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Abstract

The functional role of burst firing (i.e. the firing of packets of action potentials followed by 

quiescence) in sensory processing is still under debate. Should bursts be considered as unitary 

events that signal the presence of a particular feature in the sensory environment or is information 

about stimulus attributes contained within their temporal structure? We compared the coding of 

stimulus attributes by bursts in vivo and in vitro of electrosensory pyramidal neurons in weakly 

electric fish by computing correlations between burst and stimulus attributes. Our results show 

that, while these correlations were strong in magnitude and significant in vitro, they were actually 

much weaker in magnitude if at all significant in vivo. We used a mathematical model of 

pyramidal neuron activity in vivo and showed that such a model could reproduce the correlations 

seen in vitro, thereby suggesting that differences in burst coding were not due to differences in 

bursting seen in vivo and in vitro. We next tested whether variability in the baseline (i.e. without 

stimulation) activity of ELL pyramidal neurons could account for these differences. To do so, we 

injected noise into our model whose intensity was calibrated to mimic baseline activity variability 

as quantified by the coefficient of variation. We found that this noise caused significant decreases 

in the magnitude of correlations between burst and stimulus attributes and could account for 

differences between in vitro and in vivo conditions. We then tested this prediction experimentally 

by directly injecting noise in vitro through the recording electrode. Our results show that this 

caused a lowering in magnitude of the correlations between burst and stimulus attributes in vitro 
and gave rise to values that were quantitatively similar to those seen under in vivo conditions. 

While it is expected that noise in the form of baseline activity variability will lower correlations 

between burst and stimulus attributes, our results show that such variability can account for 

differences seen in vivo. Thus, the high variability seen under in vivo conditions has profound 

consequences on the coding of information by bursts in ELL pyramidal neurons. In particular, our 

results support the viewpoint that bursts serve as a detector of particular stimulus features but do 

not carry detailed information about such features in their structure.
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1 Introduction

Understanding the neural code remains an important problem in neuroscience that is 

complicated by the fact that neurons often display complex intrinsic dynamics that influence 

their responses to sensory input. An example of such dynamics consists of those that give 

rise to burst firing (i.e. the firing of packets of action potentials followed by quiescence) 

which is seen ubiquitously in the CNS (Krahe and Gabbiani 2004). Although the intrinsic 

and network mechanisms that give rise to burst firing are generally well understood 

(Izhikevich 2000; Sherman and Guillery 2002; Krahe and Gabbiani 2004), the functional 

role of burst firing is less well understood. In particular, it has been proposed that bursts, 

when treated as a single event, can signal the presence of particular stimulus features 

(Gabbiani et al. 1996; Metzner et al. 1998; Sherman 2001; Sherman and Guillery 2002; 

Chacron et al. 2004a; Lesica and Stanley 2004; Oswald et al. 2004). Alternatively, other 

studies have shown strong correlations between various burst attributes (e.g. the temporal 

ordering of spikes within a burst or the number of spikes within a burst) and stimulus 

attributes (e.g. its amplitude of its rate of rise before burst onset), thereby suggesting that the 

detailed structure of a burst could provide information about the stimulus (DeBusk et al. 

1997; Kepecs et al. 2002; Martinez-Conde et al. 2002; Oswald et al. 2007; Eyherabide et al. 

2008; Gaudry and Reinagel 2008; Marsat and Pollack 2010; Samengo and Montemurro 

2010). Studies conducted in simple systems with well-characterized anatomy and relatively 

simple behaviors are likely to yield significant insight into the functional role of burst firing.

Weakly electric fish benefit from well-characterized anatomy and physiology (Berman and 

Maler 1999) and detect amplitude modulations of their self-generated electric organ 

discharge (EOD) through an array of electroreceptor neurons located on the skin (Bullock et 

al. 2005). These make synaptic contact unto pyramidal cells within the hindbrain 

electrosensory lateral line lobe (ELL) which is composed of three parallel maps of the body 

surface (Shumway 1989; Krahe et al. 2008) that are essential for proper sensory processing 

of natural stimuli (Metzner and Juranek 1997). The physiological responses of pyramidal 

cells within the three maps show important differences and have been well characterized 

both in vivo (Bastian et al. 2002; Chacron et al. 2003; Bastian et al. 2004; Chacron et al. 

2005a, c; Chacron 2006; Chacron et al. 2007; Chacron and Bastian 2008; Chacron et al. 

2009; Toporikova and Chacron 2009; Avila Akerberg et al. 2010) and in vitro (Berman and 

Maler 1999; Oswald et al. 2004; Ellis et al. 2007a, b; Oswald et al. 2007; Mehaffey et al. 

2008a, b).

Pyramidal cells display the tendency to fire bursts of action potentials both in vitro (Turner 

et al. 1994) and in vivo (Bastian and Nguyenkim 2001) through a well-characterized 

intrinsic burst mechanism that relies on a somatodendritic interaction (Lemon and Turner 

2000; Doiron et al. 2002). Recent studies performed in vitro have suggested a burst interval 

code as the burst interval was found to be strongly negatively correlated with both the 
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stimulus amplitude and slope (Oswald et al. 2007). However, a recent study performed in 
vivo found weak if at all significant correlations between the burst interval and either of 

stimulus amplitude or slope (Avila Akerberg et al. 2010). The causes for these differences 

are still not understood because the above-mentioned two studies were conducted in 

different ELL segments and furthermore used stimuli with differing temporal frequency 

content. Moreover, recent results have highlighted important differences between burst firing 

seen in vivo and in vitro: while bursting seen in vitro is characterized by a shortening of the 

ISI throughout the burst and terminates with a characteristic doublet, burst firing seen in vivo 
does not display any significant trend in the ISI within the burst (Bastian and Nguyenkim 

2001) and is terminated early (i.e. before the doublet) through an accumulation in the spike 

afterhyperpolarization throughout the burst (Toporikova and Chacron 2009). We therefore 

set out to investigate the causes for the differences in burst coding seen in vitro and in vivo 
in ELL pyramidal cells using a combination of in vivo electrophysiology, in vitro 
electrophysiology, and mathematical modeling.

2 Methods

2.1 Experiments

All the experiments were performed on the weakly electric fish species Apteronotus 
leptorhynchus. Specimens were obtained from local importers and were acclimated to the 

laboratory as per published guidelines (Hitschfeld et al. 2009). All the experimental 

procedures for both in vivo and in vitro preparations were done according to experimental 

protocols approved by the McGill University Animal care committee.

2.2 In vivo electrophysiology

The experimental procedures were described in detail previously (Bastian et al. 2002; 

Chacron et al. 2003; Chacron et al. 2005a; Chacron 2006; Ellis et al. 2007a; Chacron and 

Bastian 2008; Toporikova and Chacron 2009). Briefly, D-tubocurarine chloride hydrate 

(Sigma, St-Louis, MO) was injected intramuscularly and the animal was then respirated with 

aerated water from its home tank at a flow rate of ~10 ml/min. The EOD persists after 

immobilization due to the fact that the electric organ of Apteronotus is neurogenic in nature. 

Therefore, the experiments were performed by perturbing the animal’s own EOD as 

described below. The temperature of the water in the experimental tank was kept between 27 

and 29°C. Surgical techniques were the same as those described previously (Bastian et al. 

2002; Krahe et al. 2008; Toporikova and Chacron 2009; Avila Akerberg et al. 2010).

2.3 In vivo recording

The recording techniques used in this study were the same as the ones used previously 

(Bastian et al. 2002; Avila Akerberg et al. 2010). Metal-filled micropipetes were used for 

obtaining extracellular single unit recordings from pyramidal cells in whole animals (Frank 

and Becker 1964). The recording sites were limited to the centrolateral and lateral segments 

and were determined by surface landmarks and recording depth and the dorso-ventral 

location of the receptive field (Krahe et al. 2008). The extracellular signal was amplified and 

band-passed filtered (300–1,000 Hz; Differential Amplifier Model 1700; A-M Systems, 

Carlsborg, WA) and A-D converted at 10 kHz (Power 1401, Cambridge Electronic Design. 
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Cambridge, UK). Spikes were detected offline using custom written routines in Matlab (The 

Mathworks, Nattick, MA).

2.4 In vivo stimulation

The fish were stimulated with a protocol that consisted of random amplitude modulations 

(RAM’s) of the animal’s own EOD. Typical contrasts (the ratio of the modulation amplitude 

and the baseline EOD amplitude) were similar to those used in previous studies (Bastian et 

al. 2002; Chacron et al. 2003; Bastian et al. 2004; Chacron et al. 2005a, b, c; Chacron 2006; 

Chacron et al. 2007; Ellis et al. 2007a; Chacron and Bastian 2008; Krahe et al. 2008; Avila 

Akerberg et al. 2010). The RAM’s were obtained by multiplying a computer-generated low-

pass filtered white noise (8-th order butterworth, cutoff frequency 10 Hz) with a sinusoid 

that is phase-locked to the animal’s own EOD. The signal was then isolated from ground and 

delivered using a small dipole positioned lateral to the animal.

2.5 In vitro electrophysiology

The animals were first deeply anaesthetized by immersing them in a solution of 3-

aminobenzoic acid (MS-222) and then artificially respirated to perform surgery. ELL tissue 

slices of 300–400 μm were then prepared as described previously (Turner et al. 1994; Ellis et 

al. 2007b; Mehaffey et al. 2008b) and were maintained by constant perfusion (2–3 mL/min) 

of artificial cerebrospinal fluid (ACSF, composition in mM: 126 NaCl, 2.5 KCl, 1.2 

NaH2PO4, 1.2 MgCl2, 18 NaHCO3, 2.4 CaCl2, and 11 D-glucose) as well as superfusion 

with carbogen (5% CO2/95% O2).

2.6 In vitro recording

Intracellular recordings from ELL pyramidal cells were achieved using sharp glass 

micropipetes with typical resistances ranging from 80 MΩ to 120 MΩ and were limited to 

the lateral and centrolateral segments. An axoclamp 900A was used to amplify the recorded 

potential difference between the tip of the recording electrode and a ground wire placed in 

the bath as well as to deliver current injection through the recording electrode. Data was 

acquired at 10 kHz using a digidata 1440A and Clampex 9.0 software (Molecular Devices). 

The data was acquired with a sampling rate of 10 kHz using a digidata 1440A and Pclamp 

software (Molecular devices).

2.7 In vitro stimulation

We used DC current injection to maintain each cell just below its firing threshold and typical 

values used were −0.5 nA. We henceforth refer to this holding current as the baseline 

holding current. In order to mimic sensory stimulation, we injected through the glass 

electrodes a time varying current as done previously (Oswald et al. 2004; Ellis et al. 2007b; 

Mehaffey et al. 2008a) that consists of low-pass filtered (8th order Butterworth, 10 Hz 

cutoff) Gaussian white noise with mean 0.4 nA and standard deviation σstim. We shall 

henceforth refer to this waveform as the stimulus. In order to mimic synaptic input 

(Manwani and Koch 1999), we also injected a low-pass filtered Gaussian white noise (8th 

order butterworth, 10 Hz cutoff) with mean 0.4 nA and standard deviation σnoise. We shall 
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henceforth refer to this waveform as the noise. Note that the stimulus and noise waveforms 

were not correlated with one another.

2.8 Spike train analysis

All the analysis was done in Matlab (The Mathworks, Nattick, MA) using custom written 

routines. We obtained a binary sequence with binwidth dt=0.5 ms from the spike times by 

setting the content of bin i to 1 if there is one spike time such that i*dt≤ti≤(i+1)*dt and to 0 

otherwise. Note that since dt is set below the absolute refractory period of ELL pyramidal 

cells which is typically (1–2 ms), there can be at most one spike time within any given bin.

2.9 Burst classification

We used an interspike interval criterion (Oswald et al. 2004; Ellis et al. 2007a; Chacron and 

Bastian 2008; Avila Akerberg et al. 2010) to segregate the spikes that belong to a burst from 

those that don’t. The burst threshold was determined from the autocorrelation function of the 

interspike intervals and was computed individually for each cell as done previously (Bastian 

and Nguyenkim 2001; Chacron and Bastian 2008; Avila Akerberg et al. 2010). Specifically, 

we computed the autocorrelation function from each cell and determined the 99.9% 

confidence interval for a Poisson processes with the same firing rate as the cell in question. 

The burst threshold value was set to the lag at which the autocorrelation function first 

crosses the burst threshold from above (Bastian and Nguyenkim 2001; Chacron and Bastian 

2008; Avila Akerberg et al. 2010). Note that the autocorrelation functions of ELL pyramidal 

cells display strong peaks in the autocorrelation function that are characteristic of burst 

firing (Bastian and Nguyenkim 2001).

2.10 Burst attributes

We quantified bursting by the burst ISI defined as the ISI of the first two spikes of a burst as 

well as the burst length defined by the number of action potentials in a burst. We note that 

defining the burst ISI instead as the ISI between the last two spikes of a burst, as done 

previously (Oswald et al. 2007), does not affect the qualitative nature of our results both in 
vivo (Avila Akerberg et al. 2010) and in vitro (data not shown).

2.11 Stimulus attributes

We tested whether the burst attributes defined above were correlated to the following 

stimulus attributes: the maximum amplitude and the slope. The first is computed as the 

maximum amplitude of the stimulus during the time between the first two spikes of the burst 

whereas the former is computed as the average slope during the burst ISI as done previously 

(Avila Akerberg et al. 2010). We note that qualitatively similar results could be obtained 

when the stimulus amplitude and slope were computed over the full burst duration (data not 

shown). We note that, for the in vivo data, the stimulus waveform was shifted by 8 ms to 

account for axonal transmission delays as done previously (Chacron et al. 2003; Avila 

Akerberg et al. 2010).
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2.12 Mathematical modeling

Our pyramidal cell model contains two compartments and reproduces the main features of 

ELL pyramidal cell burst firing seen in vitro (Doiron et al. 2002; Oswald et al. 2004; Doiron 

et al. 2007). The model consists of somatic and dendritic compartments connected through 

an axial resistance of 1/gc (gc: coupling conductance). Both compartments contain the 

essential spiking currents: fast inward Na+ (INa,s, INa,d) and outward delayed rectifying (Dr) 

K+ (IDr,s, IDr,d), and passive leak currents (Ileak). The presence of spiking currents in the 

dendrite enables the active backpropagation of somatic action potentials required for 

bursting. We also included an NMDA conductance as well as an SK channel in the dendrite 

as done previously to mimic the burst firing in vivo: a full justification of the model 

equations and parameter values can be found elsewhere (Toporikova and Chacron 2009). 

The membrane potentials at the soma, Vs, and the dendrite, Vd, are given by:

where ξ(t) is Gaussian white noise with zero mean and standard deviation unity, D is the 

noise intensity, Istim is a low-pass filtered (8th order Butterworth, 10 Hz cutoff) Gaussian 

noise with zero mean and standard deviation D. Iapp is a constant bias current, gc is the 

coupling conductance, and k is the ratio between the soma area and the total area. The 

currents are given by:

The parameter gX is the maximal conductance (in mS/cm2) of channel X, whereas m is an 

activation gating variable and h, n, and p are inactivation gating variables. Each is described 

by an equation of the form:

where x∞(V) is the infinite conductance curve and τx is the time constant of variable x (x = 

m,h,n, or p). Each infinite conductance curve is modeled as a sigmoid:

The values of gmax, Vx, τx, sx, used in the model for each of the currents are: gc=1 mS/cm2, 

gL=0.18 mS/cm2, gNaS= 55 mS/cm2, gDrS=20 mS/cm2, gNaD=5 mS/cm2, gDrD=15, 
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gNMDA=20 mS/cm2, gSK=10 mS/cm2, VNa=40 mV, VK= −88.5 mV,VCa=70, VL=−70, VmS=

−40 mV, VnS=−40 mV, VmD=−40 mV, VnD=−40 mV, VhD=−52 mV, VpD=−65 mV, τnS=0.39 

ms, τnD=0.9 ms, τhD=1 ms, τpD=5 ms, τs=5 ms, smS=3, snS=3, smD=5, snD=5, shD=−5, spD=

−6, ss=6. Other parameters are: Cm=1 μF/cm2, Iapp=5 μA/cm2. The equations were 

integrated using an Euler algorithm with a time step of 0.0025 ms.

The Ca2+ dynamics are modeled by:

Here [Ca] is the intracellular calcium concentration in μM, fCa=0.03 ms−1 is a constant 

reflecting fraction of bounded to free Ca2+ (Wagner and Keizer 1994), α=0.0055 μM/

(μA/cm2) is the Ca2+ conversion constant, and kex =1 μM−1 is the Ca extrusion ratio (Nowak 

et al. 1984; Mayer and Westbrook 1987; Reynolds and Miller 1990). The model was 

simulated using an Euler-Maruyama integration algorithm (Kloeden and Platen 1999) with 

integration time step dt=0.0025 ms.

3 Results

We investigated the coding of stimulus attributes by bursts both in vivo and in vitro. As such, 

we performed experiments in which burst coding was compared in vivo and in vitro within 

the same ELL segments using stimuli that had the same temporal frequency content. 

Previous studies have shown that ELL pyramidal cells display similar temporal frequency 

tuning to sensory stimulation in vivo and current injection in vitro (Krahe et al. 2008; 

Mehaffey et al. 2008b). Figure 1(a) and (b) show the experimental setups in vitro and in 
vivo, respectively.

3.1 Burst coding observed in vitro is different from that observed in vivo

While we recorded from ELL pyramidal cells in vivo under sensory stimulation (Fig. 1(b)), 

we mimicked sensory stimulation in vitro by intracellular current injection (Fig. 1(a)). Note 

that previous studies have shown that the frequency tuning of pyramidal cells to current 

injection in vitro are similar to those seen to sensory stimuli in vivo across the ELL 

segments (Krahe et al. 2008; Mehaffey et al. 2008a). The mean firing rates obtained from 

our in vivo and in vitro datasets were not significantly different (in vivo: 19.9±11.3 Hz; in 
vitro: 18.5±6.0 Hz; t-test, p=0.53, df=32). We used an interspike interval threshold to 

identify bursts. Specifically, the value of the ISI threshold was chosen to be the lag at which 

the autocorrelation function crosses the 99.9% confidence interval from above as done 

previously (Bastian and Nguyenkim 2001; Chacron and Bastian 2008; Avila Akerberg et al. 

2010). The ISI threshold and autocorrelation function from an example neuron are shown 

under in vitro (Fig. 1(c)) and in vivo conditions (Fig. 1(d)) and were similar in shape. 

Moreover, the burst thresholds obtained in vivo and in vitro were not significantly different 

(in vivo: 11.5±0.85 ms; in vitro: 11.7 ±1.83 ms; t-test, p=0.85, df=32)

We quantified burst attributes by computing the burst ISI (i.e. the ISI between the first two 

spikes of a burst) as well as the burst length (i.e. the number of spikes within the burst) (Fig. 
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1(e)). The stimulus was quantified by its amplitude (i.e. the maximum amplitude that occurs 

during the burst ISI) and slope (i.e. the maximum of the slope within the burst ISI) (Fig. 

1(e)).

Figure 2(a,b) show the correlations between burst and stimulus attributes from two typical 

example pyramidal neurons in vitro and in vivo, respectively. It is seen that, in vitro, there is 

a significant negative correlation between the burst ISI and stimulus amplitude (Fig. 2(a), 

upper left) as well as slope (Fig. 2(a) upper right), which is similar to what was observed 

previously (Oswald et al. 2007). Moreover, there was a significant positive correlation 

between burst length (i.e. the number of spikes in a burst) and stimulus amplitude (Fig. 2(a) 

lower left) as well as slope (Fig. 2(a) lower right). In contrast, correlations between burst and 

stimulus attributes were far less evident in vivo (Fig. 2(b)). Indeed, the correlations between 

the burst ISI and either or stimulus amplitude (Fig. 2(b), upper left) or slope (Fig. 2(b), upper 

right) were significantly less pronounced (Fig. 2(b), upper two panels). Moreover, 

correlations between the burst length and either of stimulus amplitude (Fig. 2(b), lower left) 

or slope (Fig. 2(b), lower right) were also significantly less pronounced (Fig. 2(b), lower two 

panels).

Similar results were seen across our datasets obtained in vivo and in vitro. Indeed, while 

correlation coefficients between burst and stimulus attributes were large in magnitude and 

significant in vitro (Fig. 2(c)), the correlation coefficients between these same burst and 

stimulus attributes were small in magnitude and not significantly different than zero in vivo 
with the exception of the correlation coefficient between burst length and stimulus amplitude 

(Fig. 2(d)).

These results show that differences between burst coding in vivo and in vitro do not result 

from comparing recordings that were performed in different ELL segments or from using 

stimuli with differing temporal frequency content.

Overall, there were no significant correlations between stimulus attributes (i.e. between the 

amplitude and slope) either for in vivo (R=0.08, p=0.29, n=14) or in vitro (R= 0.05, p=0.63, 

n=19) conditions. However, we observed a weak but significant correlation coefficient 

between the burst ISI and burst length for our in vitro data (R=−0.3506, p≪0.01, n=19). This 

correlation was not significant in vivo (R=−0.037, p=0.11, n=14).

Further, we note that defining the burst ISI as the ISI between the last two spikes of a burst, 

as done previously, gives rise to qualitatively similar results both in vivo (Avila Akerberg et 

al. 2010) and in vitro (data not shown). Further, previous studies have shown that using a 

120 Hz cutoff frequency rather than a 10 Hz cutoff as done here gives rise to qualitatively 

similar results in vivo (Avila Akerberg et al. 2010). It is expected that increasing the cutoff 

frequency will decrease the magnitude of correlations between stimulus and burst attributes 

as high frequencies tend to inhibit burst firing (Oswald et al. 2004).

3.2 Modeling differences in burst coding seen in vitro and in vivo

We next tested the hypothesis that the differences in burst coding seen in vitro and in vivo 
are due to differences between burst dynamics as observed in vitro and in vivo. Indeed, 
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bursting in ELL pyramidal neurons is intrinsic and relies on a somatodendritic interaction 

(Turner et al. 1994; Lemon and Turner 2000). Somatic action potentials back-propagate into 

the proximal apical dendrites where they trigger a dendritic spike that propagates back to the 

soma, leading to a depolarizing afterpotential (DAP) and promotes the firing of another 

somatic action potential. This DAP grows in size throughout the burst, which leads to a 

progressive depolarization and a shortening of the inter-spike interval (ISI) throughout the 

burst (Lemon and Turner 2000). The burst terminates with a characteristic doublet when the 

ISI becomes shorter than the dendritic refractory period (Noonan et al. 2003), which leads to 

dendritic failure characterized by the absence of a dendritic spike and terminates the burst. In 

contrast, studies performed in vivo have shown that there was no significant shortening of 

the ISI within burst firing (Bastian and Nguyenkim 2001). Moreover, a recent study found 

that ELL pyramidal cell bursts in vivo did not terminate with dendritic failure under control 

conditions (Toporikova and Chacron 2009). This is because dendritic small conductance 

calcium-activated potassium currents are activated in vivo and give rise to an 

afterhyperpolarization that counteracts the DAP. It turns out that this afterhyperpolarization 

grows at a faster rate than the DAP and can lead to an “early” termination of burst firing (i.e. 

before a dendritic failure) (Toporikova and Chacron 2009).

In order to test the hypothesis that differences between ELL pyramidal cell burst firing seen 

in vivo and in vitro could account for the differences in coding, we computed correlations 

between burst and stimulus attributes in a mathematical model of pyramidal cell burst 

activity in vivo based on the Hodgkin-Huxley formalism (Toporikova and Chacron 2009). 

The model consists of two compartments (one somatic and one dendritic) that each contains 

the necessary membrane conductances to elicit burst firing (Fig. 3(a)). Our results show that 

correlations between burst and stimulus attributes computed from the model when sensory 

stimulation is mimicked by somatic current injection are similar to those obtained in vitro 
(compare Figs. 2(a) and 4(a)). Indeed, a strong negative correlation was observed between 

the burst ISI and stimulus amplitude as well as slope (Fig. 4(a), upper two panels) whereas 

strong positive correlations were observed between the burst length and stimulus amplitude 

as well as slope (Fig. 4 (a), lower two panels). These results strongly speak against the 

hypothesis that differences between burst coding in vivo and in vitro are due to differences 

in burst firing. Moreover, we note that similar results could be obtained by injecting the 

stimulus current into the dendritic compartment (data not shown).

3.3 Increasing the input conductance preserves correlations between burst and stimulus 
attributes in the model

The differences between in vivo and in vitro conditions are well known. Indeed, the intense 

synaptic bombardment in vivo causes neurons to be in a “high-conductance” state (Destexhe 

et al. 2001, 2003). We thus first tested whether increasing the membrane conductance might 

explain the differences in correlations between burst and stimulus attributes observed in vitro 
and in vivo in ELL pyramidal cells. Comparing experimental measurements of the 

membrane time constant in ELL pyramidal cells in vitro (Berman and Maler 1998) and in 
vivo (Toporikova and Chacron 2009) reveals that the time constant in vivo is ~3 fold lower 

than in vitro. We increased the leak conductance gleak 5-fold in our model. Our results show 

that this had negligible effect on correlations between burst and stimulus attributes (compare 
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Fig. 4(a and b)) as quantified by the correlation coefficients (compare Fig. 4(c and d)). These 

results speak strongly against the hypothesis that increased conductance alone can account 

for the differences in correlations between burst and stimulus attributes observed in vitro and 

in vivo in ELL pyramidal cells.

3.4 Increasing variability decreases correlations between burst and stimulus attributes in 
the model

The intense synaptic bombardment in vivo also gives rise to large membrane potential 

fluctuations (Destexhe et al. 2001, 2003). These fluctuations cause increased variability in 

the spiking activity obtained in response to repeated presentations of the same stimulus 

(Stein et al. 2005). Of course, it is expected that such variability will lead to a lowering of 

correlations between stimulus and response attributes, so we specifically tested the following 

hypothesis: are the levels of variability seen in vivo under baseline activity sufficiently high 

to account for the lower correlation between burst and stimulus attributes? We tested this by 

mimicking the fluctuations in the membrane potential by directly injecting noise as well as 

the stimulus in the model’s somatic compartment. Moreover, the noise intensity was 

calibrated such that the variability as quantified by the coefficient of variation (i.e. the 

standard deviation to mean ratio of the ISI distribution) displayed by our model in the 

absence of stimulation was between 0.4 and 0.8, which is within the range observed in vivo 
for the baseline activity (i.e. the activity obtained in the absence of stimulation) of ELL 

pyramidal cells (Bastian and Nguyenkim 2001). Previous theoretical studies have 

investigated the consequences of variability in the baseline activity on information 

transmission (Chacron et al. 2004b; Chacron et al. 2005b, d; Lindner et al. 2005). In 

particular, the power spectrum of the baseline activity can be seen as a “noise spectrum” and 

determines the amount of noise at each frequency during stimulation (Sadeghi et al. 2007). 

As such, a more variable baseline activity will give rise to greater noise power and thus, a 

lower signal-to-noise ratio and information transmission. Previous experimental studies have 

shown that ELL pyramidal cells with higher baseline variability tended to transmit lower 

amounts of information than ELL pyramidal cells with lower baseline variability, and that 

this was due to increased trial-to-trial variability in the former (Chacron 2006). As such, we 

expect that the noise injected will provide an accurate mimic of the levels of uncorrelated 

noise present under in vivo conditions during stimulation.

Our results show that adding such noise leads to a lowering in magnitude of the correlation 

coefficients between burst and stimulus attributes (compare Fig. 5 (a and b)). Indeed, 

correlations between the burst ISI and the stimulus amplitude (compare Fig. 5(a and b), 

upper left) and slope (compare Fig. 5(a and b), upper right) were rendered non significant 

while those between the burst length and stimulus amplitude (compare Fig. 5(a and b), lower 

left) and slope (compare Fig. 5(a and b), lower right) were also weakened in magnitude.

The effects of noise on correlations between burst and stimulus attributes are further seen in 

Fig. 6 where the correlation coefficients between burst and stimulus attributes are plotted as 

a function of noise intensity. Our model therefore predicts that the variability displayed by 

ELL pyramidal neurons in their baseline activities in vivo can account for the low magnitude 

of correlation coefficients between burst and stimulus attributes. We note that similar results 
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were obtained when the noise was injected in the dendritic compartment as well as when we 

used white noise rather than colored noise (data not shown).

3.5 Verifying the model’s prediction: noise injection in vitro

Our modeling results predict that increased variability under in vivo conditions can account 

for the differences in burst coding properties observed in vitro and in vivo in ELL pyramidal 

neurons. Since it is not possible to “remove” the variability seen in vivo, we instead injected 

a noisy current through the recording electrode in vitro (Fig. 7(a)). We then systematically 

varied the relative strength of the noise compared to that of the signal. Our results show that 

this injection leads to a lowering in magnitude of the correlations between burst and stimulus 

attributes in an example neuron (compare Fig. 8(a,b)). Indeed, when the noise intensity is 

null, the correlation coefficients between the burst ISI and the stimulus amplitude (Fig. 8(a), 

upper left) and slope (Fig. 8(a), upper right) were strong and negative. Moreover, the 

correlation coefficients between the burst length and the stimulus amplitude (Fig. 8(a), lower 

left) and slope (Fig. 8(a), lower right) were strong and positive. However, when the noise 

reaches a similar intensity as the stimulus current, which is needed in order to reproduce the 

variability seen in vivo in ELL pyramidal cells, the correlations between burst and stimulus 

attributes decrease in magnitude (Fig. 8(b)). Indeed, we observed weak if at all significant 

correlations between the burst ISI and either of stimulus amplitude (Fig. 8(b), upper left) or 

slope (Fig. 8(b), upper right). Moreover, correlation coefficients between the burst length 

and either of stimulus amplitude (Fig. 8(b), lower left) or slope (Fig. 8(b), lower right) were 

considerably weaker in magnitude. Similar trends were seen across our dataset. While the 

correlation coefficients between burst and stimulus attributes with no noise injected were all 

strong in magnitude and significant (Fig. 8(c)), these same correlation coefficients were 

weak and not significantly difference from zero when noise was injected (Fig. 8(d)). Our 

experimental results show that the magnitude of the correlation coefficients between burst 

and stimulus attributes decreases as a function of the noise intensity (Fig. 9), as predicted by 

our model (compare Fig. 9 with Fig. 6).

4 Discussion

4.1 Summary of results

Previous studies performed in vitro in ELL pyramidal cells support the notion that bursts can 

carry information about the stimulus in their temporal structure as they have shown the 

presence of strong correlations between burst and stimulus attributes (Oswald et al. 2007). 

However, our previous study from the same cells in vivo did not find such correlations 

(Avila Akerberg et al. 2010). In order to better understand the causes for this difference, we 

investigated burst coding in ELL pyramidal cells using a combination of in vitro, in vivo 
electrophysiology, as well as mathematical modeling. We first showed that differences in 

correlations between burst and stimulus attributes were not attributable to the fact that 

previous in vivo and in vitro recordings were made from different ELL segments. Indeed, 

our experimental data gathered in vitro from the lateral and centro-lateral segments showed 

strong correlations that were similar to those reported previously for pyramidal cells within 

the centromedial segment (Oswald et al. 2007). We then tested whether this difference could 

be attributed to differences in burst firing seen in vitro and in vivo in ELL pyramidal cells 
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(Bastian and Nguyenkim 2001; Toporikova and Chacron 2009). To do so, we simulated a 

previously developed biophysical model of ELL pyramidal cell bursting in vivo to somatic 

current injection mimicking the experiments done in vitro. Our results show that this model 

reproduced the correlations between burst and stimulus attributes seen in our in vitro data. 

Therefore, differences in correlations between burst and stimulus attributes seen in vivo and 

in vitro are most likely not due to differences between bursting seen in vitro and in vivo. We 

next hypothesized that these differences were due to the massive synaptic bombardment 

experienced by neurons in vivo (Destexhe et al. 2001, 2003), which contributes to both 

increased conductance and variability in spiking activity due to large membrane potential 

fluctuations (Stein et al. 2005). To test this hypothesis, we increased the leak conductance 

and introduced a noise source that was uncorrelated with the stimulus in our model. Our 

results showed that increasing the leak conductance had negligible effect on the correlations 

between burst and stimulus attributes. However, increasing the noise intensity in order to 

match the variability seen in vivo in ELL pyramidal cells under baseline activity strongly 

decreased the magnitude of correlations between burst and stimulus attributes to levels that 

matched those seen experimentally in vivo. As such, our model predicted that the variability 

in the baseline activity seen under in vivo conditions could account for the differences in 

correlation between burst and stimulus attributes as observed in vitro and in vivo in ELL 

pyramidal neurons. In order to test this prediction, we injected both noise and stimulus 

currents in vitro and found that this led to a decrease in the magnitude of correlations 

between burst and stimulus attributes, as predicted from our model. Furthermore, noise 

intensities that could reproduce the variability seen in vivo in ELL pyramidal cells gave rise 

to correlation coefficients between burst and stimulus attributes whose values were similar to 

those seen experimentally in vivo. Our results therefore show that the variability induced by 

synaptic bombardment in vivo is sufficient to eliminate correlations between burst and 

stimulus attributes in ELL pyramidal neurons.

4.2 Do bursts contain information about sensory stimuli in their structure?

Previous results obtained in vitro in ELL pyramidal cells have shown that the burst ISI was 

strongly negatively correlated with both the stimulus amplitude and the stimulus slope 

(Oswald et al. 2007). As a consequence, Oswald et al. (2007) showed that an ideal observer 

could distinguish different stimulus amplitudes using the amount of time between two 

consecutive spikes within a burst. As the value of the burst ISI was typically <10 ms and the 

time scales associated with the stimulus were in that study were greater than 16 ms, they 

showed that information about the stimulus is contained in the structure of the burst at time 

scales that are smaller than those contained in the stimulus, which constitutes a temporal 

code by definition (Theunissen and Miller 1995; Dayan and Abbott 2001; Jones et al. 2004; 

Sadeghi et al. 2007). Our previous results obtained in vivo did not find such strong 

correlations between burst and stimulus attributes (Avila Akerberg et al. 2010). In particular, 

the correlation coefficients between the burst ISI and either of the stimulus amplitude or 

slope were not significantly different than zero. It is therefore unlikely that the interval code 

in bursts proposed by Oswald et al. (2007) is present in ELL pyramidal neurons under in 
vivo conditions.
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Our results instead support the notion that bursts in ELL pyramidal neurons are produced 

primarily to signal the presence of particular features in the sensory environment rather than 

carry information about their details (i.e. feature detection) (Gabbiani and Koch 1996; 

Metzner et al. 1998; Sherman 2001; Sherman and Guillery 2002). This is because the 

correlation coefficients between burst and stimulus attributes were weak and non-significant 

for the most part. In fact, only the number of spikes within the burst (i.e. the burst length) 

was weakly but significantly correlated with the stimulus amplitude in vivo. This suggests a 

code in which bursts of larger length are more likely to be elicited by stimuli with larger 

amplitudes. This is consistent with the proposed functional role of feature detection by 

bursts as bursts of larger length are more likely to overcome synaptic unreliability and thus 

to be transmitted to higher brain centers (Lisman 1997).

4.3 Burst dynamics and coding

Burst firing is seen ubiquitously in the central nervous system and can be caused by a 

multitude of intrinsic and network mechanisms (Rinzel 1987; Wang and Rinzel 1995; 

Izhikevich 2000; Doiron et al. 2002). As such, an important question pertains to whether 

differences in the mechanisms that give rise to burst firing can also give rise to differences in 

sensory coding. This question has been investigated in part. Indeed, a previous modeling 

study using a minimal model of a Hippocampal pyramidal neuron has shown burst duration 

coding in the form of a positive correlation between stimulus slope and burst length (Kepecs 

et al. 2002). This is consistent with experimental results showing correlations between the 

burst length and stimulus attributes such as orientation (DeBusk et al. 1997; Martinez-Conde 

et al. 2002), velocity (Arganda et al. 2007), luminance (Gaudry and Reinagel 2008), and 

sound (Eyherabide et al. 2008; Marsat and Pollack 2010). While our modeling results and in 
vitro data also show a positive correlation between stimulus slope and burst length for ELL 

pyramidal neurons, our results suggest that the weak correlation between burst length and 

stimulus amplitude can be accounted by the high variability displayed by ELL neurons in 

vivo. We note however that our results in no way rule out the possibility that such 

correlations might be present in other systems. Moreover, our results do not rule out the 

possibility that burst attributes in ELL pyramidal neurons code for stimulus attributes that 

are different than those considered here such as stimulus phase (Samengo and Montemurro 

2010) or negative deflections preceding the burst (Gaudry and Reinagel 2008), or for 

nonlinear correlations between burst and stimulus attributes. Further studies are needed to 

address these important questions.

It is well known that the high conductance state of neurons in vivo can have a dramatic 

influence on their responses to input (Destexhe and Paré 1999; Destexhe et al. 2003). In 

particular, this synaptic bombardment increases the subthreshold membrane conductance as 

well as the variability in the spiking activity. Our results suggest that it is the latter that plays 

the largest role in determining burst coding as we were able to reproduce the correlations 

between burst and stimulus attributes seen in vivo by simply injecting current noise in vitro. 

We however note that our results provide only a potential explanation of the differences in 

correlations between burst and stimulus attributes in ELL pyramidal neurons under in vivo 
and in vitro conditions and that other mechanisms (e.g. involving changes) might account for 

these differences. Indeed, it is known that in vivo conditions can have a strong influence on 
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the generation of bursts of action potentials in the electrosensory system (Toporikova and 

Chacron 2009) as well as in other systems (Wolfart et al. 2005). While our modeling and in 
vitro experimental results suggest that these differences do not qualitatively affect 

correlations between burst and stimulus attributes in the former, further experimental studies 

performed in vivo are needed to verify this prediction.

4.4 Role of variability in neural coding

While it is undeniable that neurons display trial-to-trial variability in their responses to 

repeated presentations of the same stimulus (Dean 1981; Tolhurst et al. 1983; Mainen and 

Sejnowski 1995) and that this variability originates largely from synaptic input from other 

neurons (Stein et al. 2005), the role of this variability in neural coding is still a matter of 

debate. Is it merely a source of noise that should be averaged away or does it permit neurons 

to transmit extra information? Our results are mostly consistent with the former hypothesis. 

However, we note that our results were obtained using single neuron recordings and that 

different conclusions could be drawn when looking at coding by populations of neurons. 

Indeed, multi-unit recordings from ELL pyramidal neurons in vivo have revealed that bursts 

tend to occur in synchrony in neighboring cells (Chacron and Bastian 2008). Further studies 

should focus on population coding in order to determine the functional role of bursts in the 

ELL in vivo and are beyond the scope of this study. We nevertheless note that bursts from 

ELL pyramidal cells appear to be a behaviorally relevant signal as midbrain neurons that 

receive direct synaptic input from ELL pyramidal cells respond selectively to these (Fortune 

and Rose 1997). This is supported by recent studies showing that ELL pyramidal neurons 

respond to communication stimuli with bursts of action potentials (Marsat et al. 2009; 

Marsat and Maler 2010). Further studies are needed to investigate potential correlations 

between burst and communication stimuli attributes and their role in mediating behavior. 

This is an important question as bursts have been shown to be relevant in mediating escape 

behavior (Marsat and Pollack 2006).

4.5 Conclusion

Our results show that the high variability of neurons in vivo can be highly detrimental to 

information coding by burst structure in single neurons. They suggest that information is 

solely contained in the occurrence of a burst in ELL pyramidal neurons and support the 

notion that bursts can be treated as a single unit of information (Izhikevich et al. 2003).
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Fig. 1. 
Experimental methods. (a): In vitro experimental set up. Sharp intracellular recordings were 

taken from pyramidal cells in ELL slices. The input consisted of a low-pass filtered 

Gaussian white noise (0–10 Hz 8th order Butterworth) that was injected as a current through 

the recording electrode. (b): In vivo experimental set up. The fish is stimulated via a small 

dipole located close to the fish’s skin. Extracellular recordings were taken from ELL 

pyramidal cells. (c): Spike train autocorrelation function from in vitro data showing the burst 

threshold. (d): Spike train autocorrelation function from in vivo data showing the burst 

threshold. Note the similarity between the autocorrelation functions obtained from in vitro 
and in vivo data. (e): Burst and stimulus attributes. The burst attributes are the burst length 

and burst ISI while the stimulus attributes are the average slope and maximum amplitude 

reached during the first ISI of the burst
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Fig. 2. 
Burst coding is different in vitro and in vivo. (a): Plots of burst attributes versus stimulus 

attributes in vitro. The panels show the: burst ISI vs. amplitude, upper left; burst ISI vs. 

slope, upper right; burst length vs. amplitude, lower left; burst length vs. slope, lower right. 

(b): plots bursts attributes versus stimulus attributes in vivo. The panels show the: burst ISI 

vs. amplitude, upper left; burst ISI vs. slope, upper right; burst length vs. amplitude, lower 

left; burst length vs. slope, lower right. (c): in vitro population averages (n=6) of the 

correlation coefficients for each of the plots in panel A. (d): in vivo population averages 

(n=13) of the correlation coefficients for each of the plots in panel B. “*” indicates statistical 

significance at the P=0.01 level using a signrank test
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Fig. 3. 
Schematic of the two-compartmental bursting model. Our model consists of two 

compartments that are coupled with a resistance. The somatic compartment contains leak 

(IL), spiking sodium (INaS), and delayed rectifier potassium (IDrS) currents. The dendritic 

compartment contains leak (IL), spiking sodium (INaD), delayed rectifier potassium (IDrD), 

NMDA (INMDA), and small conductance calcium-activated potassium (ISK) currents. The 

model is fed with an input that consists of a stimulus current (low-pass, 0–10 Hz, filtered 

Gaussian white noise) and a noisy current
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Fig. 4. 
Effects of the membrane resistance on correlations between burst and stimulus attributes. 

(a): plots of burst attributes versus stimulus attributes for low leak conductance. The plots 

are: burst ISI vs. amplitude, upper left; burst ISI vs. slope, upper right; burst length vs. 

amplitude, lower left; burst length vs. slope, lower right. (b): plots of bursts attributes versus 

stimulus attributes for high leak conductance. The plots are: burst ISI vs. amplitude, upper 

left; burst ISI vs. slope, upper right; burst length vs. amplitude, lower left; burst length vs. 

slope, lower right. (c): ensemble averages over 10 stimulus presentations without noise of 

the correlation coefficients for each of the plots in panel A. (d): ensemble averages over 10 

presentations of the stimulus presentations with a different realization of the noise of the 

correlation coefficients for each of the plots in panel B. “*” indicates statistical significance 

at the P=0.01 level using a signrank test
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Fig. 5. 
Our model of in vivo burst dynamics reproduces experimental results obtained in vitro. (a): 

plots of burst attributes versus stimulus attributes without noise injection. The plots are: 

burst ISI vs. amplitude, upper left; burst ISI vs. slope, upper right; burst length vs. 

amplitude, lower left; burst length vs. slope, lower right. (b): plots of bursts attributes versus 

stimulus attributes with noise injection. The plots are: burst ISI vs. amplitude, upper left; 

burst ISI vs. slope, upper right; burst length vs. amplitude, lower left; burst length vs. slope, 

lower right. (c): ensemble averages over 10 stimulus presentations without noise of the 

correlation coefficients for each of the plots in panel A. (d): ensemble averages over 10 

presentations of the stimulus presentations with a different realization of the noise of the 

correlation coefficients for each of the plots in panel B. “*” indicates statistical significance 

at the P=0.01 level using a signrank test
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Fig. 6. 
Injecting a noisy current to the model cells reduces the magnitude of the correlation 

coefficients between burst and stimulus attributes. Shown are the different correlation 

coefficients as a function of noise intensity: burst length vs. stimulus amplitude (gray solid 
dots), burst length vs. stimulus slope (black open circles), burst ISI vs. stimulus amplitude 

(gray stars) and burst ISI vs. stimulus slope (black open triangles). Each point represents an 

average over 10 realizations of the stimulus and noise waveforms
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Fig. 7. 
Experimental representation of adding a noise current to the stimulus in an in vitro setup. 

The cells were stimulated via an electrode and the input consisted of a time varying signal 

and a noisy current. The output spike train sequence was recorded through the same 

electrode
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Fig. 8. 
Injecting a noise current in vitro is detrimental to correlations between burst and stimulus 

attributes. (a): plots of burst vs. stimulus attributes for an example pyramidal cell without 

noise injection. The panels show: burst ISI vs. amplitude, upper left; burst ISI vs. slope, 

upper right; burst length vs. amplitude, lower left; burst length vs. slope, lower right. (b): 

plots of bursts attributes versus stimulus attributes for an example cell with noise injection. 

The panels show: burst ISI vs. amplitude, upper left; burst ISI vs. slope, upper right; burst 

length vs. amplitude, lower left; burst length vs. slope, lower right. (c): Population averages 

(n=6) of the correlation coefficients without noise injection for each of the plots in panel A. 

(d): population averages (n=6) of the correlation coefficients for each of the plots in panel B. 

“*” indicates statistical significance at the P= 0.01 level using a signrank test
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Fig. 9. 
Plot of the correlation coefficients between burst and stimulus attributes as a function of 

noise intensity obtained experimentally in vitro. Shown are the correlation coefficients 

between burst length vs stimulus amplitude (gray solid dots), burst length vs stimulus slope 

(black open circles), burst ISI vs stimulus amplitude (gray stars) and burst ISI vs stimulus 

slope (black open triangles)
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