, clustering algorithms such as k-means clustering and its variant
fuzzy c-means clustering are frequently utilized to partition the phosphorylation sites into clus-
ters with distinctive temporal profiles from which the corresponding kinases and their activity
could be inferred [8,30–33]. Fuzzy c-means clustering is an extension of the classic k-means
clustering that allows a phosphorylation site to be assigned to multiple clusters with probabilis-
tic “membership” scores [34]. While k-means clustering-based algorithms are computationally
efficient and provide an intuitive separation and summarization of the temporal profiles
[35,36], their performance can be strongly influenced by the user-selection of the parameter k,
which dictates the partitioning of the data into exactly k clusters. Thus, estimation of k becomes
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critical to generating biologically meaningful clusters. An underestimation of k will force unre-
lated phosphorylation sites to be assigned to the same cluster whereas an overestimation will
split related phosphorylation sites across two or more clusters [37], hence confounding down-
stream analyses.

Numerous methods and metrics have been proposed over the years to estimate the optimal
choice of k for k-means clustering-based algorithms. Popular approaches include internal indi-
ces such as Dunn index [38] and Connectivity [39], stability indices such as average proportion
of non-overlap (APN), average distance (AD), average distance between means (ADM) [40],
and the figure of merit (FOM) [41], and biological indices that measure biological homogeneity
(BHI) or biological stability (BSI) [42]. However, none of these approaches assess the informa-
tion content of resulting clusters using a formal hypothesis testing framework, nor are they spe-
cifically designed for analyzing phosphoproteomics data. Here we propose a knowledge-based
CLUster Evaluation (CLUE) approach for determining the most informative partitioning of a
given temporal phosphoproteomics data using a hypothesis testing approach. Our approach
utilizes known kinase-substrate annotations from curated phosphoproteomics databases to
first estimate the optimal number of clusters within a dataset and then identifies the enriched
kinase(s) associated with each cluster. Using simulation studies, we show that CLUE outper-
forms several alternative approaches in identifying the optimal number of clusters. In addition,
we apply CLUE on time-series phosphoproteomics datasets [12,43] and identify key kinases
associated with human embryonic stem (hES) cell differentiation and insulin signaling in
3T3-L1 adipocytes.

Results

Overview of CLUE approach
Identification of key kinases that control the activation and inhibition of cell signaling is a criti-
cal step for characterizing signaling cascades in time-course phosphoproteomics studies. Since
many substrates (phosphorylation sites) of a given kinase are may have similar temporal pro-
files, partitioning phosphorylation sites from a proteome-wide time-series study into informa-
tive clusters, each with a distinctive temporal profile, becomes vital toward identification of
kinases that could explain the observed phosphoproteome. We developed a knowledge-based
CLUster Evaluation (CLUE) framework that uses existing knowledge, known kinase-substrate
annotations from curated phosphoproteomics databases, to guide the generation of biologically
meaningful clusters. A schematic overview of CLUE is presented in (Fig 1). CLUE provides a
framework to assess the most informative partitioning of a given temporal phosphoproteomics
data. Specifically, CLUE estimates the optimal k for clustering data using k-means clustering-
based algorithms (see Materials and Methods for details).

CLUE's performance over alternative approaches
To assess CLUE's ability to partition data into meaningful clusters and to assess CLUE's perfor-
mance against alternative approaches for estimating k, we conducted studies using simulated
phosphoproteomics data (see Materials and Methods for details). We generated scenarios
where the data were simulated to have varying number of clusters. In each case, the clusters
were generated based on a set of randomly selected temporal profile templates (Fig 2), each
representative of a phosphorylation activity profile over seven time points. The goal was to
assess how well each method performs in recovering the true number of clusters. We compared
CLUE with eight popular approaches including those that use internal indices such as Dunn
index [38] and Connectivity [39], stability indices such as average proportion of non-overlap
(APN), average distance (AD), average distance between means (ADM) [40], and the figure of
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Fig 1. Schematic overview of CLUE. The level of phosphorylation for each phosphorylation sites in the
proteome are quantified in time-course by mass spectrometry. First, time-course profiles of phosphorylation
sites are partitioned into clusters using a k-means clustering-based algorithm for a range of values for k. Next,
the clustering result, for each k, is evaluated based on the correct clustering of known substrates of kinases,
as annotated in the PhosphoSitePlus database [53], and an enrichment score is computed. The clustering
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merit (FOM) [41], and biological indices that measure biological homogeneity (BHI) or biolog-
ical stability (BSI) [42].

Every method we tested computes an objective score for each k and reports the k with the
best score. To facilitate a fair comparison of methods, we transformed the objective scores
from each method into the range [0, 1] by using Min-Max normalization. After the normaliza-
tion, the scores from methods that seek to minimize the objective function were further trans-
formed into 1 minus the normalized Min-Max scores. First, we compared the performances of
CLUE and other commonly used approaches including Dunn index, Connectivity, APN, AD,
ADM, FOM, BHI, and BSI in estimating the optimal number of clusters for each of the scenar-
ios with simulated data. In all cases, the fuzzy c-means clustering, an extension of the classic k-
means clustering, was used to partition the data, and the results were largely the same even
when k-means clustering was used.

Results from our simulation studies (Fig 3) reveal that in all cases, CLUE was able to accu-
rately identify the true number of clusters in the simulated datasets whereas other methods
were not as accurate. Importantly, the simulation studies also revealed some common biases
with some of the methods tested. In particular, BHI, FOM, and AD have a tendency to overesti-
mate the optimal number of clusters. In other words, while these methods are able to capture
the lower bound on the optimal number of clusters, they fail to provide a reasonable upper
bound. On the other hand, ADM, APN, BSI, Connectivity, and Dunn index appear to suffer
from local optima and thus have a tendency to underestimate the optimal number clusters. In
all cases, APN, BSI, and Connectivity reported the optimal number of clusters as 2, severely
underestimating the true number of clusters. Although ADM appears to somewhat overcome
the bias, it still suffers from local optima. While it is arguable that by observing the pivotal
point in the reported scores, several of these methods may help in determining the optimal
number of clusters when the true number of cluster is small, such a pivotal point may be less
apparent when the number of true clusters is rather large, as one would expect in a high-
throughput dataset. Although CLUE, BHI, and BSI utilize known kinase-substrate annotations

with the highest enrichment score is reported as the optimal clustering along with kinases whose substrates
are enriched within each cluster.

doi:10.1371/journal.pcbi.1004403.g001

Fig 2. Temporal profile templates used in simulation studies. Fourteen temporal profiles templates, each with seven time points and a unique time-
course pattern, were defined for generating simulation datasets. For each time point, a random variable with a defined Gaussian distribution is used to
generating the temporal profile for the simulation datasets.

doi:10.1371/journal.pcbi.1004403.g002
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Fig 3. Comparison of CLUEwith alternative approaches. Raw scores, representing the quality of clustering result for each k, for each method were
normalized to be between 0 and 1 (y-axis). The higher the score, the more informative the resulting clustering is. The methods were evaluated based on how
accurately they can recover the true number of clusters within a simulated dataset. The yellow line represents the true number of clusters in the simulated
dataset, and the red dot denotes the predicted number of clusters in each case.

doi:10.1371/journal.pcbi.1004403.g003
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in aiding their clustering evaluation process, their performances vary significantly perhaps due
to how they utilize this information. CLUE's ability to make reasonably accurate predictions on
the optimal number of clusters is attributable to it taking advantage of known information and
using it to assess and penalize under/over clustering as it attempts to estimate the optimal num-
ber of clusters (see Materials and Methods). Similar results were obtained when the classic k-
means clustering was used instead of the fuzzy c-means clustering (S1 Fig), indicating that
CLUE's performance is not dependent on the type of k-means clustering-based algorithm.
Together, these results highlight the advantages of using known kinase-substrate annotations
in aiding optimal clustering of phosphoproteomics data.

CLUE's performance as a function of completeness/accuracy of known
kinase-substrate annotations
Next, to assess how important the completeness of the known kinase-substrate annotations is
in determining CLUE's performance, we simulated data such that only those kinases that had
annotations for substrates in g out of the k clusters were considered. The goal of this simulation
study was to determine how much known information is sufficient to help guide optimal clus-
tering of the data. The scenario when g = 0 resembles the situation when no existing knowledge
is available for use by CLUE. For a method that was designed to rely heavily on existing knowl-
edge to aid clustering, CLUE, as expected, is unable to correctly predict the true number of
clusters in the simulated data when g = 0 (Fig 4A). However, as g is set to higher values, CLUE's
ability to accurately predict the true number of clusters improves dramatically.

Having established how valuable existing knowledge is in aiding correct clustering of high-
throughput phosphoproteomics data, we next sought to assess the extent to which incorrect
annotations (noise) may influence CLUE's performance. To this end, we simulated different
levels of noise by requiring 10%, 20%, 40%, 60% or 80% of the substrates to have incorrect
kinase assignments, similar to what one might encounter in real-world. As one would expect,
CLUE performed poorly when the noise was set at 80% (Fig 4B). However, CLUE was able to
consistently recover the true number of clusters even when a substantial percentage, up to
~40%, of the annotation is incorrect. Overall, these simulation results demonstrate that CLUE
is robust and powerful in estimating the true number of clusters based on simulated phospho-
proteomics data.

CLUE's performance as a function of data noise and number of time
points
Given that later time points post stimulus in phosphoproteomics studies capture non-func-
tional phosphorylation [44], we sought to assess CLUE’s performance as a function of “noisy”
data wherein last one or two time points were simulated to be random noise, reflecting non-
functional phosphorylation. As expected, we observed a noticable drop in CLUE’s performance
with increasingly more time points affected by noise (S2 Fig). This observation highlights the
importance of time point selection in phosphoproteomics experimental design. We also
assessed CLUE’s performance as a function of the number of profiled time points. In theory,
the more the number of time points, the more the chances of capturing the subtle differences
in the temporal kinetics, and thus the more the number of clusters one may infer. To test this,
we varied the number of time points used for representing temporal patterns in the simulation
studies. Specifically, we compared results based on data from all seven time points against
those from four (1, 3, 5, 7) or three (1, 4, 7) time points. Although using data from just four
time points correctly predicted the number of true clusters, the levels of uncertainty was notice-
ably higher (error bars in S2 Fig, middle panel). Using data from fewer (three) time points
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leads to underestimation of the true number of simulated clusters (S2 Fig, right panel). Thus,
we conclude that the number of time points required for dissecting various kinases depends on
the profiled signaling processes. If the signaling processes have complex temporal features,
fewer than sufficient number of time points may not provide the necessary resolution to distin-
guish them from each other and CLUE will likely group them into a single cluster.

Using CLUE to Identify key signaling events from phosphoproteomics
data
To demonstrate how valuable CLUE would be in identifying key signaling events from high-
throughput phosphoproteomics data, we applied CLUE on two previously published SILAC-
based temporal phosphoproteomics datasets on differentiating human embryonic stem (hES)
cells (five time points) [43] and insulin activation in mouse 3T3-L1 adipocytes (nine time
points) [12].

Human embryonic stem cell differentiation. CLUE estimated the optimal number of
clusters in hES cell differentiation dataset to be 11 (Fig 5A and S1 Table). The temporal profiles
of substrates within clusters generated using the c-means clustering with c = 11 are shown in
Fig 5B. Evaluation of substrates within each cluster against known kinase-substrate annotations
revealed enrichment of substrates known to be phosphorylated by specific kinases (Fig 5C, 5D
and 5E and S2 Table). Notably, substrates of kinases p90RSK, p70S6K, and PKACA (catalytic
subunit of cAMP-dependent protein kinase alpha (PKA)) from the AGC subfamily [45] are
enriched in a single cluster (cluster 6). The temporal profile of cluster 6 shows acute activation
of this pathway within 30 minutes of hES cell differentiation initiation (Fig 5B). The enrich-
ment of p90RSK (p = 1.5 x 10–6), p70S6K (p = 2.6 x 10–6), and PKACA (p = 6.8 x 10–5)

Fig 4. The effects of completeness/accuracy of known kinase-substrate annotations on CLUE's performance. CLUE's performance as a function of
number of kinases annotated to have substrates in g out of the k clusters. The panels (from left to right) show six scenarios with true number of true simulated
clusters highlighted in yellow. The scenario g = 0 resembles the situation when no existing knowledge is available for use by CLUE. CLUE's ability to
accurately predict the true number of clusters improves dramatically as g increases. CLUE's performance as a function of percentage of incorrect kinase-
substrate annotations (noise). We set g = 5 for testing different levels of noise (denoted as s). The panels (from left to right) show six scenarios with true
number of true simulated clusters highlighted in yellow.

doi:10.1371/journal.pcbi.1004403.g004
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substrates within a cluster suggests a role for AGS subfamily of kinases in the signaling cascades
critical for the hES cells to exit from their self-renewing pluripotent state. Indeed, consistent
with the fast activation of p70S6K substrates during hES cell differentiation (Fig 5B), a previous
study of mTOR/p70S6K pathway in hES cells showed that differentiation can be induced by
simply overexpressing constitutively active p70S6K [46]. In contrast, the substrates of CDK2
are found to be enriched in cluster 9 with a decreasing activity through profiled time points.
Together, these results are consistent with findings from the original study which reported an
increased activity of PKA and a decreased activity of CDK2 [43]. Another key kinase known to
play a role in embryonic stem cell signaling is the extracellular signal-regulated kinase (ERK)

Fig 5. Optimal clustering and analysis of hES cell phosphoproteomics data. CLUE's estimation of number of clusters. The number of clusters evaluated
ranges from 2 to 20 and the optimal number of clusters, as estimated by CLUE, is highlighted in red. Visual representation of temporal profiles of
phosphorylation sites within each cluster. Membership scores of all phosphorylation sites within a cluster is used to create color gradient from green to red
correspond to lower to higher clustering confidence. Size: number of phosphorylation sites that have membership in that cluster. Bar plot showing kinases
whose substrates are enriched within each cluster (p-value < 0.05; Fisher’s exact test). Principal component analysis of the temporal profile of
phosphorylation sites within clusters 3, 6, and 7. Known substrates of p70S6K and ERK kinases are highlighted as x and *, respectively. Motif enrichment
analysis. Phosphorylation sites from each cluster are scored against the PSSMs of p70S6K and ERK1, respectively. The cluster with the highest motif
enrichment scores (median) are highlighted in yellow.

doi:10.1371/journal.pcbi.1004403.g005
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[47,48]. Consistent with ERK's role in embryonic stem cell differentiation, we find an enrich-
ment of ERK substrates (p = 2.1 x 10–6) among those in cluster 3 (Fig 5C, 5D and 5E), suggest-
ing an important role for ERK signaling in hES cell differentiation.

Insulin activation. For the insulin stimulated adipocyte dataset, CLUE estimated the opti-
mal number of clusters to be 17 (Fig 6A and S1 Table). Fig 6B shows the temporal profiles of
substrates within clusters generated using the c-means clustering c = 17. We found substrates
of many kinases known to respond to insulin activation enriched in our clustering result (Fig
6C, 6D and 6E and S2 Table). Specifically, cluster 2 is enriched for a group of fast responding
substrates upon insulin stimulation. The kinases that are found to be highly enriched in this
cluster are Akt1 (p = 4.8 x 10–7) and PKACa (p = 2.5 x 10–3). Interestingly, phosphorylation
sites in cluster 7 are enriched for mTOR substrates (p = 5.7 x 10–3), which is known to act
downstream of Akt1 in the insulin pathway [12]. As one would expect, the temporal profiles of
sites in cluster 7 (mTOR) exhibits relatively delayed activation compared to sites within cluster
2 (Akt1). While it is clear that most of the known Akt1 and mTOR substrates are partitioned
into clusters 2 and 7, respectively (Fig 6D), a few known substrates of Akt1 and mTOR are
grouped together in cluster 9, with a temporal profile suggesting prolonged activation (Fig 6B).
We also find an enrichment for ERK substrates in cluster 17 (p<3.5 x 10–5) (Fig 6C). ERK
pathway is known to play an important role in insulin signaling [49] and is known to intersect
with Akt1/mTOR pathway to co-regulate downstream functions [50]. Our analyses revealed
that while Akt1 substrates respond much faster to insulin stimulation than mTOR substrates
which are consistent with the results reported by the orginal study [12].

We compared CLUE's performance in recovering known kinases associated with hES cell
differentiation and insulin activation with those by other approaches and found that CLUE
can reliably recover kinases that underlie these two processes (Table 1). Taken together, these
results demonstrate the usefulness of CLUE in facilitating the discovery of key signaling events
from temporal phosphoproteomics data by generating biologically meaningful clusters.

Discussion
Identification of key kinases that control activation and inhibition of specific signaling events is
critical for characterizing signaling networks. In this study, we described a knowledge-based
CLUster Evaluation (CLUE) approach that enables identification of key signaling events from
temporal phosphoproteomics data by utilizing known kinase-substrate annotations. Our simu-
lation studies show that CLUE outperforms many alternative methods in recovering the under-
lying clusters from temporal datasets. To test how CLUE can be utilized for real-world
applications, we analyzed temporal phosphoproteomics datasets generated from hES cell dif-
ferentiation and insulin activation of adipocytes. The understanding of self-renewal and differ-
entiation of hES cells is a subject of major scientific interest due to its applications in cancer
treatment and regenerated medicine [51]. It is widely acknowledged that signaling pathways
play critical roles in maintaining the pluripotent state of ES cells [52] and therefore, the identi-
fication of kinases that are involved in hES cell self-renewal and differentiation is of great
importance. Similarly, the insulin signaling pathway plays a key role in regulating and main-
taining the physiology of the adipocytes. Therefore, the characterization of the kinases that are
the key components in insulin signaling allows potential clinical application to be targeted at
different pathway levels. Using CLUE, we were able to identify and characterize several known
and novel kinases that are key regulators in hES cell differentiation and insulin signaling. Fur-
thermore, CLUE can also be used to discover novel substrates for active kinases of interest. For
instance, in our analyses of the insulin activation data, many known Akt substrates (AS160
Ser595, PFKFB2 Ser469, and BAD Ser136) and mTOR substrates (FRAP Ser2481 and IRS1
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Ser632) that have not yet been annotated in PhosphoSitePlus are ranked highly based on the
membership score of c-means clustering (S1 Table). Thus, not only does CLUE help in the
identification of key kinases but also may facilitate identification of novel substrates of kinases.

It is conceivable for a phosphatase to coordinately dephosphorylate a subset of substrates of
a given kinase, in which case a subset of substrates of that kinase is expected to exhibit a similar

Fig 6. Optimal clustering and analysis of adipocytes phosphoproteomics data. CLUE's estimation of number of clusters. The number of clusters
evaluated ranges from 2 to 36 and the optimal number of clusters, as estimated by CLUE, is highlighted in red. Visual representation of temporal profiles of
phosphorylation sites within each cluster. Membership scores of all phosphorylation sites within a cluster is used to create color gradient from green to red
correspond to lower to higher clustering confidence. Size: number of phosphorylation sites that have membership in that cluster. Bar plot showing kinases
whose substrates are enriched within each cluster (p-value < 0.05; Fisher’s exact test). Principal component analysis of the temporal profile of
phosphorylation sites within clusters 2, 7, 9 and 17. Known substrates of Akt1 and mTOR kinases are highlighted in x and *, respectively. Motif enrichment
analysis. Phosphorylation sites from each cluster are scored against the PSSMs of Akt1 and mTOR, respectively. The cluster with the highest motif
enrichment scores (median) are highlighted in yellow.

doi:10.1371/journal.pcbi.1004403.g006
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temporal profile and thus clustered together in our analysis. Moreover, increases as well as
decreases in substrate phosphorylation levels of a given kinase could be due to elevated
(reduced, resp.) kinase activity and/or reduced (increased, resp.) levels of corresponding phos-
phatase. Either way, even in the absence of phosphatase-substrate information, as long as sub-
strates that belong to a key signaling cascade exhibit similar temporal profile (increasing/
decreasing), CLUE will infer them to belong to a cluster and identify putative kinases associated
with the cluster. Depending on whether the phosphorylation levels of the substrates within a
cluster over the time-course are up/down, one can infer whether that signaling pathway is acti-
vated or inactivated. For example, in our analysis of the hES data (Fig 5), we identify enrich-
ment of substrates for ERK (cluster 3) and p70S6K (cluster 6). Based on the temporal profiles,
it is evident that ERK signaling is inactivated as hES cells differentiate (beginning 1hr time
point), which is consistent with an essential role for ERK signaling in the maintenance of the
pluripotent state in hES cells by blocking neuronal, trophectoderm and primitive endoderm
differentiation [47]. In contrast, substrates predicted to be that of p70S6K are activated during
hES cell differentiation, consistent with the fact that activation of p70S6K alone is sufficient to
induce hES differentiation [46]. Thus, CLUE is applicable to analyze both increasing and
decreasing phosphorylation profiles and will be useful even when phosphatase-substrate infor-
mation is unavailable.

Other factors such as protein translation rate, degradation rate, and cell cycle progression
may affect phosphorylation especially at later time points, and diverse substrates of a given
kinase may be modulated with different kinetics. To address these confounding factors, phos-
phorylation sites and time points may be pre-filtered to select those that are biologically most
relevant for capturing a given kinase’s activity when such prior knowledge is available.

Our simulation studies reveal that CLUE's performance is dependent on the accuracy of the
annotations (prior knowledge) that is employed to aid the clustering process. Although CLUE
can tolerate reasonable amount of noise/inaccuracies (up to ~40%), using annotations from a
high quality source/database is essential for accurate and biologically meaningful clustering of
the data. It is worth noting that CLUE's performance is not biased towards larger kinase-sub-
strate annotation groups as Fisher’s Exact test used to test for kinase enrichment is robust to
size differences in kinase-substrate annotations.

Table 1. Comparison of CLUEwith alternative approaches on the two phosphoproteomics datasets.

hES cell differentiation Insulin activation

Method Estimated # cluster Enrichment based on Fisher's Exact Test Estimated # cluster Enrichment based on Fisher's Exact Test

P70S6K P90RSK PKACA ERK1/2 Akt1 PKACA mTOR ERK1/2

CLUE 11 2.6x10-6 1.5x10-6 6.8x10-5 2.1x10-6 17 4.8x10-7 2.5x10-3 5.7x10-3 3.5x10-5

Dunn 7 1.7x10-6 3.4x10-4 1.3x10-4 NS 4 2.7x10-3 1.3x10-3 ns 1.1x10-6

BHI 22 2.2x10-7 5.3x10-4 ns 4.1x10-5 4 2.7x10-3 1.3x10-3 ns 1.1x10-6

connectivity 2 2.0x10-2 ns ns ns 2 ns ns 3.1x10-2 ns

BSI 2 2.0x10-2 ns ns ns 2 ns ns 3.1x10-2 ns

APN 2 2.0x10-2 ns ns ns 2 ns ns 3.1x10-2 ns

ADM 2 2.0x10-2 ns ns ns 2 ns ns 3.1x10-2 ns

AD >30 - - - - >30 - - - -

FOM >30 - - - - >30 - - - -

ns, not significant;-, not applicable

doi:10.1371/journal.pcbi.1004403.t001
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Although we formulated CLUE for analyzing phosphoproteomics data, the general frame-
work of CLUE can also be used to analyse temporal transcriptomics data toward identification
of transcription networks and cascades. This can be accomplished by using gene set annota-
tions, as defined by various gene ontology-like databases, or transcription factor-target gene
annotations in place of kinase-substrate annotations. While CLUE is designed to perform opti-
mally with k-means clustering-based algorithms, in theory, it can be coupled with other clus-
tering algorithms such as SOM where the cluster enrichment can be evaluated.

Materials and Methods

Kinase-substrate annotation
Kinase-substrate annotations were compiled from the PhosphoSitePlus database, a curated
database of protein post-translational modifications (PTMs) including phosphorylation [53].
We compiled mouse-specific and human-specific kinase-substrate annotations and assigned to
each kinase its phosphorylation substrates from mouse and human, respectively, based on
“KINASE”, “SUBSTRATE”, and “SUB_ORG” columns of the database. The official gene sym-
bols and the phosphorylated residues (amino acids) were concatenated together to create
unique identifiers for each phosphorylation site. Phosphorylation sites assigned to multiple
kinases (in PhosphoSitePlus) are classified to multiple kinases in the enrichment analysis. In
total, we extracted 206 kinases and 9830 kinase-substrate interactions for human, and 235
kinases and 17532 kinase-substrate interactions for mouse.

Knowledge-based CLUster evaluation (CLUE) framework
CLUE relies on annotated kinase-substrate relationships to estimate the optimal k for cluster-
ing phosphoproteomics data using k-means clustering-based algorithms (Fig 1). Given a clus-
tering output from a k-means clustering-based algorithm that partitions the data into exactly k
clusters, let i = 1. . .k be the ith cluster. Letm be the number of kinases annotated in the Phos-
phositePlus database for the species of interest and j = 1. . .m be the jth kinase. Let aij denote the
number of phosphorylation sites regulated by kinase j that are included in cluster i, bij denote
the number of phosphorylation sites regulated by kinase j that are not present in cluster i, cij
denote the number of phosphorylation sites in cluster i that are not regulated by kinase j, and
dij denote the number of phosphorylation sites that are neither included in cluster i nor regu-
lated by j. Let us define θ as odds-ratio such that θ = (aij / bij) / (cij / dij), and under Fisher’s
exact test, we can test for the significance of enrichment of j's substrates in cluster i under the
null hypothesis that the substrates of j are not over-represented in cluster i (i.e. H0:θ = 1) and
the alternative hypothesis that the substrates of j are over-represented in i (i.e. H1:θ> 1). For a
given set of values aij, . . ., dij, the enrichment can best tested as follows:

probij ¼

aij þ bij

aij

 !
cij þ dij

cij

 !

aij þ bij þ cij þ dij

aij þ cij

 !

and the p-value for the test of significance (i.e. pij) is obtained by summing the probij values
over all combinations of aij, . . ., dij that return odds-ratio values at least as large as the observed
values.
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By applying the above test for allm kinases against a given cluster i, the significance of the
information content of cluster i is determined as follows:

pðclusteriÞ ¼ minj¼1...mðpijÞ:

Then, the p-values for all k clusters are combined using Fisher’s combined probability test:

Pk ¼ P w2
d > �2

Xk

i¼1

logðpðclusteriÞÞ
 !

;

where d = 2k denotes the degrees of freedom. Finally, Pk is converted into an enrichment score
Ek = -log10(Pk), which indicates how informative it is to partition the data into k clusters. The
higher the enrichment score, the more informative the resulting clustering is. The enrichment
score captures both the information content of each individual cluster while also assessing the
overall enrichment of the entire partitioning. Intuitively, with an overestimated k, phosphory-
lation sites that are substrates of a kinase might be split across two or more clusters, which will
be penalized by Fisher’s exact test for lower information content of resulting clusters. In con-
trast, underestimation of kmight group unrelated phosphorylation sites to the same cluster,
which will be penalized by Fisher’s combined probability test. By using k-means clustering-
based algorithm with a range of different k values to partition the dataset and assessing the
enrichment score for each k using CLUE, the optimal k for partitioning can be estimated.

Simulation studies
To compare CLUE's performance with those of other commonly used approaches for estimat-
ing k for k-means clustering-based algorithms, we conducted simulation studies. First, we
defined 14 temporal profiles, each with seven time points, representing typical temporal kinet-
ics observed in a time-series study (Fig 2). Next, time course phosphorylation profiles for indi-
vidual sites (substrates) were simulated by randomly selecting a set of temporal profiles,
representing a set of clusters, from the 14 templates and then generating data using the selected
temporal profiles with Gaussian noise. Specifically, 500 phosphorylation sites were generated
for each temporal profile under a Gaussian distribution with the standard deviation held con-
stant (σ = 1). For instance, to simulate a 4-cluster dataset, 4 different temporal profile templates
are randomly selected and a total of 2000 phosphorylation sites are generated based on the
selected temporal profile templates. In the case of simulating a 14-cluster dataset, all temporal
profiles templates are used and a total of 7000 phosphorylation sites are generated. Then, we
evaluated CLUE's performance using the k-means as well as the fuzzy c-means clustering algo-
rithms. For the purposes of testing, we used values for k (or c in the case of fuzzy c-means clus-
tering) ranging from 2 to 20. In practice, this can be specified by the user. Since the k-means
and the fuzzy c-means clustering algorithms randomly initiate centroids, for each k (or c,
respectively), clustering was performed 10 times, each time with a different initialization of
centroids in order to obtain an estimation of means. The final result is obtained by averaging
the results from each individual runs, and the optimal clustering is determined by finding the
maximum enrichment score from the final result.

For simulating the database of annotated kinase-substrate relationships, we generated 100
kinase-substrate groups, each comprising 50 substrates assigned to a kinase. For evaluation
purposes, of the 100 groups, g groups were generated to each contain phosphorylation sites
(substrates) defined to have the same temporal profile. To assess the extent to which incorrect
annotations (noise) may influence the performance of CLUE, we set g = 5 and simulated differ-
ent levels of noise by requiring 10%, 20%, 40%, 60%, or 80% of the substrates from each group
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to have a temporal profile different from that of the rest of substrates in that group. The
remaining 95 kinase-substrate groups were generated to contain substrates that were randomly
sampled from all phosphorylation sites in the simulated dataset. The resulting simulated
kinase-substrate annotations were used for the evaluation of CLUE, BSI and BHI in estimating
the optimal number clusters in the simulation experiments.

Temporal phosphoproteomics datasets
To demonstrate the utility of the proposed approach, we applied it on two previously published
SILAC-based temporal phosphoproteomics datasets on (a) human embryonic stem (hES) cells
differentiation using phorbol 12-myristate 13-acetate (PMA) treatment [43] and (b) insulin
activation in mouse 3T3-L1 adipocytes [12]. The hES cell differentiation data has a total of
14,865 unique phosphopeptides containing 23,522 phosphorylation sites mapping to 4,335
proteins. The phosphopeptides were quantitated over a time-course of five time points during
hES cell differentiation (0 min, 30 min, 1 hour, 6 hour, and 24 hour). For clustering analyses,
only those phosphorylation sites that have an associated gene product and at least 2-fold
change in phosphorylation levels at any time point during differentiation compared to the ini-
tial time point (0 min) were considered. This filtering step resulted in 3,416 phosphorylation
sites. The insulin activation dataset has a total of 38,901 unique phosphopeptides correspond-
ing to 37,248 phosphorylation sites mapping to 5,705 proteins. The phosphopeptides were
quantitated over a time-course of nine time points during insulin treatment of mouse adipo-
cytes (0 sec, 15 sec, 30 sec, 1 min, 2 min, 5 min, 10 min, 20 min, and 1 hour) performed in bio-
logical triplicates. For clustering analyses, only those phosphorylation sites that have an
associated gene product and are differentially phosphorylated, as determined using a moder-
ated t-test implemented in limma R package [54] with a false discovery rate (FDR) of 0.05 as
cutoff, were considered. This filtering step resulted in 3,178 phosphorylation sites.

Motif enrichment analysis
For a given kinase of interest, the amino acid sequences of its substrates annotated in Phospho-
SitePlus database is extracted to calculate a position-specific scoring matrix (PSSM) as follows:

Pa;j ¼
1

N

XN
i¼1

Iðxi;j ¼ aÞ

where N is the number of annotated substrates, j is the amino acid position, a is the set of char-
acters corresponding to the 20 amino acids, and I is the indicator function. Then, a motif
enrichment score is calculated for each phosphorylation site by summing the frequency of
occurrence of each amino acid in relation to the PSSM.

Software implementation
CLUE was implemented as an R package. The source code and documentation are freely avail-
able from CRAN (http://cran.r-project.org/web/packages/ClueR/index.html).

Supporting Information
S1 Fig. Simulation results showing CLUE's performance using classic k-means clustering.
The yellow line represents the true number of clusters in the simulated dataset, and the red dot
denotes the predicted number of clusters in each case.
(TIF)
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S2 Fig. Simulation results showing CLUE's performance in relation to data noise and num-
ber of time points. The yellow line represents the true number of clusters in the simulated
dataset, and the red dot denotes the predicted number of clusters in each case. (A) CLUE’s per-
formance using data from all seven time points (left), data for the last time point simulated as
random noise (middle), and data for the last two time points as random noise (right). (B)
CLUE’s performance using data from all seven time points (left), data from four (1, 3, 5, 7)
time points, and data from three (1, 4, 7) time points.
(TIF)

S1 Table. Clustering membership scores for hES cell differentiation and insulin activation
datasets.
(XLSX)

S2 Table. Kinases whose substrate are enriched within identified clusters in hES cell differ-
entiation and insulin activation datasets.
(XLSX)
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