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Abstract

Many neurons display significant patterning in their spike trains (e.g. oscillations, bursting), and 

there is accumulating evidence that information is contained in these patterns. In many cases, this 

patterning is caused by intrinsic mechanisms rather than external signals. In this review, we focus 

on spiking activity that displays nonrenewal statistics (i.e. memory that persists from one firing to 

the next). Such statistics are seen in both peripheral and central neurons and appear to be 

ubiquitous in the CNS. We review the principal mechanisms that can give rise to nonrenewal spike 

train statistics. These are separated into intrinsic mechanisms such as relative refractoriness and 

network mechanisms such as coupling with delayed inhibitory feedback. Next, we focus on the 

functional roles for nonrenewal spike train statistics. These can either increase or decrease 

information transmission. We also focus on how such statistics can give rise to an optimal 

integration timescale at which spike train variability is minimal and how this might be exploited 

by sensory systems to maximize the detection of weak signals. We finish by pointing out some 

interesting future directions for research in this area. In particular, we explore the interesting 

possibility that synaptic dynamics might be matched with the nonrenewal spiking statistics of 

presynaptic spike trains in order to further improve information transmission.
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Introduction

It is frequently assumed that neural activity can be described by the distribution of interspike 

intervals (ISIs: i.e. the times between consecutive action potentials) (Moore et al. 1966; 

Perkel et al. 1967a, b; Shadlen and Newsome 1998; Bastian and Nguyenkim 2001). This 

measure has been used to describe the firing patterns of both peripheral and central neurons 
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(Maimon and Assad 2009). Such a description assumes that the spiking activity can be 

described by renewal process where all memory is erased after each action potential firing 

(Cox and Lewis 1966). The Poisson process is, perhaps, the best-known example of a 

renewal process: it is characterized by an exponential distribution of ISIs and has been 

frequently used to describe the firing of cortical neurons (Shadlen and Newsome 1998; Kara 

et al. 2000). There is, however, accumulating evidence that the spiking activities of many 

neurons are not well described by renewal processes as they display memory in their spiking 

activity that persists over multiple action potential firings (i.e. the probability of firing is 

influenced by the past spiking activity). Such memory can be quantified in terms of the ISI 

serial correlation coefficients ρj (Perkel et al. 1967a):

where j is the lag. The ISI serial correlation coefficient, ρj, measures whether the value of 

ISIi has any influence on the value of ISIi+j (i.e. whether they are correlated). In particular, 

negative values of ρj imply that if the value of ISIi is greater than average, then ISIi+j will 

tend to have a value that is less than average and vice versa. Thus, if j = 1, then ρ1 < 0 

implies that long ISIs will tend to be followed by short ISIs and vice versa. For a renewal 

process, we have ρj = 0 for all j ≠ 0. As such, the value of a given ISI is independent of the 

values of the previous ISIs. A nonrenewal process is thus a process for which ρj ≠ 0 for at 

least one j ≠ 0.

Here, we focus on reviewing accounts of nonrenewal spike train statistics in experimental 

data, the mechanisms that generate such statistics, and their function in information 

processing.

Experimental observations of nonrenewal spike train statistics

We first begin with a comprehensive review of the known reports of nonrenewal spike train 

statistics in experimental data.

Overview

Neurons displaying nonrenewal spiking statistics have been found in many brain areas. The 

oldest report that is known to the authors is in the activity of motoneurons in humans 

(Hagiwara 1949). Subsequent studies have found nonrenewal spiking statistics in retinal cat 

retinal ganglion cells (Kuffler et al. 1957; Rodieck 1967; Levine 1980), cat superior olivary 

neurons (Goldberg et al. 1964; Tsuchitani and Johnson 1985), cat peripheral auditory fibers 

(Lowen and Teich 1992), cat cochlear nuclear neurons (Goldberg and Greenwood 1966), cat 

medullary sympathetic neurons (Lewis et al. 2001), cat sympathetic efferent fibers (Floyd et 

al. 1982), pigeon vestibular afferents (Correia and Landolt 1977), weakly electric fish 

electroreceptor neurons (Longtin and Racicot 1997; Chacron et al. 2000; Ratnam and Nelson 

2000; Chacron et al. 2001b; Chacron et al. 2005b; Gussin et al. 2007), paddlefish 

electroreceptors (Bahar et al. 2001; Neiman and Russell 2001; Neiman and Russell 2004), 
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catfish electroreceptors (Schäfer et al. 1995), weakly electric fish electrosensory pyramidal 

neurons (Doiron et al. 2003; Chacron et al. 2007), honeybee mushroom body neurons 

(Farkhooi et al. 2009), grasshopper auditory neurons (Schwalger et al. 2010), primate 

spinothalamic neurons (Surmeier et al. 1989), rat mesencephalic reticular neurons (Lansky 

and Radil 1987), primate somatosensory cortical neurons (Yamamoto and Nakahama 1983; 

Lebedev and Nelson 1996; Nawrot et al. 2007), as well as rat entorhinal cortical pyramidal 

and interneurons (Engel et al. 2008). We note that the last five studies challenge the notion 

that cortical neurons can be described by a renewal process such as the Poisson process and 

shall return to this point later.

Negative interspike interval correlations at lag 1

Several investigators have reported nonrenewal spike train statistics in the form of a negative 

ISI serial correlation coefficient at lag 1 that is significantly different from zero (Kuffler et 

al. 1957; Goldberg et al. 1964; Yamamoto and Nakahama 1983; Tsuchitani and Johnson 

1985; Schäfer et al. 1995; Chacron et al. 2000; Chacron et al. 2007; Nawrot et al. 2007; 

Engel et al. 2008; Farkhooi et al. 2009). As mentioned above, this implies that ISIs that are 

shorter than average tend to be followed by ISIs that are longer than average and vice versa, 

thus giving rise to patterning in the spike train. Figure 1a shows an example recording from 

a pyramidal cell: it can be seen that this neuron tends to fire doublets as well as triplets of 

action potentials. Thus, short ISI tends to be followed by long ones and vice versa. The ISI 

distribution (Fig. 1b) does not capture this. However, a plot of the current ISI as a function 

of the preceding one, also known as the ISI return map (Doiron et al. 2003; Ellis et al. 2007; 

Toporikova and Chacron 2009) (Fig. 1c), can be used to illustrate this fact. The slope of a 

linear fit in this graph will then give us the ISI correlation coefficient ρ1 (Wang 1998). It can 

be seen that, for this particular neuron, successive ISIs were negatively correlated, leading to 

negative serial ISI correlation coefficient at lag 1 (Fig. 1d).

In order to better illustrate the effects of ISI correlations on the different measures that were 

just presented, we have randomly shuffled the ISI sequence. Such a procedure will preserve 

first-order ISI statistics such as the ISI distribution (compare Fig. 1b, e) but will eliminate 

any correlations between the ISIs by definition. The ISI return maps were similar in shape 

(compare Fig. 1c, f). However, computing the average slope of the return map (gray lines in 

Fig. 1c, f) reveals that the ISI shuffling procedure removes any correlations by calculating 

the average correlation coefficient. This is reflected in the ISI serial correlation coefficients 

(compare Fig. 1d, g).

Positive ISI correlations

In some spike trains, small positive serial correlations can decay over several successive lags 

without alternating in sign (Levine 1980; Lowen and Teich 1992; Lewis et al. 2001; Longtin 

et al. 2003; Gussin et al. 2007). Although these small positive serial correlations can be quite 

weak and in some cases might not be detectable using the ISI serial correlation coefficients 

themselves, they can be detected using other measures of variability such as the Fano factor 

(Lowen and Teich 1992; Chacron et al. 2001a; Lewis et al. 2001; Longtin et al. 2003). The 

Fano factor (Fano 1947) is defined as the variance to mean ratio of the spike count 

distribution (i.e. the number of spikes) during a time window T (Snippe and Koenderink 
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1992). Note that the spike-count distribution is also referred to as the pulse-number 

distribution. The Fano factor measures the spike variability at long timescales. It has been 

observed that the Fano factor increases as a power law (i.e. F(T) ∞ Ta with “a” being the 

power law exponent) for large T for a wide variety of spike trains (Lowen and Teich 1992, 

1996; Lowen et al. 1997; Teich et al. 1997; Ratnam and Nelson 2000; Gussin et al. 2007). 

As power law dependencies are self-similar on multiple timescales, this phenomenon has 

been referred to a fractal firing pattern and has been reviewed extensively. It appears that this 

phenomenon is seen ubiquitously in experimental data (Teich 1992).

ISI correlations that alternate in sign over successive lags

Some neurons display ISI correlations that decay over several lags in an alternating fashion 

(i.e. a negative ISI correlation coefficient is followed by a positive one, which is then 

followed by a negative one that is weaker in magnitude, etc…). This is, perhaps, seen most 

prominently in the electroreceptors of the paddlefish in which these serial correlation 

coefficients decay over hundreds of lags (Bahar et al. 2001; Neiman and Russell 2001, 

2004). Some bursting electroreceptors of weakly electric fish display alternating ISI 

correlations, but they tend to decay over at most a few lags (Chacron et al. 2001b, 2005a).

Summary

In summary, there are multiple reports of ISI correlations across different brain areas and 

organisms. These reports as well as the type of correlations reported are summarized in the 

table below (Table 1).

Mechanisms that underlie the generation of nonrenewal spike train 

statistics

In this section, we review some of the mechanisms and mathematical models that give rise to 

nonrenewal spike train statistics.

Mechanisms that give rise to a single negative ISI correlation coefficient at lag 1

We will first concentrate on the mechanisms that give rise to a negative ISI correlation 

coefficient at lag 1. Intuitively, these mechanisms must have the following in common: when 

two or more action potentials occur during a short-time period (i.e. a short ISI), the 

mechanism must prevent or delay the onset of the next action potential firing thereby giving 

rise to a long ISI. There are both intrinsic and network mechanisms that can accomplish this.

Cumulative growth in the spike after hyperpolarization—It was recognized early 

on that growth in the afterhyperpolarization (AHP) following each action potential during 

repetitive firing could give rise to negative interspike interval correlations (Eccles 1953; 

Goldberg et al. 1964). This has led to the formulation of a phenomenological model by 

Geisler and Goldberg (1966). This model is of the leaky integrate-and-fire type (Tuckwell 

1988) in which the membrane potential is integrated in time until it reaches a given threshold 

value and is illustrated in Fig. 2a. Immediately after this, the threshold is set to infinity 

during the duration of the absolute refractory period and the voltage is decremented, thereby 

mimicking an increased AHP (Geisler and Goldberg 1966). It is important to note that 
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repetitive firing will lead to an accumulation in the AHP (Fig. 2a, light gray), thereby 

increasing the distance between voltage and threshold and thereby delaying the next firing 

(Fig. 2a). As such, a sequence of short inters-pike intervals will give rise to large AHPs 

whereas longer interspike intervals will give rise to small AHPs. It is then easy to see that 

short/long interspike intervals will tend to be followed by long/short interspike intervals as 

larger AHPs will tend to delay the next action potential more than smaller AHPs (Geisler 

and Goldberg 1966). While the ISI probability distribution does not capture this (Fig. 2b), 

this is illustrated in the ISI return map (Fig. 2c) as well as the ISI serial correlation 

coefficients (Fig. 2d). Variants of this model have been later proposed and studied in detail 

(Smith and Goldberg 1986; Lansky et al. 1992; Keat et al. 2001; Liu and Wang 2001; Benda 

et al. 2010).

Biophysical models of the accumulation in the AHP during repetitive firing based on the 

Hodgkin–Huxley formalism (Hodgkin and Huxley 1952) have also been proposed and 

studied with respect to accumulation in the AHP during repetitive firing. In particular, 

calcium-activated potassium channels have been shown to mediate the spike AHP (Sah 

1996; Faber and Sah 2003). These channels are not sensitive to the transmembrane potential 

but are instead activated by increases in the internal calcium concentration (Sah and Faber 

2002). A mathematical model that incorporates these channels has been shown to give rise to 

negative ISI correlations (Wang 1998). In this model, calcium accumulates inside the cell 

during repetitive firing, which causes an accumulation in the AHP, thereby delaying the 

onset of the next action potential, thereby giving rise to negative ISI correlations.

Threshold fatigue—While it was once thought that the action potential threshold was 

fixed, there is accumulating experimental evidence that this is not the case. Indeed, it is 

known that the threshold varies dynamically and is strongly dependent on the previous 

spiking history (Azouz and Gray 1999, 2000, 2003; Chacron et al. 2007). Variations in the 

action potential threshold have been frequently considered in mathematical models (Geisler 

and Goldberg 1966; Weiss 1966; MacGregor and Oliver 1974; Horn and Usher 1989; 

Eckhorn et al. 1990; Abeles 1991; Gabbiani 1996; Jolivet et al. 2006). In particular, a 

phenomenological model of the leaky integrate-and-fire type has also been studied. In this 

model, the threshold is incremented by a constant amount immediately after action potential 

firing and decreases exponentially to a baseline value during quiescence (Fig. 2e). Repetitive 

firing will lead to a cumulative increase in threshold that will delay the next firing due to an 

increased distance between voltage and threshold. We refer to this cumulative increase in 

threshold as threshold fatigue.

As such, although the biophysical mechanisms of cumulative growth of the AHP and of 

cumulative increases in the threshold are quite different in nature, the basic principle by 

which they give rise to negative ISI correlations is the same: an increased distance between 

voltage and threshold after repetitive firing. It is thus not surprising that both the leaky 

integrate-and-fire model with dynamic threshold and the previously mentioned model based 

on the accumulation of the AHP give rise to similar ISI distributions (compare Fig. 2b, f), 

ISI return maps (compare Fig. 2c, g), and ISI serial correlation coefficients (compare Fig. 

2d, h). Moreover, both models have been shown to be qualitatively equivalent for the most 

part (Liu and Wang 2001), although a recent study has pointed out some differences in terms 
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of spike frequency adaptation (Benda et al. 2010). The leaky integrate-and-fire model with 

dynamic threshold can furthermore successfully reproduce experimental data from the 

electroreceptors of weakly electric fish (Chacron et al. 2000, 2003, 2004a, c; Brandman and 

Nelson 2002; Chacron 2006; Savard et al. 2011) as well as vestibular afferents (Sadeghi et 

al. 2007). Recent experimental evidence shows that threshold fatigue is also present in 

electrosensory pyramidal neurons (Chacron et al. 2007). Such fatigue can be modeled by 

shifting the activation curve of the sodium current to larger voltages, which effectively raises 

the action potential threshold (Chacron et al. 2007). It is thus likely that threshold fatigue is 

due to cumulative sodium channel desensitization (Mickus et al. 1999). Multiple biophysical 

mechanisms can thus give rise to negative ISI correlations at lag 1.

Synaptic depression—The parallels between the leaky integrate-and-fire model with 

threshold fatigue and models of synaptic depression (i.e. a decrease in the postsynaptic 

potential amplitude during repetitive presynaptic stimulation) have been pointed out before 

(Chacron et al. 2003). Indeed, synaptic depression can give rise to relative refractoriness 

(Häusser and Roth 1997), and models of synaptic depression show similarities with the 

previously described leaky integrate-and-fire model with threshold fatigue (Fuhrmann et al. 

2002; Goldman et al. 2002). In fact, it has been shown that such models can transform a 

Poisson presynaptic spike train (note that Poisson spike trains are renewal in nature) into a 

postsynaptic spike train that displays a negative serial correlation coefficient at lag 1 

(Goldman et al. 2002). This can be understood intuitively as follows: it is clear that two or 

more presynaptic action potentials that occur in rapid succession will give rise to an amount 

of synaptic depression that is inversely proportional to the time between consecutive action 

potentials (i.e. the ISI). As such, the probability of an EPSP causing a postsynaptic action 

potential decreases with each subsequent presynaptic action potential as the EPSP amplitude 

decreases. Let us assume that only the first two EPSPs cause postsynaptic action potentials 

(i.e. a short ISI). A long period of silence in the presynaptic spike train is then necessary for 

the synapse to recover from depression so that a presynaptic action potential can again have 

sufficiently large amplitude to give rise to a postsynaptic action potential. As such, the short 

ISI in the postsynaptic neuron will tend to be followed by a long one. We therefore expect 

that, under these conditions, the postsynaptic spike train would display negative ISI 

correlations.

Delayed feedback—It is well known that neurons in cortical areas of the nervous system 

are the target of massive descending projections (Cajal 1909; Hollander 1970; Ostapoff et al. 

1990; Maler et al. 1991; Sherman and Guillery 2002, 2006) and that such pathways can give 

rise to interesting dynamics such as bursting (Krahe and Gabbiani 2004; Chacron and 

Bastian 2008; Toporikova and Chacron 2009; Avila Akerberg et al. 2010). In particular, 

Doiron et al. (2003) showed that neurons with intrinsic renewal spike train statistics could 

display nonrenewal spike train statistics simply by introducing coupling between them 

through global delayed inhibitory feedback. This can be understood intuitively as follows. 

Because of temporal summation, short interspike intervals can give rise to delayed inhibition 

that can prevent subsequent firing in a manner similar to that of the AHP described above. 

As such, it is expected that the spike trains of individual neurons in a network coupled with 

inhibitory delayed feedback can display a negative ISI correlation at lag 1. We note that it is, 
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however, possible that other network mechanisms might give rise to a negative ISI 

correlation at lag 1.

Mechanisms that give rise to positive ISI correlations

As mentioned above, weak and positive ISI correlations are often present in experimental 

data. One example spike train from an electrosensory afferent neuron shows a power law 

dependency at large time windows for the Fano factor (Fig. 3a, black). As randomly 

shuffling the ISI sequence eliminates this dependency (Fig. 3a, gray), it must be due to 

correlations between the ISIs (Lowen and Teich 1992). It has been shown experimentally 

(Lewis et al. 2001) that such behavior is caused by positive ISI correlations that decay over 

many lags.

Modeling and theoretical studies have shown that addition of a weak but colored zero-mean 

noise with a positive and slowly decaying autocorrelation function (i.e. a long correlation 

time) can give rise to positive ISI correlations that decay over many lags (Chacron et al. 

2001a; Middleton et al. 2003a, 2003b). Intuitively, this can be understood as follows. 

Imagine that the noise is positive and thus promotes increased action potential firing (i.e. 

ISIs that are shorter than average). Since the noise has a long correlation time, it will tend to 

stay positive for a long time. As such, the ISIs will tend to stay shorter than average for this 

time, leading to positive ISI correlations (note that a similar argument can be made when the 

noise is negatively correlated). The Fano factor curve from such a model also shows power 

law scaling but only for a finite range of time windows before saturating (Fig. 3b, black). 

This is because the noise process has a finite correlation time and is unlike experimental data 

whose Fano factor seems to scale as a power law for as long as experimentally measurable 

(Lowen and Teich 1992). However, the range of time windows over which the Fano factor 

displays power law scaling can be extended to arbitrarily large values in the model by 

simply increasing the noise’s correlation time (Longtin et al. 2003; Middleton et al. 2003a, 

2003b). Analysis of the serial correlation coefficients of the model reveals that coefficients at 

lags ≥2 are positive and decay over hundreds of lags (Fig. 3c). A recent study has uncovered 

a possible source for this noise in the stochastic opening and closing of voltage-gated 

potassium channels (Schwalger et al. 2010). Possible functional consequences for such 

correlations are discussed further in section IIIB.

Mechanisms that give rise to alternating ISI correlations

Alternating ISI correlations have been observed experimentally in paddlefish 

electroreceptors (Bahar et al. 2001; Neiman and Russell 2001, 2002, 2004, 2005). The 

sensory epithelial hair cells display ~25-Hz oscillations that can be recorded as voltage or 

current fluctuations in the canals leading from skin pores to the sensory epithelia. These 

cells then make excitatory synaptic contact unto the afferent terminals. These fire 

continuously (“spontaneously”) at a nearly fixed frequency in the range of 30–70 Hz. As 

such, paddlefish electroreceptors can be modeled as two unidirectionally coupled oscillators: 

the noisy 25-Hz oscillation from the epithelial hair cells drives the afferent fibers that show 

an intrinsic tendency to oscillate at 30–70 Hz. It was shown that both types of oscillators 

affect the firing of primary afferents, which results in an output that shows both fundamental 

frequencies (i.e. 25 Hz and 30–70 Hz). In particular, it was found that these ISI correlations 
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were strongest in magnitude when the epithelial oscillation frequency is half that of the 

afferent fiber oscillator frequency (e.g. 25 and 50 Hz) (Neiman and Russell 2004). In this 

situation, one will get two action potentials per epithelial hair cell oscillation cycle. 

Therefore, an ISI shorter than average will be followed by an ISI longer than average, then 

an ISI shorter than average, etc… This alternating pattern of short and long ISIs is what 

causes the spike trains of paddlefish electroreceptors to display decaying ISI correlations 

that alternate in sign over successive lags (Neiman and Russell 2001, 2004, 2005).

Function of nonrenewal spike train statistics

In this section, we review the known functional consequences of nonrenewal spike train 

statistics. Before doing so, however, we review some concepts in signal detection, 

information theory, and noise shaping.

Neural coding

Neurons display trial-to-trial variability in their responses to repeated presentations of a 

given stimulus. While the function of this variability is still being debated (Stein et al. 2005), 

it is generally agreed that at least part of this variability arises from noise, which is due to 

the random opening of ion channels as well as the large synaptic bombardment that neurons 

are subjected to in vivo (Destexhe et al. 2003; London et al. 2010). It is possible to simply 

average away this variability in order to obtain an estimate of the mean response to a given 

stimulus, and this is frequently done when computing measures such as the peristimulus 

time histogram. However, it is at best unclear how the organism might perform this 

operation (Zohary et al. 1994). We will thus take the point of view here that neural 

variability must be taken into account.

Signal detection theory—Signal detection theory (Green and Swets 1966) aims at 

quantifying the performance of an ideal observer in distinguishing between different 

alternatives. In most cases, signal detection theory is used to distinguish between two 

alternatives that give rise to different measured outputs. In most cases, the output is the 

number of action potentials (i.e. the pulse number) that occurs within a given time window 

(Snippe and Koenderink 1992). Since neurons display variability in their responses to 

repeated presentations of the same stimulus (Stein et al. 2005), the pulse number obeys a 

distribution with nonzero variance. The performance of the ideal observer is inversely 

related to the amount of overlap between the two distributions (Fig. 4a) and has been 

quantified using various measures such as the discriminability index d′ or the minimum 

probability of misclassification (Poor 1994). The discriminability index d′ is defined by 

(Green and Swets 1966):

Within this framework, the optimal detector is the one that minimizes the degree of overlap 

between the pulse-number distributions obtained under different conditions and therefore 

maximizes d′. This can be done by increasing the difference between their means and/or 
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decreasing their variances (Fig. 4a). We shall see below that negative ISI correlations reduce 

the spike count variance while positive ISI correlations increase the spike count variance and 

how this can increase or decrease signal detectability, respectively.

Information theory—Information theory was first developed in the context of 

communication channels (Shannon 1948) and has gained popularity in neuroscience (Borst 

and Theunissen 1999). Our goal here is not to provide an exhaustive review of the uses of 

information theory in neuroscience but merely to introduce some intuitive concepts. The 

interested reader is directed to the following references that provide a good summary of the 

uses of information theory in neuroscience (Rieke et al. 1996; Borst and Theunissen 1999; 

Dayan and Abbott 2001; Gabbiani and Cox 2010).

Let us assume that there is a stimulus set S = [S1,…, SN] and that each stimulus Si gives rise 

to a set of neural responses Ri = [R1i,…, RNi]. For example, the response could be the mean 

firing rate. When stimulus S1 is presented, the response is R11 on trial 1, R12 on trial 2, etc… 

Because neurons display trial-to-trial variability in their responses to sensory input, a given 

sensory stimulus gives rise to a set of responses Ri (Fig. 4b). The number of possible 

responses increases with larger variability in general. In contrast, the distance between sets 

Ri and Rj is primarily determined by how different the responses to the different stimuli Si 

and Sj are. Intuitively, if the sets Ri are disjoint (i.e. they do not overlap), then observing an 

individual response Rik on trial k would allow us to tell which stimulus Si was given on that 

trial (Fig. 4b). On the other hand, if there is large overlap between the sets Ri, then observing 

a given response Rik will not allow us to tell which stimulus Si was given on trial k. It is 

possible to make these intuitive concepts about information mathematically formal using the 

following definition for information (Shannon 1948; Cover and Thomas 1991):

where I(R, S) is the information contained in the response R about the stimulus S. H(R) is 

the entropy of the response and H(R/S) is the entropy of the response given that we have 

observed the stimulus S. Intuitively, the entropy is related to the amount of uncertainty or 

randomness in a process. Thus, a process that has only one possible outcome (i.e. is 

completely predictable) would have zero entropy (the minimum), while a process that has 

uncertainty (e.g. a coin toss) would have higher entropy. We note that the entropy is always 

positive. As such, the mutual information I(R, S) is maximized when H(R) is maximized and 

H(R/S) is minimized. This corresponds to a case illustrated above where the set of responses 

obtained to different stimuli are as different as possible, but the response to a given stimulus 

is always the same. The mutual information is usually measured in bits, and X bits implies 

that the system can discriminate between 2X stimuli in the noise-free situation (Thomson 

and Kristan 2005). As such, ISI correlations can alter information transmission by affecting 

the response entropy H(R) or the noise entropy H(R/S), or both. We will see below that ISI 

correlations can affect both.

Moreover, as sensory stimuli are frequently characterized by their temporal frequency 

content, it is more informative to look at the mutual information rate density (i.e. the mutual 

Avila-Akerberg and Chacron Page 9

Exp Brain Res. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



information rate per frequency) rather than the mutual information rate itself. This allows 

one to then quantify which frequency component contained in the stimulus is the neuron 

transmitting more information (Borst and Theunissen 1999). Te mutual information rate 

density at a given frequency f is related to the ratio of signal power to noise power in the 

response at that frequency (i.e. the signal-to-noise ratio or SNR). Greater SNR values give 

rise to greater MI density values. We will see below that ISI correlations can have 

differential effects on the MI density that are frequency dependent.

Noise shaping—We have mentioned earlier that neurons display variability in their 

responses to repeated presentations of the same stimulus. If one assumes that noise is 

detrimental to information transmission by neurons, then it makes sense to minimize this 

noise. However, as this might not be possible, one could then imagine the following 

scenario. If the signal that we want to encode contains temporal frequencies within a given 

range, then it may be possible to minimize the noise’s frequency content within that range 

by transferring power from that range to another. One would then have a greater SNR and 

thus increased information transmission in the former frequency range at the expense of a 

weaker SNR and thus reduced information in the latter frequency range. This concept is 

illustrated in Fig. 4c and is known as noise shaping. Note that, in the case of noise shaping, 

the total noise power (i.e. the power integrated over frequency) remains the same. Noise 

shaping is found in engineering devices such as Josephson junctions and sigma–delta 

modulators (Wiesenfeld and Satija 1987; Norsworthy et al. 1997; Yacomotti et al. 1999) and 

has been proposed to be used by the brain as a mechanism to deal with noise (Shin 1993; 

Shin 2001). Further, a modeling study has shown that a network of neurons coupled with 

inhibition could display noise shaping (Maar et al. 1999).

Effects of ISI correlations on neural coding

In this section, we review some of the important results on the function of ISI correlations in 

neural coding.

Effects of ISI correlations on signal detection—We first focus on the role of negative 

ISI correlations. Using a model of a spinal motoneuron and assuming a rate code, Birk 

(1972) showed that the decoded representation of a spike train with negative ISI correlations 

will display less variability than a spike train with the same firing rate but with independent 

ISIs (Birk 1972). Numerical simulations have since then shown that the pulse-number 

distribution of a spike train with negative ISI correlations displays less variance than that of 

a spike train with independent ISIs (Ratnam and Nelson 2000; Chacron et al. 2001a). This 

has important consequences for the detection of weak signals using signal detection theory 

as negative ISI correlations can then reduce the variance of the pulse-number distribution in 

a fixed time window (Fig. 5a), which can increase discriminability (Ratnam and Nelson 

2000; Chacron et al. 2001a; Brandman and Nelson 2002; Goense and Ratnam 2003). 

However, the magnitude of the effect depends on the length of the time window (i.e. the 

integration time). The magnitude of the effect essentially depends on the difference between 

the Fano factors of the raw and shuffled ISI sequences (Fig. 5a, black and dark gray curves): 

for small time windows, these correlations will have little effect and maximum effect for 

larger time windows (Fig. 5b, black and dark gray curves).
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In contrast to negative ISI correlations, the functional role of positive ISI correlations is less 

well understood. As mentioned previously, positive ISI correlations will tend to increase 

spike train variability, which is detrimental for signal detection. Their effect is to increase 

the spike count variance for large time windows (Fig. 5b, compare light and dark gray). It 

was shown that an interaction between short-term negative ISI and long-term positive ISI 

correlations could create a minimum in spike train variability as quantified by the Fano 

factor for a given time window (Ratnam and Nelson 2000; Chacron et al. 2001a; Longtin et 

al. 2003). This effect is illustrated in Fig. 5. One can then show that signal detection as 

quantified by d′ is minimum at that time window with respect to a renewal process (Fig. 

5c). It is possible that such a coding strategy is used by weakly electric fish to detect prey as 

the pulse-number distributions in their peripheral electroreceptive neurons display minimal 

variability for integration timescales that correspond to the integration time window inferred 

from prey capture behavior (Nelson and MacIver 1999; Ratnam and Nelson 2000; Chacron 

et al. 2001a; Longtin et al. 2003). A recent study has shown similar effects in the Paddlefish 

electro-receptors (Engel et al. 2009). It is important to note that the value of the integration 

time for which the spike train variability as quantified by the Fano factor is minimum 

depends on many parameters such as the bias current and noise intensity. As such, it is 

possible to have neurons display minimum variability over a wide range of integration time 

window values (Middleton et al. 2003a, b).

Effects of ISI correlations on information transmission: noise shaping—It was 

also found that negative ISI correlations can improve information transmission of time-

varying stimuli (Chacron et al. 2001a) (Fig. 6a). This was done by comparing two 

mathematical models that had similar ISI distributions and responses to sensory input as 

quantified by linear systems identification (Chacron et al. 2001a). Chacron et al. (2001a) 

found that although negative ISI correlations reduced the signal entropy H(R), they reduced 

the noise entropy H(R/S) even more, thereby increasing the mutual information I(R, S) = 

H(R) − H(R/S).

Any comprehensive understanding of coding in stimulus-evoked spike trains of neurons 

requires a characterization of neural discharge components that are directly associated with 

the stimulus (signal) and those that are not (noise) (Roddey et al. 2000; Stein et al. 2005; 

Faisal et al. 2008). In neurons that display high resting (i.e. in the absence of stimulation) 

discharge activity, the component that is associated with noise is given by the power 

spectrum of this resting discharge activity (Chacron et al. 2005a). This assumes that the 

stimulus intensity is small so that the perturbations brought about by the stimulus are small 

in magnitude and will thus scale linearly with the stimulus intensity. Experimental results 

have shown that this is the case in both electroreceptor (Chacron et al. 2005b) and vestibular 

afferents (Sadeghi et al. 2007), provided that the stimulus intensity is not too high (but see 

(Savard et al. 2011)). Investigators have therefore focused on understanding how ISI 

correlations can alter the power spectrum of the baseline activity. Comparing the baseline 

power spectra of renewal and nonrenewal models that have the same first-order ISI statistics 

reveals important differences (Fig. 6b). In particular, it is seen that the nonrenewal model 

displays lower power at low (<100 Hz) frequencies but higher power for higher (between 

100 Hz and 200 Hz) frequencies (Fig. 6b).
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This has prompted researchers to build two simple models for which it is possible to 

compute the resting discharge power spectrum analytically (Chacron et al. 2004b; Lindner et 

al. 2005). In the first model, once the voltage reaches a threshold, it is decremented by a 

constant amount following each action potential (Fig. 6c). This way it will keep the memory 

of the previous ISI onto the next one. In the second model, once the voltage reaches a 

threshold, it is reset to a random value (Fig. 6d). It is thus not surprising that the first model 

displays negative ISI correlations (as it will preserve memory) while the second does not. 

We shall henceforth refer to the first model as nonrenewal and the second model as renewal. 

Comparing the noise power spectra of both models revealed qualitatively similar differences 

with those seen with more realistic models (compare Fig. 6a, e). Further investigation 

revealed that both models have identical signal discharge components as quantified by their 

transfer functions (Chacron et al. 2004b) and that frequencies associated with a lower/higher 

resting discharge spectrum are associated with higher/lower information rates (Fig. 6f). This 

demonstrates how noise shaping by ISI correlations can lead to information shaping (i.e. 

increasing and reducing information in different frequency ranges).

Effects of nonrenewal spiking statistics on neural coding at the network level
—It is well known that the brain uses a distributed representation of information through 

neural populations. How well do networks of nonrenewal neurons transmit information in 

comparison with networks of renewal neurons? Two recent studies have explored this 

interesting question (Avila Akerberg and Chacron 2009; Avila Akerberg and Chacron 2010). 

These studies showed that renewal and nonrenewal neurons transmit information 

differentially when all-to-all coupling is introduced (Fig. 7a). Indeed, nonrenewal networks 

with excitatory/inhibitory coupling transmit more/less information than nonrenewal 

networks of the same size with no coupling. In contrast, renewal networks with excitatory/

inhibitory coupling transmit less/ more information than renewal networks of the same size 

with no coupling (Fig. 7b). As such, excitatory and inhibitory couplings each have opposite 

effects on networks of renewal and nonrenewal model neurons. As anatomical studies have 

found that the majority of synaptic connections in the brain are excitatory, it is possible that 

such connections increase information transmission by neurons that display nonrenewal 

spike train statistics.

Conclusions and future directions

In this section, we provide a brief summary of the reviewed results and outline some future 

directions for research pertaining to the effects of nonrenewal spike train statistics on neural 

coding.

Summary

We have reviewed the known mechanisms that give rise to ISI correlations and the known 

consequences of ISI correlations on information transmission and neural coding. Any of 

cumulative growth of the AHP, cumulative increase in threshold during repetitive firing, 

synaptic depression, or delayed inhibitory feedback can give rise to negative ISI correlations. 

In contrast, a weak noise with a long correlation time can give rise to positive ISI 

correlations that decay over many lags. In general, negative ISI correlations can significantly 
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increase information transmission and signal detection by decreasing the noise entropy and 

spike count variance, respectively. However, their effects are dependent on the stimulus’ 

temporal frequency content as well as coupling between neurons. As such, it is clear that ISI 

correlations are found across senses and organisms and can have important effects on 

information transmission. However, the exact nature of these is likely to depend on multiple 

factors including the nature of the neural code used by a given brain area where neurons 

display nonrenewal spike train statistics and the decoding of the information transmitted by 

these neurons in higher-order areas. We thus conclude by highlighting some future directions 

addressing the following key issues: (1) developing an integrative approach to obtain a better 

understanding of the functional roles of nonrenewal spike train statistics; (2) understanding 

whether information carried in nonrenewal spike trains is actually decoded by higher-order 

neurons and, if so, how; and (3) are the effects of ISI correlations universal across systems?

Toward an integrative approach to understand how the mechanisms that give rise to 
nonrenewal spike train statistics affect information transmission

As mentioned previously, the mechanisms that give rise to nonrenewal spike train statistics 

can have other effects such as spike frequency adaptation. Moreover, recent studies have 

shown that these mechanisms not only alter the spike count variance but also can alter its 

mean and possibly higher moments (Chacron et al. 2007). Moreover, these mechanisms can 

also strongly alter temporal frequency tuning (Ellis et al. 2007; Mehaffey et al. 2008; 

Lindner et al. 2009; Peron and Gabbiani 2009). Yet, to date, all studies that have explored 

the role of nonrenewal spike train statistics on information transmission or signal detection 

have done so by comparing models that display identical first-order ISI statistics and 

frequency tuning. How these effects interact is largely unknown to this day. In order to better 

illustrate our point, we give a couple of examples below.

For example, in terms of signal detection theory, this implies that the mechanisms that give 

rise to ISI correlations can not only affect the spike count variance but also the mean spike 

count. As such, one could conceive a scenario where negative ISI correlations would lead to 

a lower spike count variance of each distribution as well as lead to a greater difference 

between their means. Both effects would then act synergistically to lead to better signal 

detection. Alternatively, one could conceive another scenario where the advantage of a 

reduced spike count variance is offset by a smaller separation between the means.

Alternatively, theoretical studies have shown that spike frequency adaptation reduces the 

response gain to low-frequency stimuli (Benda and Herz 2003), which might offset the 

decrease in noise power caused by negative ISI correlations and therefore the signal-to-noise 

ratio might remain the same. A recent study suggests that synaptic depression, which can 

cause negative ISI correlations as reviewed above, might actually not alter the signal-to-

noise ratio (Lindner et al. 2009), although this is strongly dependent on the measure used.

We thus argue that future studies should take a more integrative approach (i.e. consider all 

the effects of the mechanisms that give rise to nonrenewal spike train statistics) in order to 

gain a better understanding of the effects of ISI correlations on information transmission.
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Nonrenewal spike train statistics and population coding

Another shortcoming of previous studies interested in understanding the role of nonrenewal 

spike train statistics on information transmission is that they have mostly concentrated on 

single neurons. Although some recent theoretical studies have highlighted potentially 

interesting effects in networks of nonrenewal neurons (Avila Akerberg and Chacron 2009, 

2010), the effects of nonrenewal spike trains statistics on population coding remain largely 

unexplored to this day. While peripheral sensory neurons such as auditory fibers or 

electroreceptors displaying non-renewal spike trains might not be coupled, this is certainly 

not the case for central neurons. Indeed, cortical neurons (Engel et al. 2008), cochlear 

nuclear neurons (Goldberg and Greenwood 1966) as well as electrosensory pyramidal cells 

(Chacron and Bastian 2008) all receive thousands of synaptic input and display nonrenewal 

spike train statistics. Such input most likely contributes to experimentally observed 

correlations between the activities of neighboring neurons across sensory systems (Meister 

et al. 1995; Averbeck et al. 2006; Averbeck and Lee 2006). While there is still an ongoing 

debate on whether these correlations are beneficial or detrimental for information 

transmission, it is widely agreed that their presence will significantly alter the way that 

information is transmitted by neural populations and its subsequent decoding by higher-

order neurons (Nirenberg et al. 2001; Schneidman et al. 2003, 2006; Latham and Nirenberg 

2005; Averbeck et al. 2006). How nonrenewal spike train statistics affect correlated activity 

among neurons is an interesting topic that has been largely overlooked so far. For example, it 

is known that electroreceptor afferents in weakly electric fish that display negative ISI 

correlations can synchronize in response to transient high-frequency stimuli (Benda et al. 

2005, 2006; Chacron et al. 2005b), but do nonrenewal spike train statistics influence this 

synchronization and, if so, how? In general, further experimental and theoretical studies are 

needed to understand the effects of nonrenewal spike train statistics on population coding 

across systems.

Decoding information carried by nonrenewal spike trains

While it has been shown that ISI correlations can significantly alter information 

transmission, this information is only useful to the organism if it is being decoded by higher-

order neurons. If such decoding does not occur, then one could argue ISI correlations are 

nothing more than an artifact caused by mechanisms with another function. We argue that 

this hypothesis has to be tested on a case-by-case basis and review some recent experimental 

results suggesting that such decoding actually does occur.

The decoding of information carried by nonrenewal spike trains is an important problem. We 

shall consider two cases here: decoding information carried by the spike count (rate coding) 

and decoding information carried in the timing of spikes (temporal coding).

For the spike count, it is clear that a temporal integrator neuron can simply integrate over the 

time window for which the spike train variability of its afferent nonrenewal neurons is 

minimum and therefore take advantage of the reduced variability provided by negative ISI 

correlations, and this has been argued previously (Ratnam and Nelson 2000; Chacron et al. 

2001a; Engel et al. 2009). Such neurons have been observed in the anuran midbrain, and the 
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mechanisms by which they achieve this function are well understood and have been 

described elsewhere (Edwards et al. 2008; Leary et al. 2008; Rose et al. 2010).

However, decoding information that might be contained in the timing of action potentials in 

nonrenewal spike trains is less well understood. A recent theoretical study has, however, 

proposed how synaptic plasticity could actually decorrelate a presynaptic spike train that 

displays ISI correlations (Nesse et al. 2010). Such decorrelation has obvious advantages for 

information transmission such as redundancy reduction and can be more easily decoded by 

downstream neurons (Barlow and Levick 1969). Nesse et al. (2010) provide a simple 

algorithm for decorrelation that can be tested experimentally.

Future experimental studies should focus on whether such algorithms are used by the central 

nervous system to decode information contained either in the spike count or in the spike 

timing of nonrenewal neurons.

Matching synaptic dynamics to nonrenewal spike train statistics in order to optimize weak 
signal detectability

While it has been shown that negative ISI correlations can reduce the spike count variance 

and thereby increase signal detectability, it is possible that other mechanisms might act in 

concert to further increase signal detectability. Recent experimental and theoretical 

evidences suggest that the dynamics of fast synaptic depression is matched to nonrenewal 

spike train statistics in order to maximize signal detection (Khanbabaie et al. 2010). It is 

important to note that the effects of synaptic depression are independent of those due to 

nonrenewal presynaptic spike train statistics. However, both act in concert in order to reduce 

variability and maximize signal detectability. This combination of these effects might be 

able to explain the remarkable behavioral acuity displayed by weakly electric fish when 

detecting prey (Khanbabaie et al. 2010). This study provides compelling evidence that the 

central nervous system uses multiple mechanisms in order to reduce spike train variability 

and support the hypothesis that information contained in nonrenewal spike trains is being 

decoded by higher-order neurons. However, further studies are needed to test for such 

cooperative mechanisms in other systems where sensory neurons display nonrenewal spike 

train statistics. In particular, the short-term synaptic depression described by Khanbabaie et 

al. (2010) is found in both the auditory and somatosensory systems.

Universality of nonrenewal spike train statistics

While it is frequently assumed that cortical neurons can be modeled by Poisson processes 

with a refractory period (Shadlen and Newsome 1998; Kara et al. 2000) due to their high 

variability (Softky and Koch 1993), this view is being challenged more and more (Engel et 

al. 2008; Farkhooi et al. 2009; Maimon and Assad 2009). In particular, recent studies have 

found that cortical neurons could display nonrenewal spike train statistics in vivo (Engel et 

al. 2008). A more recent paper has argued that it is possible that nonrenewal spike train 

statistics are far more prevalent in cortical neurons than was originally thought and might 

have been missed in extracellular recordings due to missed spikes (Farkhooi et al. 2009). 

Intracellular recordings from cortical neurons have shown that they can display significant 
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patterning in their spiking activities (Engel et al. 2008), and further studies are needed to test 

this hypothesis.

Conclusion

In conclusion, we have reviewed the mechanisms that give rise to ISI correlations in neural 

spike trains, the known consequences of these correlations on information transmission, and 

have highlighted some key issues that future studies on this subject should focus on.
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Fig. 1. 
Example of nonrenewal spike train statistics. a Voltage trace from a pyramidal cell of 

weakly electric fish. The spike times and ISIs (I1,… I9) are also shown. It is seen that short 

ISIs tend to be followed by long ones and vice versa. b ISI probability distribution obtained 

from the same cell. c ISI return map obtained from the same cell. The slope of the best-fit 

line (gray) is equal to the ISI serial correlation coefficient at lag one for the spike train. d ISI 

serial correlation coefficients ρj as a function of lag j. Note that we have ρ1 < 0. e The ISI 

probability distribution obtained after randomly shuffling the ISI sequence. f The ISI return 

map is significantly altered by the shuffling procedure. g ISI serial correlation coefficients ρj 

as a function of lag j for the shuffled data. Note that ρj = 0 for j > 0
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Fig. 2. 
Mechanisms that give rise to nonrenewal spike train statistics. a Voltage (black) and 

threshold (dark gray) traces from the model proposed by Geisler and Goldberg (1966). An 

action potential is said to occur when the voltage is equal to the threshold. Immediately after, 

the threshold is set to infinity during the duration of the absolute refractory period and 

decreases back to its steady-state value. The voltage is the sum of noise and a variable (light 
gray) that is decremented immediately after an action potential. When two or more action 

potentials occur in rapid succession, there is a cumulative decrease in the voltage. c ISI 

probability distribution from this model. The ISI return map displays a negative slope (gray). 

d ISI serial correlation coefficients ρj as a function of lag j. Note that we have ρ1 < 0. e 
Voltage (black) and threshold (gray) traces from the leaky integrate-and-fire model with 

dynamic threshold (LIFDT). Like in the Geisler–Goldberg model, an action potential is said 

to occur when the voltage is equal to the threshold. Immediately after, the voltage is reset to 

a constant (zero in this case) and the threshold is incremented by a constant amount after 

which it decays exponentially to a steady-state value. Repetitive firing can lead to 

accumulation in the threshold, causing it to be higher. We refer to this phenomenon as 

threshold fatigue. f ISI probability density for the LIFDT model. g The ISI return map for 

the LIFDT model also shows a negative slope. h ISI serial correlation coefficients ρj as a 

function of lag j for the LIFDT model. Note that we have ρ1 < 0
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Fig. 3. 
Detecting positive ISI correlations in experimental data and models. a Fano factor F(T) 

(variance to mean ratio of the spike count distribution in a time window of length T) as a 

function of T for an electroreceptor afferent neuron of weakly electric fish. In particular, 

F(T) increases as a power law for large T as can be seen from the linear part of the graph 

(note the log–log scale). Also shown is the Fano factor computed from the data after 

randomly shuffling the ISI sequence (gray) which does not display this power law behavior. 

b The Fano factor F(T) as a function of T for an LIFDT model that is driven by a weak noise 

with a long correlation time (black) resembles that obtained from the experimental data. The 

Fano factor F(T) obtained after shuffling the ISIs is also shown (gray). c ISI serial 

correlation coefficients ρj as a function of lag j (black) and after random ISI shuffling (gray). 

It is seen that the model displays weak positive ISI correlations that decay slowly over 
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thousands of lags. Random ISI shuffling eliminates these correlations (gray). The inset 
shows the ISI serial correlation coefficients ρj as a function of lag j but only for the first 10 

lags, thus showing the negative serial correlation at lag 1 and that these positive ISI 

correlations can be easily missed because they are so weak in magnitude
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Fig. 4. 
Illustration of signal detection theory, information theory, and noise shaping. a Illustrating 

signal detection theory. The basic premise is that two different stimuli (1 and 2) will elicit 

two different response distributions with means μ1, μ2 and standard deviations σ1, σ2, 

respectively. The degree of separability between the two distributions can be assessed by 

computing d′. b Illustrating information theory. Information theory can be seen as a 

generalization of signal detection theory for more than 2 stimuli. It is assumed that different 

stimuli (S1, S2, S3) will elicit different response distributions (R1, R2, R3). If these have 

considerable overlap (bottom left panel), it is more difficult to know whether a given 

response was elicited by a given stimulus. In contrast, when these response distributions 

have no overlap, it then becomes easy to gain information as to which stimulus was 

presented when observing a given response. c Illustrating noise shaping. Shown are the 

power spectra of a signal (black) and the noise (gray). The signal-to-noise ratio (SNR) is 

then simply the ratio of signal and noise power and depends on frequency. If the noise power 

is high, then the signal-to-noise ratio is low (left). However, if noise power was to be 
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transferred from frequencies contained in the signal to higher frequencies, then the SNR 

would be increased (right). Noise shaping is precisely the transfer of noise power from one 

frequency range to another, thereby conserving the total noise power (i.e. the power summed 

overall frequencies)
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Fig. 5. 
Positive and negative ISI correlations act to create a minimum in spike train variability for a 

given time window T. a Fano factor F(T) from the LIFDT neuron model driven by a weak 

Ornstein–Uhlenbeck (OU) noise with a long correlation time (light gray). Also shown are 

the Fano factor F(T) computed from the same model without the OU noise (black) and after 

shuffling the ISI sequence (dark gray). b Spike count distributions PN(T) obtained for all 

three conditions. For T = 2 ms (left), the distributions show almost complete overlap. 

However, for T = 33 ms (middle), the spike count distribution obtained from the LIFDT 

model without OU noise (black) shows the weakest variance, followed by the distribution 

obtained with the model with OU noise (light gray), followed by the distribution obtained 

after shuffling. However, for T = 1,000 ms (right), it is the distribution obtained from the 

model with OU noise (light gray) that has the highest variance. c Change in discriminability 

measure d′ (i.e. the difference between d′ computed from the model with OU noise and d′ 
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computed after shuffling the ISI sequence) as a function of the time window length T. It is 

seen that the gain in discriminability is maximal for a value of T for which the Fano factor 

F(T) is minimum
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Fig. 6. 
Negative ISI correlations increase information transmission through noise shaping. a Mutual 

information rate as a function of stimulus intensity for nonrenewal (black) and renewal 

(gray) phenomenological models. These models were matched such as to have similar ISI 

probability densities and signal power in response to the stimulus. b Noise power spectra for 

nonrenewal (black) and renewal (gray) phenomenological models. It is seen that the 

nonrenewal model displays lower noise power at low frequencies. c Illustration of the 

voltage trace from a nonrenewal simplified model (black). Unlike the LIFDT or Geisler-

Goldberg models, the voltage is a linear function of time and a threshold is randomly chosen 

from the interval [θ0 − D; θ0 + D]. When the voltage reaches the threshold, it is decremented 

by a constant amount θ0. It can be shown that this model gives rise to a single negative ISI 

correlation coefficient at lag 1, similar to the LIFT model (D). Illustration of the voltage 

trace from a renewal simplified model (black). The voltage is still a linear function of time, 

and a threshold is randomly chosen from the interval [θ0 − D; θ0 + D]. However, when the 

voltage reaches the threshold, it is instead reset to a random value in the interval [− D; D]. It 

can be shown that this model gives rise to renewal spike train statistics. e Noise power 

spectra of the simplified nonrenewal (black) and renewal (gray) models. Note the similarity 

with b. f Mutual information rate densities computed from the nonrenewal (black) and 

renewal (gray) simplified models. Note that the mutual information rate density of 
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nonrenewal model is larger than that of the renewal model for low frequencies. This 

demonstrates that noise shaping leads to information shaping
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Fig. 7. 
Effects of coupling on networks of nonrenewal and renewal model neurons. a 
Representation of the network connectivity. Each neuron in the network receives the same 

stimulus. The responses of all neurons in the network are then summed, and the resulting is 

then fed back to all neurons with a delay as either excitatory or inhibitory input. We note that 

this topology is mathematically equivalent to all-to-all coupling. b Mutual information rate 

normalized to its value for no coupling as a function of the coupling strength (negative 

values mean inhibitory coupling while positive ones mean positive coupling). It is seen that 

coupling affects the information transmitted by networks of renewal and nonrenewal neurons 

in opposite ways
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Table 1

Summary of the types of ISI correlations seen experimentally

Reference Organism and neuron type ISI correlation structure

Bahar et al. (2001), Neiman and 
Russell (2001), Neiman and Russell 
(2004)

Paddlefish electroreceptors Alternating ISI correlations that decay over several 
lags

Chacron et al. (2000), Chacron et al. 
(2005b), Gussin et al. (2007), Longtin 
and Racicot (1997), Ratnam and 
Nelson (2000)

Weakly electric fish electroreceptors Negative ISI correlation at lag 1 and positive ISI 
correlations that decay over several lags

Chacron et al. (2001b) Weakly electric fish electroreceptors Alternating ISI correlations that decay over a few lags

Chacron et al. (2007), Doiron et al. 
(2003)

Weakly electric fish electrosensory 
pyramidal neurons

Negative ISI correlation at lag 1

Correia and Landholt (1977) Pigeon vestibular afferents Negative ISI correlation at lag 1

Engel et al. (2008) Rat entorhinal cortical pyramidal and 
interneurons

Negative ISI correlation at lag 1

Farkhooi et al. (2009) Honeybee mushroom body neurons Negative ISI correlation at lag 1

Floyd et al. (1982) Cat sympathetic efferent fibers Negative ISI correlation at lag 1

Goldberg et al. (1964), Tsuchitami and 
Johnson (1985)

Cat superior olivary neurons Negative ISI correlation at lag 1

Goldberg and Greenwood (1966) Cat cochlear nuclear neurons Negative ISI correlation at lag 1

Hagiwara (1949) Human motoneurons Negative ISI correlation at lag 1

Kuffler et al. (1957), Rodieck (1967), 
Levine (1980)

Cat retinal ganglion cells Negative ISI correlation at lag 1

Lansky and Radil (1987) Rat mesencephalic reticular neurons Negative ISI correlation at lag 1

Lewis et al. (2001) Cat medullary sympathetic neurons Positive ISI correlations that decay over several lags

Lowen and Teich (1992) Cat peripheral auditory fibers Negative ISI correlation at lag 1 and positive ISI 
correlations that decay over several lags

Nawrot et al. (1997), Yamamoto and 
Nakahama (1983), Lebedev and Nelson 
(1996)

Primate somatosensory cortical neurons Negative ISI correlation at lag 1

Schäfer et al. (1995) Catfish electroreceptors Negative ISI correlation at lag 1.

Schwalger et al. (2010) Grasshopper auditory neurons Positive ISI correlations that decay over several lags

Surmeier et al. (1989) Primate spinothalamic neurons Positive and negative ISI correlation at lag 1
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