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Abstract

Many neurons tend to fire clusters of action potentials called bursts followed by quiescence in 

response to sensory input. While the mechanisms that underlie burst firing are generally well 

understood in vitro, the functional role of these bursts in generating behavioral responses to 

sensory input in vivo are less clear. Pyramidal cells within the electrosensory lateral line lobe 

(ELL) of weakly electric fish offer an attractive model system for studying the coding properties 

of burst firing, because the anatomy and physiology of the electrosensory circuitry are well 

understood, and the burst mechanism of ELL pyramidal cells has been thoroughly characterized in 
vitro. We investigated the coding properties of bursts generated by these cells in vivo in response 

to mimics of behaviorally relevant sensory input. We found that heterogeneities within the 

pyramidal cell population had quantitative but not qualitative effects on burst coding for the low 

frequency components of broadband time varying input. Moreover, spatially localized stimuli 

mimicking, for example, prey tended to elicit more bursts than spatially global stimuli mimicking 

conspecific-related stimuli. We also found small but significant correlations between burst 

attributes such as the number of spikes per burst or the interspike interval during the burst and 

stimulus attributes such as stimulus amplitude or slope. These correlations were much weaker in 

magnitude than those observed in vitro. More surprisingly, our results show that correlations 

between burst and stimulus attributes actually decreased in magnitude when we used low 

frequency stimuli that are expected to promote burst firing. We propose that this discrepancy is 

attributable to differences between ELL pyramidal cell burst firing under in vivo and in vitro 
conditions.
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Understanding the neural code remains a central problem in neuroscience. This 

understanding is in part complicated by the fact that neurons in the brain are highly 
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heterogeneous (Bannister and Larkman, 1995a,b; Bastian and Nguyenkim, 2001; Häusser 

and Mel, 2003) and are not passive input-driven devices. Instead, they are capable of rich 

intrinsic dynamics such as oscillations (Gray and Singer, 1989; Stopfer et al., 1997; Doiron 

et al., 2003a) and bursting (i.e. the firing of packets of action potentials followed by 

quiescence) (Lemon and Turner, 2000; Sherman, 2001; Swensen and Bean, 2003; Krahe and 

Gabbiani, 2004; Sabourin and Pollack, 2009). Although much is known about the intrinsic 

mechanisms that lead to burst firing (Wang and Rinzel, 1995; Izhikevich, 2000; Krahe and 

Gabbiani, 2004), the functional role of burst firing is less well understood. Studies have 

shown that bursts of action potentials are critical for mediating cricket escape behavior in 

response to threatening stimuli (Marsat and Pollack, 2006). The function of burst firing is 

less well understood in vertebrates: a variety of functions have been proposed including 

feature detection (Gabbiani et al., 1996; Metzner et al., 1998; Sherman, 2001; Sherman and 

Guillery, 2002; Lesica and Stanley, 2004), coding for stimulus slope (Kepecs et al., 2002; 

Kepecs and Lisman, 2003; Doiron et al., 2007; Oswald et al., 2007) as well as amplitude 

(Doiron et al., 2007; Oswald et al., 2007), and improving the reliability of synaptic 

transmission (Izhikevich et al., 2003).

Studies conducted in simple systems with well-characterized anatomy and relatively simple 

behaviors are likely to yield significant insight into the mechanisms by which bursts of 

action potentials code for behaviorally relevant stimuli. Here we focused on understanding 

how heterogeneities in a particular neural population can influence the coding of stimulus 

attributes by burst firing in vivo in the well-characterized electrosensory system of the South 

American weakly electric fish Apteronotus leptorhynchus. These fish generate an electric 

field through electric organ discharge (EOD) and sense amplitude modulations of that field 

through an array of electroreceptor neurons located on the animal’s skin (Bullock et al., 

2005). Natural stimuli comprise both spatially local and global stimuli: while prey objects or 

objects such as small rocks produce spatially localized electric images on the skin of the fish 

and are limited to low (<10 Hz) temporal frequencies (Nelson and MacIver, 1999), 

conspecific-related stimuli produce spatially diffuse electric images on the skin of the fish 

that contain temporal frequencies in the range 0–300 Hz (Zupanc and Maler, 1993; Zakon et 

al., 2002). Every primary electrosensory afferent fiber trifurcates and makes synaptic contact 

unto pyramidal cells within the three tuberous segments of the electrosensory lateral line 

lobe (ELL) of the hindbrain (Heiligenberg and Dye, 1982). These topographic maps of the 

body surface are known as the centromedial (CMS), centrolateral (CLS), and lateral (LS) 

segments. Pyramidal cells in these three maps differ in their responses to input both in vivo 
(Shumway, 1989; Krahe et al., 2008) and in vitro (Mehaffey et al., 2008b), which is partly 

due to the differential distribution of various ion channels (Maler, 2009a,b). Further, lesion 

studies have shown that the different maps mediate different electrosensory behaviors 

(Metzner and Juranek, 1997).

Recent anatomical studies have shown that pyramidal cells within each map can be 

subdivided into six classes (Maler, 2009a). Firstly, pyramidal cells can either be excited (E-

type) or inhibited (I-type) by increases in EOD amplitude, and these functional differences 

are correlated with anatomical differences: namely the presence or absence of a basilar 

dendritic bush, respectively (Maler, 1979; Maler et al., 1981; Saunders and Bastian, 1984). 

These cell types correspond to ON and OFF cells found in other systems. Secondly, both E 

ÁVILA-ÅKERBERG et al. Page 2

Neuroscience. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



and I-type pyramidal cells can be subdivided into three subclasses: superficial, intermediate, 

and deep (Maler, 2009a). On one end, superficial pyramidal cells have large apical dendritic 

trees (Bastian and Nguyenkim, 2001), receive large amounts of plastic feedback (Bastian et 

al., 2004; Chacron et al., 2005c), have receptive fields with a large surround area (Bastian et 

al., 2002), display low rates of spontaneous firing in vivo (Bastian and Nguyenkim, 2001), 

and show the greatest selectivity in their responses to sensory input (Chacron et al., 2005c; 

Chacron, 2006). At the other end, deep pyramidal cells are characterized by small apical 

dendritic trees (Bastian and Courtright, 1991; Bastian and Nguyenkim, 2001), receive little 

feedback input that displays little plasticity (Bastian et al., 2004; Chacron et al., 2005c), 

have receptive fields with a small surround area (Bastian et al., 2002), display high rates of 

spontaneous firing in vivo (Bastian and Nguyenkim, 2001), and show little selectivity to 

sensory input (Chacron et al., 2005c; Chacron, 2006). Intermediate pyramidal cells have 

characteristics that lie in between those of superficial and deep pyramidal cells. Anatomical 

studies have furthermore shown large differences in the distributions of several ion channels 

and ligand-gated ionotropic receptors between deep and superficial pyramidal cells such as 

NMDA receptors (Harvey-Girard and Dunn, 2003; Harvey-Girard et al., 2007), small 

conductance (SK) calcium-activated potassium channels (Ellis et al., 2007b, 2008), and IP3 

receptors (Berman et al., 1995).

ELL pyramidal cells also display an intrinsic burst mechanism that has been well 

characterized in vitro and relies on a somatodendritic interaction (Lemon and Turner, 2000; 

Doiron et al., 2001, 2002, 2003b; Noonan et al., 2003; Fernandez et al., 2005; Mehaffey et 

al., 2008a): somatic action potentials backpropagate into the apical dendritic tree where they 

cause a dendritic action potential that propagates back to the soma, leading to a depolarizing 

afterpotential (DAP) which can cause another somatic action potential. The strength of the 

DAP grows throughout the burst, leading to a shortening of the interspike interval. The burst 

terminates with a characteristic doublet when the interspike interval falls below the dendritic 

refractory period, causing dendritic failure and a large burst afterhypolarization (bAHP) in 

the soma (Noonan et al., 2003). Studies performed in vitro have shown a strong relationship 

between burst and stimulus attributes: stimuli of higher amplitude gave rise to bursts with 

shorter intraburst intervals (Doiron et al., 2007; Oswald et al., 2007). Additionally, it was 

shown that bursts and isolated spikes encode different features of sensory input: bursts were 

most responsive to the low frequency components while isolated spikes were most 

responsive to the high frequency components of time varying input (Oswald et al., 2004).

While much is known about pyramidal cell responses to behaviorally relevant input in vivo 
(Bastian et al., 2002; Chacron et al., 2005a; Chacron and Bastian, 2008; Krahe et al., 2008), 

comparatively little information is available about the coding properties of burst attributes 

with the exception that it has been shown that burst firing of pyramidal cells within the 

lateral segment could code for certain communication stimuli (Marsat et al., 2009). It is 

known that neurons within the torus semicircularis that receive input from ELL pyramidal 

cells respond specifically to bursts of action potentials (Fortune and Rose, 1997) thus 

suggesting that these bursts are important for neural coding. However, we do not know if 

neural coding by bursts is dependent on pyramidal cell heterogeneities and whether 

correlations exist in vivo between burst and stimulus similar to those observed in vitro 
(Oswald et al., 2004, 2007; Doiron et al., 2007). In ELL pyramidal cells, it was shown in 
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vivo that synaptic bombardment causes calcium entry via NMDA receptors that activates 

dendritic SK channels. The resulting afterhyperpolarization (AHP) after each spike 

counteracts the DAP and leads to a premature termination of the burst before the 

characteristic doublet seen in vitro (Toporikova and Chacron, 2009). We therefore set out to 

investigate the coding properties of bursts and isolated spikes by different types of pyramidal 

cells in vivo using mimics of behaviorally relevant stimuli.

EXPERIMENTAL PROCEDURES

Animal housing

The weakly electric fish, Apteronotus leptorhynchus, was used exclusively in these studies. 

Animals were obtained from commercial suppliers and were housed in groups of four to 

eight in 50 gal. tanks with continuous aeration. Water temperature was maintained between 

27 and 29 °C and water conductivity was between 200 and 1000 μS/cm as per published 

recommendations (Hitschfeld et al., 2009).

Experimental setup

The experimental procedures were described in detail previously (Bastian et al., 2002; 

Chacron et al., 2003a, 2005c; Chacron, 2006; Ellis et al., 2007a; Chacron and Bastian, 2008; 

Toporikova and Chacron, 2009). Briefly, the animal was immobilized by i.m. injection of D-

tubocurarine chloride hydrate (Sigma, St-Louis, MO, USA) and respirated with aerated 

water from its home tank at a flow rate of ~10 ml/min. Note that, because the electric organ 

of Apteronotus is neurogenic, the EOD persists after immobilization. These experiments 

were thus performed with the animal’s natural EOD being present. Water temperature in the 

experimental tank was maintained between 27 and 29 °C. Lidocaine gel was applied 

topically on the skin surface covering the skull. After 2 min, an incision was made to expose 

the skull as done previously (Bastian et al., 2002; Krahe et al., 2008; Toporikova and 

Chacron, 2009). We then used cyanoacrylate to glue a metal post unto the skull for stability. 

Finally, a microdrill was used to expose the hindbrain. All procedures were approved by 

McGill University’s animal care committee.

Recording

Recording techniques were the same as used previously (Bastian et al., 2002). Extracellular 

single unit recordings from pyramidal cells in whole animals were made with metal-filled 

micropipettes (Frank and Becker, 1964). Recording sites as determined from surface 

landmarks, recording depths, the dorso–ventral location of the receptive field, and known 

physiological properties (Krahe et al., 2008) were limited to the centrolateral segment only. 

The extracellular signal was amplified and band-pass filtered (300–1000 Hz; Differential 

Amplifier Model 1700; A-M Systems, Carlsborg, WA, USA) and A-D converted at 10 kHz 

(Power 1401, Cambridge Electronic Design. Cambridge, UK). Spikes were detected offline 

using custom written routines in Matlab (The Mathworks, Nattick, MA, USA).

Stimulation

The stimulation protocol consisted of random amplitude modulations (RAM’s) of the 

animal’s own EOD. Typical contrasts (modulation amplitude to baseline EOD amplitude 
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ratio) were similar to those used in previous studies (Bastian et al., 2002; Chacron et al., 

2003a, 2005b,c; Chacron, 2006; Ellis et al., 2007a; Chacron and Bastian, 2008; Krahe et al., 

2008). The RAMs were obtained by multiplying a computer-generated low-pass filtered 

white noise (8-th order butterworth, cutoff frequency 120 or 10 Hz) with a sinusoid that is 

phase-locked to the animal’s own EOD. This signal was then delivered via either local or 

global stimulation. With local stimulation (Fig. 1A), the stimulus was delivered using a 

small dipole positioned lateral to the animal. With global stimulation (Fig. 1B), the stimulus 

was delivered via two silver–silver-chloride electrodes positioned on each side ~25 cm away 

from the animal (Bastian et al., 2002).

Pyramidal cell classification

Previous studies (Bastian and Courtright, 1991; Bastian and Nguyenkim, 2001; Bastian et 

al., 2004) have established a strong negative correlation between the firing rate and dendritic 

morphology of ELL pyramidal cells and have determined approximate firing rate ranges for 

superficial, intermediate, and deep pyramidal cells: cells whose firing rate was less than 15 

Hz were termed superficial, cells with firing rates greater than 30 Hz were termed deep, and 

cells with firing rates in between were termed intermediate (Chacron et al., 2005c; Chacron, 

2006). We classified pyramidal cells as either E or I based on the average stimulus waveform 

preceding spikes in response to RAMs as previously described (Chacron et al., 2005c; 

Chacron, 2006; Chacron and Bastian, 2008).

Analysis

All analysis was performed in Matlab (The Mathworks, Nattick, MA, USA) using custom 

written routines. As a first step, the spike train was converted into a binary sequence with 

binwidth 0.5 ms and the RAM waveform was resampled at 2 kHz.

Burst analysis

We used an interspike interval threshold (Oswald et al., 2004; Ellis et al., 2007a; Chacron 

and Bastian, 2008) to separate the binary sequence obtained from all spikes into a binary 

sequence consisting of burst spikes and a binary sequence consisting of isolated spikes. 

Spikes separated by an interspike interval that is less than the threshold are considered part 

of a burst and spikes that are not part of a burst are termed isolated. The interspike interval 

threshold value, also termed the burst threshold, was computed as done previously (Bastian 

and Nguyenkim, 2001; Chacron and Bastian, 2008). The burst fraction was then computed 

as the fraction of interspike intervals that were less than or equal to the burst threshold 

(Oswald et al., 2004; Ellis et al., 2007a; Chacron and Bastian, 2008).

In order to quantify the correlations between burst and stimulus attributes, we characterized 

bursts using two measures. The burst length was simply defined as the number of spikes 

within each burst and the burst interval was determined as the time interval between the first 

two spikes of each burst. We note that redefining the burst interval as the time interval 

between the last two spikes of each burst or as the mean interspike interval during the burst 

did not qualitatively change our results (data not shown). We quantified the stimulus 

attributes using the stimulus amplitude and slope. The stimulus amplitude was defined as the 

maximum stimulus value within the burst while the stimulus slope was defined as the mean 

ÁVILA-ÅKERBERG et al. Page 5

Neuroscience. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



stimulus slope within the burst as used previously (Oswald et al., 2007). Note that the 

stimulus waveform was shifted by 8 ms to account for axonal transmission delays (Chacron 

et al., 2003a).

Mutual information analysis

Information theory was developed in the context of communication systems (Shannon, 

1948) and relies on a numerical quantity termed mutual information. The mutual 

information quantifies the ability of a system to correctly discriminate between multiple 

stimuli and is typically expressed in bits: a value of X bits implies that the system can 

correctly discriminate between 2X stimuli. The mutual information rate is defined as the 

mutual information per unit time. In the context of neural systems, investigators are typically 

interested in applying information theory in order to quantify the ability of neural 

populations to discriminate between different stimuli (Borst and Theunissen, 1999).

One important issue that one is faced with when computing mutual information is that it is 

in practice impossible to record neural responses to every possible stimulus and it is thus 

necessary to make approximations (Chacron et al., 2003b). A particularly attractive 

approximation is to use Gaussian noise stimuli since the mutual information rate can then be 

computed from only one presentation of the stimulus (Rieke et al., 1996). Moreover, as 

sensory stimuli are frequently characterized by their temporal frequency content, it is more 

informative to look at the mutual information rate density (i.e. the mutual information rate 

per frequency) rather than the mutual information rate. Previous studies have shown that a 

lower bound on the mutual information rate density I(f) is given by (Rieke et al., 1996):

Where C(f) is the coherence function given by:

Where SR(f) is the cross-spectrum between the RAM waveform S and the binary sequence 

R, SS(f) is the power spectrum of the RAM waveform, and RR(f) is the power spectrum of 

the binary sequence. We estimated all spectral quantities using multi-taper estimation 

techniques (Jarvis and Mitra, 2001). We note that this approach has been used by previous 

studies (Borst and Theunissen, 1999; Chacron, 2006; Sadeghi et al., 2007; Krahe et al., 

2008). Since the frequency components of Gaussian stimuli are independent, it is possible to 

obtain the mutual information rate by simply integrating the mutual information rate density 

(Rieke et al., 1996). Since the stimuli used in our study had frequency content between 0 and 

120 Hz or between 0 and 10 Hz, we integrated I(f) between 0 and 120 Hz or between 0 and 

10 Hz to obtain the mutual information rate.

We have previously shown that the coherence function C(f) can have a strong dependence on 

the stimulus’ spatial frequency content (i.e. the coherence C(f) to a given stimulus depends 

on whether it is presented with local vs. global stimulation geometry) (Chacron et al., 2003a, 
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2005c; Chacron, 2006). In this study, we want, in part, to test the hypothesis that this shift is 

due to changes in a neuron’s propensity to fire bursts of action potentials. We must therefore 

quantify both the change in frequency tuning and the change in burst firing that occurs when 

we transition from local to global stimulation geometry. While changes in burst firing can be 

quantified by the change in burst fraction, changes in frequency tuning can be quantified 

using a shift index that measures differences in the mutual information rate transmitted for 

the low (0–40 Hz) and high (40–80 Hz) frequency components of the stimulus. This shift 

index was calculated as ΔMIlow − ΔMIhigh, where Δ represents the normalized difference 

between the values obtained with local and global geometries (Chacron et al., 2005c). To 

compute ΔMIhigh, first MIhigh was calculated for global stimulation by integrating the 

mutual information density between 40 and 80 Hz and then subtracted from MIhigh 

computed for local stimulation. This difference was then normalized by the maximum 

mutual information value reached by that specific cell. For ΔMIlow, we first computed MIlow 

integrating the mutual information density between 0 and 40 Hz for local stimulation and 

then subtracting the value obtained for global stimulation. This difference was then 

normalized by the maximum mutual information value reached by that specific cell. A 

positive value of the shift index indicates that global stimulation led to higher information 

rate density at high RAM frequencies and/or lower densities at low RAM frequencies than 

local stimulation.

RESULTS

We investigated the burst coding properties of ELL pyramidal cells in response to broadband 

stimuli of differing spatial extents. Local stimuli impinge on only a fraction of the receptive 

field: their spatial extent mimics that of stimuli caused by small objects such as prey, plants, 

and rocks (Fig. 1A). On the other hand, global stimuli impinge on most of the animal’s skin 

surface: their spatial extent mimics that of stimuli encountered during social interactions 

with conspecifics (Bastian et al., 2002; Chacron et al., 2003a; Chacron, 2006) (Fig. 1B). 

Overall, we recorded from 48 pyramidal cells in 10 fish. 25 of these were classified as E-

cells and the remaining 23 were classified as I-cells. It is important to note that the class of a 

given cell can be determined purely from physiological properties (Bastian and Courtright, 

1991; Bastian and Nguyenkim, 2001; Bastian et al., 2002, 2004; Chacron et al., 2005c). 

Indeed, whether a given cell is E or I-type can be determined from its response to sensory 

input (Chacron et al., 2005c). Moreover, its subclass (i.e. superficial, intermediate, or deep) 

can be determined from the cell’s mean firing rate under baseline (i.e. no stimulation) 

conditions (Bastian and Nguyenkim, 2001; Bastian et al., 2004). We therefore used these 

measurements to determine as to which class and subclass a given cell belonged to.

Superficial and deep pyramidal cells display differential burst firing under local and global 
stimulation

We first quantified burst firing under local and global stimulation for superficial, 

intermediate, and deep pyramidal cells. Fig. 1C, D show interspike interval histograms 

(ISIH) from example superficial and deep pyramidal cells under local (gray) and global 

(black) stimulation. In both cases, burst firing was assessed by the proportion of interspike 

intervals below the burst threshold (vertical bar). For the superficial cell (Fig. 1C), burst 
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firing was greater under local stimulation. In contrast, for the deep cell (Fig. 1D), the ISIHs 

under local and global stimulation were more similar with burst firing being only slightly 

greater under global stimulation. Overall, there were no significant differences between E 

and I-cells in terms of burst firing as quantified by the burst fraction for either local 

(P=0.644, Wilcoxon’s rank sum test, n=48) or global (P=0.961, Wilcoxon’s rank sum test, 

n=48) stimulation. Therefore, data from E and I-cells were pooled. At the population level, 

burst fractions were significantly greater under local stimulation than global stimulation 

(Fig. 1E) (P≪10−3, Signrank test, n=48), thereby confirming previous results (Chacron and 

Bastian, 2008). This change in burst firing is seen in measures of spike train variability such 

as the coefficient of variation (CV) which was significantly greater under local stimulation 

(P=0.0036, Wilcoxon’s rank sum test, n=48).

While it is clear that ELL pyramidal cells as a population display a greater propensity for 

burst firing under local stimulation (Chacron and Bastian, 2008), the examples shown in Fig. 

1C, D strongly suggest that stimulus-induced changes in burst firing are dependent on 

pyramidal cell heterogeneities such as subclass (i.e. deep, intermediate, or superficial). To 

test this, we plotted the change in burst fraction when transitioning from global to local 

geometry as a function of the cell’s firing rate under baseline (i.e. no stimulation) conditions. 

There was a significant positive correlation (R=0.4042, P=0.0048, n=48) between the change 

in burst fraction and firing rate with a negative y-intercept (Fig. 2A) indicating that the 

change in burst fraction was greater for superficial as opposed to deep pyramidal cells. 

Finally, we partitioned the data according to E vs. I as well as superficial, intermediate, and 

deep cell subclasses. Our results show that there were significant changes in burst fraction 

contingent on stimulation geometry for superficial and intermediate but not for deep E and I-

type pyramidal cells (Fig. 2B).

Information transmission by bursts and isolated spikes under local and global stimulation

We next segregated the spike train into burst spikes and isolated spikes using an interspike 

interval threshold as done previously (Chacron and Bastian, 2008) and computed the 

information rate densities for all spikes (solid black), bursts (solid gray), and isolated spikes 

(dashed black) for local and global stimulation for all six pyramidal cell classes as done 

previously (Oswald et al., 2004).

Superficial E-cells (Fig. 3A, B) showed large differences in the mutual information densities 

computed from all spikes (solid black line), burst spikes (solid gray line), and isolated spikes 

(dashed black line) contingent on stimulation geometry. The mutual information density 

computed from all spikes showed characteristic shifts in tuning from low to higher 

frequencies as we transitioned from local to global stimulation (Chacron et al., 2005c; 

Chacron, 2006). Even greater changes were observed for burst spikes that displayed almost 

no information content for global stimulation and greater mutual information density at low 

frequencies for local stimulation. The mutual information density of isolated spikes was very 

similar to that of all spikes for global stimulation (Fig. 3A, compare solid and dashed black 

lines) and displayed more broadband tuning for local stimulation (Fig. 3B, dashed black 

line). Overall, similar trends were observed for intermediate E-cells (Fig. 3C, D, dashed 

black line). In contrast, deep pyramidal cells showed almost no change in frequency tuning 
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contingent on stimulation geometry (Chacron et al., 2005c; Chacron, 2006). In both cases, 

burst spikes were mostly tuned to low frequencies while isolated spikes were mostly tuned 

to high frequencies (Fig. 3E, F, solid dashed line).

The situation for I-cells was overall similar for superficial, intermediate, and deep types. The 

mutual information densities computed from all spikes (solid black line) were mostly 

broadband under global stimulation for superficial (Fig. 4A), intermediate (Fig. 4C), and 

deep (Fig. 4E) cell types. For superficial and deep cells, the full spike trains contained the 

lowest and highest amounts of information, respectively. The mutual information densities 

computed from all spikes were greater at low frequencies under local stimulation for 

superficial (Fig. 4B), intermediate (Fig. 4D), and deep (Fig. 4F). In all cases, burst spikes 

were mostly tuned to low frequencies (compare solid gray lines) while isolated spikes were 

tuned to high frequencies (compare dashed black lines). It is interesting to note that isolated 

spikes showed a much greater change in tuning contingent on stimulation geometry than 

burst spikes did (Fig. 4). We note that, while both E and I cells showed strong changes in 

peak frequency tuning under global vs. local stimulation, the causes for this change are quite 

different. Indeed, while both E and I-cells tend to show decreased lower information rate 

density at low (<40 Hz) frequencies for global stimulation, only E cells show a concomitant 

increase in the information rate density for high (>40 Hz) frequencies (Figs. 3 and 4). As 

such, the increased frequency tuning of I-cells under global stimulation is really a reflection 

of their overall decreased response to such stimuli.

We next quantified these results by computing for each cell the frequency at which the 

information tuning curve was maximal, the peak frequency, for all spikes, burst spikes, and 

isolated spikes. We investigated the effects of pyramidal cell heterogeneities on these 

quantities by computing the correlation coefficient between the peak frequency and the 

mean firing rate under baseline conditions for each cell (E or I) under local and global 

stimulation. The results are shown in Table 1.

Overall, we found that deep E-cells had a higher peak frequency than superficial E-cells 

under local stimulation and this was reflected in the burst and isolated spike trains and can 

be seen in Fig. 3 as well. The isolated spikes of deep E-cells also displayed a larger peak 

frequency than those of superficial E-cells under global geometry. We also found that the 

isolated spikes of deep I-cells displayed a larger peak frequency than those of superficial I-

cells under local geometry (Table 1).

We next looked at the putative dependence of the mutual information rate of all spikes, burst 

spikes, and isolated spikes on the cell’s mean firing rate under baseline activity by again 

computing cross-correlation coefficients. However, because it is known that the mutual 

information rate increases linearly with firing rate (Borst and Haag, 2001), we normalized 

the information rates by the respective firing rates (i.e. the mutual information rate obtained 

for burst spikes was normalized by the mean number of burst spikes per unit time during 

stimulation). After this normalization, we did not find any statistically significant correlation 

coefficients between the mutual information rate and the mean firing rate under any 

condition (data not shown). This indicated that the larger mutual information rates displayed 

by deep pyramidal cells were purely a consequence of their larger firing rates.
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Because of the relative constancy of coding of bursts and isolated spikes for either E or I-

cells under either local or global stimulation, we pooled our data over deep, intermediate, 

and superficial types. We found that the peak frequency from all spikes, bursts, and isolated 

spikes was always higher under global stimulation for both E and I-cells (Fig. 5A). 

Moreover, the peak frequency for bursts was significantly lower than that computed from 

isolated spikes (P<10−3, paired t-test, n=94), indicating that the two trains code for different 

frequency ranges under both local and global stimulation. We also computed the mutual 

information rates associated with bursts and isolated spikes. E-cells showed increased 

information rate under global stimulation. Segregation of the spike train into burst and 

isolated spikes revealed that it is increased information from the isolated spikes that is 

responsible (Fig. 5B). For I-cells, the information rate under global stimulation is 

significantly lower than under local stimulation (Fig. 5B), reflecting decreased tuning to low 

frequencies (Fig. 4). Segregation of the spike train into bursts and isolated spikes revealed 

that it was decreased information transmission by bursts that is responsible (Fig. 5B). 

Finally, we wanted to see whether changes in the burst or isolated spike rates would underlie 

changes in the information rate. We found that, for I-cells, the spike rate associated with 

bursts (i.e. the number of spikes per unit time belonging to bursts) was significantly lower 

under global stimulation (Fig. 5C). Therefore, the decreased information rate seen in I-cells 

under global stimulation is due to decreased information transmitted by bursts, which is in 

turn due to decreased burst spike rate. There was also a small but significant increase in the 

isolated spike rate for I-cells as we transitioned from local to global stimulation (Fig. 5C).

What can be concluded from these results? We show that bursts consistently code for lower 

frequencies than isolated spikes irrespective of stimulation geometry or pyramidal cell 

heterogeneities. While cells with higher firing rates tended to have larger burst and isolated 

spike rates, each spike coded for roughly the same amount of information irrespective of 

pyramidal cell heterogeneity for either E or I-cells under either local or global stimulation. 

Nevertheless, there are changes in burst firing contingent on stimulation geometry and these 

are mostly seen in superficial pyramidal cells that also show the greatest changes in 

frequency tuning (Figs. 3 and 4). This suggests that changes in burst firing are correlated 

with changes in frequency tuning.

Changes in bursting are correlated with changes in frequency tuning

Our results demonstrate that bursts tended to code for the low frequency components of the 

stimulus irrespective of stimulus geometry or cell type. Next, we quantified the change in 

frequency tuning caused by the change in stimulation geometry by computing a shift index 

as before (Chacron et al., 2005c). This shift index is a measure of the cell’s change in tuning 

to both low and high frequencies (see methods). We found a strong correlation between the 

shift index computed from all spikes and the cell’s spontaneous firing rate (Table 2). Since 

the shift index is influenced by changes in the information at both low and high frequencies, 

we also quantified the relative changes in information density for the low and high frequency 

ranges. We found a significant correlation between the change in burst fraction and the 

change in low frequency (0–40 Hz) mutual information rate computed for all spikes (Fig. 

6A, R=0.3035, P=0.01). However, the change in burst fraction was not correlated with the 

change in high frequency (40–80 Hz) mutual information rate (Fig. 6B, R=0.1012, 
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P=0.4983). We also separately quantified the changes in the low frequency and high 

frequency information transmitted by bursts and isolated spikes. While there was a very 

strong correlation between the change in low frequency information transmitted by bursts 

and the change in burst fraction (R=0.6041, P≪10−3), all the other correlation coefficients 

were not statistically significant at the P=0.01 level and are summarized in Table 2.

These results show that changes in burst firing are correlated with a decrease in the low 

frequency mutual information rate but not with the increase in high frequency information 

that is predominantly found in E-cells as we transition from local to global stimulation.

Correlations between burst and stimulus attributes

As mentioned previously, information theory aims to quantify a system’s ability to transmit 

information about a stimulus ensemble. However, information theory by itself does not 

provide us with the transformations that occur in the system in question. One approach to 

resolve this problem is to look for correlations between attributes of the stimulus and neural 

response (i.e. the neural spike train) as these correlations will imply that information is being 

transmitted. In this case, we are interested in characterizing putative correlations between 

burst and stimulus attributes.

Previous studies have shown that bursts signal particular features in the sensory environment 

(Gabbiani et al., 1996; Metzner et al., 1998; Sherman, 2001; Sherman and Guillery, 2002; 

Lesica and Stanley, 2004; Oswald et al., 2004; Marsat et al., 2009). We therefore turned our 

attention towards elucidating the features of the stimulus that are encoded by bursts. 

Moreover, we are interested in understanding how bursts code for these features: recent 

results obtained in vitro have shown that the interspike interval within a burst (the “burst 

interval”) was correlated with the maximum stimulus amplitude between the spikes (Doiron 

et al., 2007; Oswald et al., 2007). Alternatively, it has been shown that the number of spikes 

in a burst (the “burst length”) was correlated with stimulus attributes such as the stimulus’ 

slope (Kepecs et al., 2002; Kepecs and Lisman, 2003).

We therefore quantified putative correlations between burst and stimulus attributes in our 

dataset. The burst attributes analyzed were burst length and burst interval and the stimulus 

attributes were the maximum stimulus value during the burst (stimulus amplitude) and the 

average stimulus slope during the burst (stimulus slope). Thus, we computed four correlation 

coefficients: (1) burst length vs. amplitude, (2) burst length vs. slope, (3) burst interval vs. 

amplitude, (4) burst interval vs. slope.

These quantities are shown for a representative I-cell under local stimulation in Fig. 7. We 

found a significant negative correlation between the burst length and stimulus amplitude (R=

−0.3367, P≪10−3) (Fig. 7A). The correlation coefficient between burst length and stimulus 

slope was much weaker in magnitude but nevertheless significant (R=−0.0934, P=0.0054) 

(Fig. 7B). The correlation coefficients between the burst interval and stimulus amplitude and 

slope were significantly greater than zero (amplitude: R=0.3611, P≪10−3; slope: R=0.4239, 

P≪10−3; Fig. 7C, D). While this may appear surprising at first, we note that I-cells are 

actually inhibited by increases in the EOD amplitude. The signs of the correlation 
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coefficients reflect this fact and are expected to be opposite to those that would be obtained 

if the cell were excited by increases in EOD amplitude.

We next explored how these correlation coefficients varied with cell class and stimulation 

geometry. As we found no significant relationship between the correlation coefficient and 

the cell’s firing rate at the P=0.01 level (data not shown), the data were pooled across deep, 

intermediate, and superficial pyramidal cells. Overall, we found significant correlation 

coefficients that were weak (<0.2) in magnitude between burst length and stimulus 

amplitude for E (Fig. 8A) and I (Fig. 8B) cells. As expected from the above argument, E and 

I-cells had opposite correlations between burst length and stimulus amplitude. We found that 

the correlations between burst length and stimulus slope were not significant for either cell 

class. We also found significant correlations between burst interval and stimulus amplitudes 

as well as between burst interval and stimulus slope for E (Fig. 8A) and I (Fig. 8B) cells. In 

general, correlation coefficients were slightly larger in magnitude under local stimulation 

than under global stimulation, which probably reflects the fact that pyramidal cells typically 

respond more strongly to the low frequency components of time varying stimuli when these 

are presented with local geometry (Bastian et al., 2002). This is because stimuli presented 

with global geometry will activate feedback pathways that attenuate pyramidal cell 

responses (Bastian et al., 2004; Chacron et al., 2005c; Chacron, 2006).

Our results nevertheless show that correlations between burst and stimulus attributes were 

much weaker in magnitude than those predicted from modeling studies in the case of burst 

length vs. stimulus amplitude and slope (Kepecs et al., 2002) or observed experimentally in 
vitro in the case of burst interval vs. stimulus amplitude and slope (Oswald et al., 2007). 

How can this discrepancy be explained? It could be argued that the stimuli we used 

contained higher frequencies than those used previously as it was shown that the high 

frequency components of a time varying sensory stimulus can interfere with burst firing 

(Oswald et al., 2004). In order to address this issue, we used Gaussian noise stimuli that had 

a cutoff frequency of 10 Hz. Therefore, the stimulus’ temporal frequency content fell 

completely within the coding range of bursts and would elicit the most bursting in vitro 
(Oswald et al., 2004). We computed the correlation coefficients between burst length or 

interval and stimulus amplitude or slope for this low frequency stimulus.

While one might expect that using such stimuli would increase the magnitude of correlations 

between burst and stimulus attributes based on the above argument, our results show that this 

is not the case (Fig. 8C, D). Indeed, correlation coefficients between burst and stimulus 

attributes computed for 0–10 Hz noise stimuli were largely similar in magnitude to those 

computed for 0–120 Hz noise stimuli for both E (compare Fig. 8A, C) and I (compare Fig. 

8B, D) cells.

The correlation coefficients between burst length and stimulus amplitude as well as between 

burst length and stimulus slope were significant for E-cells under local stimulation (Fig. 8C). 

There was furthermore a weak but significant negative correlation between burst interval and 

stimulus slope for E-cells under local stimulation. Surprisingly, all correlation coefficients 

obtained for I-cells were not significant. Even more surprisingly, the correlation coefficients 
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between burst interval and stimulus amplitude and slope were actually weaker in magnitude 

for 0–10 Hz stimuli than those obtained for 0–120 Hz stimuli.

Finally, we note that the correlation coefficients were again larger in magnitude under local 

stimulation than global stimulation for the reasons mentioned above. Nevertheless, the 

correlation coefficients between burst interval and either of stimulus amplitude or slope 

remained much smaller than those observed in vitro for either of local or global stimulation. 

We also only found a significant correlation between burst interval and stimulus amplitude 

for local stimulation (R=−0.7344, P=0.0065, n=12).

DISCUSSION

Summary of results

We have investigated the coding properties of ELL pyramidal cell bursts and isolated spikes 

in vivo in response to mimics of prey and conspecific-related stimuli. We found that 

pyramidal cells of different classes responded differentially to the two stimulus categories. 

Specifically, superficial and intermediate pyramidal cells had greater tendencies to burst for 

local stimulation while deep pyramidal cells had similar tendencies to burst under both 

stimulation regimes. In order to understand which features of the stimulus elicited burst 

firing, we partitioned the spike train into bursts and isolated spikes. We found that, under 

both local and global stimulation, bursts tended to code for the low frequency components of 

the stimulus while isolated spikes tended to code for a much broader frequency range 

irrespective of pyramidal cell heterogeneities. We found a correlation between changes in 

pyramidal cell burst firing properties and their frequency tuning under local and global 

stimulation. Namely, the difference in low frequency mutual information rate between both 

stimulus categories was correlated with the difference in burst fraction. We also found that 

burst length (i.e. the number of spikes per burst) was correlated with stimulus amplitude but 

not slope. While the burst interval did display significant correlation with stimulus amplitude 

and slope, these correlations were much weaker in magnitude than those observed in vitro 
(Oswald et al., 2007).

Comparison between burst coding in vitro and in vivo

We have shown that the correlation coefficients between burst and stimulus attributes were 

weak in vivo. This is contrary to what has been observed in vitro where the burst interval 

codes for stimulus slope (Doiron et al., 2007; Oswald et al., 2007). The coding properties of 

burst length have been previously investigated in mathematical models of burst firing where 

it was found that burst length could code for input slope (Kepecs et al., 2002). Our 

experimental results show, however, that this is not the case in ELL pyramidal neurons. This 

difference is most likely due to the fact that Kepecs et al. (2002) considered burst dynamics 

that were slightly different than those found in ELL pyramidal neurons under in vivo 
conditions. Our results thus showed important differences between the coding properties of 

burst firing in ELL pyramidal cells in vitro and in vivo.

How does one explain such differences? One possible explanation is that the in vitro 
recordings by Oswald et al. (2007) were mostly from a different ELL map than our in vivo 

ÁVILA-ÅKERBERG et al. Page 13

Neuroscience. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



recordings. While this fact could a priori explain some of the differences, it is unlikely to 

explain all of them for two reasons: (1) Another study performed in vitro has shown that the 

bursting mechanism of ELL pyramidal cells was the same in all three maps (Mehaffey et al., 

2008b); (2) A recent study performed in vivo has also shown similar burst firing as 

quantified by the burst fraction for ELL pyramidal cells across all three maps (Krahe et al., 

2008). Further studies involving recordings from other ELL maps in vivo are however 

needed to fully test this hypothesis.

Another explanation would be that Oswald et al. (2007) used the last two spikes of each 

burst to define the burst interval whereas we used the first two. However, we saw no 

qualitative difference in our results when we used the last two spikes or the average 

interspike interval during the burst (data not shown), which strongly speaks against this 

possibility. We furthermore note that the weak correlation between burst interval and 

stimulus amplitude entails poor discriminability between different burst intervals caused by 

different stimulus amplitudes and it is thus expected that the signal detection analysis that 

Oswald et al. (2007) used would give poorer discriminability between interspike intervals if 

applied to our data.

Yet another possible explanation is that the burst dynamics of ELL pyramidal cells are quite 

different in vivo and in vitro as recently pointed out (Toporikova and Chacron, 2009). This 

seems to be most consistent with our results. For example, previous studies have shown that 

ELL pyramidal cell bursts are characterized in vitro by a decreasing interspike interval 

throughout the burst (Lemon and Turner, 2000) whereas no such patterning is seen in vivo 
(Bastian and Nguyenkim, 2001). Finally, in vitro studies predict that using stimuli with 

lower frequency content will promote burst firing that will code for these low frequencies 

(Oswald et al., 2004). However, our results showed that using 0–10 Hz stimuli led to 

correlation coefficients between burst and stimulus attributes that were weaker in magnitude 

than those obtained for 0–120 Hz stimuli, which further supports the hypothesis that the 

different burst dynamics seen in vivo may explain the discrepancies between our results and 

those obtained in vitro.

Nevertheless, we did see that bursts in ELL pyramidal cells tended to code for the low 

frequency components of the stimulus for both local and global stimulation, which is similar 

to what was seen previously in vitro (Oswald et al., 2004). Coding of low frequency stimuli 

by bursts has also been seen in thalamic relay neurons of the lateral geniculate nucleus 

(Lesica and Stanley, 2004; Lesica et al., 2006). This property of burst firing thus appears to 

be preserved in vivo as well as across sensory systems and thus appears to be a general 

property of excitable systems that is independent of particular burst dynamics (Oswald et al., 

2004). This property is also consistent with bursts detecting particular features of sensory 

input (Gabbiani et al., 1996; Metzner et al., 1998; Chacron et al., 2001, 2004; Sherman, 

2001; Krahe et al., 2002, 2008; Sherman and Guillery, 2002).

Our results also show that effects of pyramidal cell heterogeneities on the coding of 

information by bursts are quantitative rather than qualitative. This is a surprising result 

because heterogeneities in terms of dendritic tree morphology or distributions of ion 

channels can have profound consequences on burst firing (Mainen and Sejnowski, 1996; 
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Häusser and Mel, 2003) and ELL pyramidal cells display large morphological and 

physiological heterogeneities (Bastian and Nguyenkim, 2001; Bastian et al., 2002, 2004; 

Harvey-Girard and Dunn, 2003; Chacron, 2006; Ellis et al., 2007b, 2008; Maler, 2009a,b). 

Further studies are needed to understand this surprising result.

Role of bursts in information coding by ELL pyramidal cells

We observed burst firing more prominently under local stimulation as compared with global 

stimulation and this change was correlated with the greater response to low frequencies seen 

under local stimulation. Previous studies have shown that indirect feedback unto pyramidal 

cells via parallel fibers from the caudal lobe of the cerebellum actively attenuates responses 

to the low frequency components of global stimuli (Bastian et al., 2004; Chacron et al., 

2005c; Chacron, 2006; Chacron and Bastian, 2008) and is also likely responsible for the 

attenuated burst firing under global stimulation. As such, our results suggest that burst firing 

in pyramidal cells of the centrolateral segment of the ELL seen in vivo serves to signal the 

presence of a local stimulus (prey or rock) in the environment, in agreement with previous 

results showing that correlated bursts might encode this type of stimulus at the population 

level (Chacron and Bastian, 2008).

It was recently shown that pyramidal cell bursts can also reliably detect the occurrence of 

chirps (Marsat et al., 2009), which are a particular type of fast, high frequency, 

communication signal emitted by Apteronotus during aggressive and courtship encounters 

that occur on top of a low-frequency beat (Zakon et al., 2002). The ability to respond with 

bursts to these high frequency features of natural stimuli is, however, limited to E-type 

pyramidal cells in the lateral segment of the ELL. Pyramidal cells in the centrolateral 

segment, which were investigated here, fire bursts only in response to low-frequency events 

and have different physiological properties than lateral segment pyramidal cells (Krahe et 

al., 2008).

Control of burst firing in ELL pyramidal cells

Our present results confirm previous ones that have shown that pyramidal cell responses to 

sensory input are highly dynamic and are controlled by specialized neural circuitry that 

includes glutamatergic (Bastian, 1986; Chacron et al., 2005c; Chacron, 2006) as well as 

cholinergic and serotonergic feedback pathways (Johnston et al., 1990; Ellis et al., 2007a; 

Mehaffey et al., 2008a). At the cellular level, it has been demonstrated that pyramidal cell 

burst firing is tightly regulated by inhibition (Mehaffey et al., 2005, 2007) as well as voltage-

gated conductances (Doiron et al., 2003b; Noonan et al., 2003; Fernandez et al., 2005; Ellis 

et al., 2007b). Small conductance calcium-activated potassium channels have been shown to 

regulate burst firing in vitro (Ellis et al., 2007b), which is particularly interesting since a 

recent study has shown that these channels also regulate burst dynamics in vivo (Toporikova 

and Chacron, 2009). Cholinergic and serotonergic neuromodulatory mechanisms regulate 

SK channels in other systems (Nicoll, 1988; Villalobos et al., 2005) and such 

neuromodulatory inputs are known to be present in the ELL (Phan and Maler, 1983; 

Johnston et al., 1990). Although the effects of the cholinergic pathway are beginning to be 

understood including a potential modulation of SK channels (Ellis et al., 2007a; Mehaffey et 

al., 2008a), the effects of the serotonergic pathway are still unknown. Further studies are 
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needed to determine the roles played by these pathways in regulating burst firing and 

information processing by ELL pyramidal cells.

CONCLUSION

Our results have shown that neural heterogeneities generally had quantitative rather 

qualitative effects on the coding of sensory information by bursts of action potentials: bursts 

of action potentials tended to be elicited by the low frequency components of time varying 

stimuli irrespective of these heterogeneities. Similar coding of low frequencies is observed 

across sensory modalities and thus appears to be a general feature of coding by bursts of 

action potentials. However, we also observed weak correlations between burst and stimulus 

attributes: this is contrary to what is observed in vitro or predicted from modeling studies. 

Our results suggest that these differences are due to the fact that the burst dynamics of ELL 

pyramidal cells are different in vivo and in vitro. Thus, it will be critical to determine the 

influence of in vivo conditions on burst dynamics that have been characterized in vitro in 

order to understand the functional role of burst firing in the CNS.
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Fig. 1. 
ELL pyramidal cells display differential responses to stimuli with differing spatial extents. 

(A) Local stimulation geometry: a small dipole produces spatially localized AMs of the 

fish’s own EOD. (B) Global stimulation geometry: two electrodes (G1, G2) located lateral to 

the animal give rise to spatially diffuse AMs of the fish’s own EOD. (C) ISI probability 

densities from a representative superficial pyramidal cell under local and global noise 

stimulation. The noise’s temporal profile was identical in both situations. This cell had a 

greater tendency to display ISIs less than the burst threshold under local stimulation. (D) 

The ISI probability densities from an example deep pyramidal cell under local and global 

noise stimulation were quite similar. (E) Population-averaged burst fractions (i.e. the fraction 

of ISIs less than the burst threshold) under local and global stimulation. (F) Population 

averaged ISI coefficient of variation (CV) under local and global stimulation. Asterisks 

indicate statistical significance at the P=0.05 level using a Signrank test. For interpretation of 

the references to color in this figure legend, the reader is referred to the Web version of this 

article.
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Fig. 2. 
Effects of pyramidal cell heterogeneities on burst firing under local and global stimulation. 

(A) Change in burst fraction (global-local) as a function of the cell’s baseline firing rate. 

Superficial pyramidal cells (i.e. cells whose firing rates are less than 15 Hz) display reduced 

burst fraction under global stimulation but deep pyramidal cells (i.e. cells whose firing rates 

are greater than 30 Hz) showed little change. (B) Population-averaged burst fractions for E 

and I-type pyramidal cells of each class. “**” indicates statistical significance with P<0.01 

(see text for details).
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Fig. 3. 
Bursts and Isolated spikes code for different stimulus attributes under local and global 

stimulation for E-cells. Population-averaged mutual information rate densities for all spikes 

(black), bursts (gray), and isolated spikes (dashed) for superficial E-cells under global 

stimulation (A), for superficial E-cells under local stimulation (B), for intermediate E-cells 

under global stimulation (C), for intermediate E-cells under local stimulation (D), for deep 

E-cells under global stimulation (E), and for deep E-cells under local stimulation (F).
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Fig. 4. 
Bursts and Isolated spikes code for different stimulus attributes under local and global 

stimulation for I-cells. Population averaged mutual information rate densities for all spikes 

(black), bursts (gray), and isolated spikes (dashed) for superficial I-cells under global 

stimulation (A), for superficial I-cells under local stimulation (B), for intermediate I-cells 

under global stimulation (C), for intermediate I-cells under local stimulation (D), for deep I-

cells under global stimulation (E), and for deep I-cells under local stimulation (F).
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Fig. 5. 
Summary of changes in pyramidal cell frequency tuning under local and global stimulation. 

(A) Population-averaged peak frequency tuning as measured by the mutual information rate 

density curves for E and I-type pyramidal cells of all three classes. (B) Population-averaged 

mutual information rates for all spikes, bursts, and isolated spikes obtained for E and I-type 

pyramidal cells of all three classes. (C) Population-averaged firing rate, burst rate, and 

isolated spike rate for E and I-type pyramidal cells of all classes. “*” indicates statistical 

significance with P<0.05 and “**” indicates statistical significance with P<0.01 (see text for 

details).
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Fig. 6. 
Correlating changes in burst firing to changes in frequency tuning. (A) The change in low 

frequency (0–40 Hz) mutual information rate (local-global) plotted as a function of the cell’s 

change in burst fraction (local-global) showed a significant correlation (R=0.3035, P=0.01, 

n=47). (B) The change in high frequency (40–80 Hz) mutual information rate (local-global) 

as a function of the change in burst fraction (local-global) showed no significant correlation 

(R=0.1012, P=0.4983, n=47).
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Fig. 7. 
Correlating burst attributes to stimulus attributes for a representative I-cell. (A) Number of 

spikes per burst (burst length) as a function of stimulus amplitude for an example cell 

showing a weak but significant negative correlation (R=−0.3367, P≪10−3). (B) Burst length 

as a function of stimulus slope showing a weak but significant correlation (R=−0.0934, 

P=0.0054). (C) Burst interval as a function of stimulus amplitude showing a significant 

correlation (R=0.3611, P≪10−3). (D) Average interspike interval during a burst as a function 

of stimulus slope showing a significant positive correlation (R=0.4239, P≪10−3).

ÁVILA-ÅKERBERG et al. Page 27

Neuroscience. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Fig. 8. 
Summary of population-averaged correlation coefficients obtained between burst and 

stimulus attributes for 0–120 Hz stimuli for E (A) and I (B) cells. The correlation 

coefficients obtained for 0–10 Hz stimuli for E (C) and I (D) cells are also shown. “**” and 

“*” indicate statistical significance at the P=0.01 and 0.05 levels using a signrank test, 

respectively.
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Table 1

Summary of correlation coefficients between the peak frequency and the cell’s mean firing rate under baseline 

conditions. P-values are indicated in parentheses

All spikes Burst spikes Isolated spikes

E-cells global 0.2215 (0.2874) −0.0535 (0.7994) 0.7142 (<10−3)

E-cells local 0.6896 (<10−3) 0.5982 (0.0016) 0.8481 (≪10−3)

I-cells global 0.2661 (0.2313) −0.2892 (0.1917) 0.4101 (0.058)

I-cells local 0.1443 (0.5218) 0.2096 (0.3492) 0.6299 (0.0017)
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Table 2

Summary of obtained correlation coefficients and P-values (in parentheses) for the relationship between 

changes in frequency tuning as determined from all spikes, burst spikes, and isolated spikes and the cell’s 

spontaneous mean firing rate

All spikes Bursts Isolated spikes

Shift index 0.3972 (0.0057) 0.2631 (0.074) 0.0858 (0.5662)

Information change low frequencies 0.3035 (0.01) 0.6041 (≪10−3) −0.1126 (0.4513)

Information change high frequencies 0.1012 (0.4983) −0.2832 (P=0.097) 0.1906 (0.1994)

N=47 in all cases.
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