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Abstract

Many neurons display intrinsic interspike interval correlations in their spike trains. However, the 

effects of such correlations on information transmission in neural populations are not well 

understood. We quantified signal processing using linear response theory supported by numerical 

simulations in networks composed of two different models: One model generates a renewal 

process where interspike intervals are not correlated while the other generates a nonrenewal 

process where subsequent interspike intervals are negatively correlated. Our results show that the 

fractional rate of increase in information rate as a function of network size and stimulus intensity 

is lower for the nonrenewal model than for the renewal one. We show that this is mostly due to the 

lower amount of effective noise in the nonrenewal model. We also show the surprising result that 

coupling has opposite effects in renewal and nonrenewal networks: Excitatory (inhibitory 

coupling) will decrease (increase) the information rate in renewal networks while inhibitory 

(excitatory coupling) will decrease (increase) the information rate in nonrenewal networks. We 

discuss these results and their applicability to other classes of excitable systems.

I. INTRODUCTION

The study of excitable systems has applications in various fields such as semiconductor 

physics, laser physics, photodetection, and neural spike trains [1]. In particular, studying 

models of spike train generation in neurons is critical for our understanding of their 

information transmission properties which is complicated by the fact that neurons will 

display variability to repeated presentations of the same stimulus [2]. The role of this noise 

is still unclear. On the one hand, noise can be used to enhance information transmission 

about relevant stimuli through stochastic resonance [3] where the output signal-to-noise ratio 

displays a maximum as a function of the noise intensity. At the single neuron level, 

stochastic resonance is exclusively seen in the subthreshold regime and noise can thus only 

degrade information transmission in the suprathreshold regime. From this point of view, 

noise should be minimized in order to improve information transmission.
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Our understanding of information transmission by neurons is also complicated by the fact 

that many neurons display intrinsic dynamics such as bursting [4], oscillations [5], and 

correlations between successive interspike intervals [6,7]. In the case of intrinsic interspike 

interval correlations, it was shown through numerical simulations that they could enhance 

information transmission at the single neuron level [8]. Recent theoretical studies [9,10] 

have shown that this enhancement in information transmission occurred via noise shaping: a 

process in which noise power is shifted from one frequency range to another thereby 

improving signal transmission in the former frequency range. Noise shaping was originally 

proposed in the context of σ-δ modulators [11] and is thought to be used in the brain [12].

While noise shaping can occur at the individual neuron level, it can also be an emergent 

property of neural networks with inhibitory coupling [13]. As such, it is not clear how 

coupling neurons that display noise shaping at the individual level will affect their 

information transmission properties. We investigated the information transmission in neural 

networks composed of neurons that display noise shaping (non-renewal) when considered in 

isolation and compared these to neural networks where the neurons displayed no noise 

shaping (renewal). The paper is organized as follows. We first present the models in Sec. II. 

In Sec. III we present theoretical calculations based on linear response theory [14] for the 

information transmission [15] of neural networks [16]. We then explore in Sec. IV the role 

of network size and noise intensity. Finally, we explore how coupling affects information 

transmission for networks composed of renewal and nonrenewal neurons. We then discuss 

the potential implications of our results.

II. THE MODELS

A. Renewal versus nonrenewal models

Both the renewal and nonrenewal models are perfect integrators of the input and the 

observable output v (e.g., the membrane voltage) is given by [9,10]

(1)

where μ is a positive bias current and s(t) is the time-dependent stimulus. Whenever v 
reaches a threshold θ, an action potential is said to have occurred and v is reset to a value 

θR. After each firing, a new value for θ is drawn from a uniform distribution [θ0 − D, θ0 + 

D]. As such, a nonzero value of D will lead to variability in the firing sequence. The main 

difference between the models is the reset rule. In the nonrenewal model, also referred as 

model A, v is decreased by a fixed amount θ0 immediately after an action potential (i.e., θR 

= θ − θ0). This will lead to a uniform distribution of reset values in the interval [−D,D]. With 

this, the mean interspike interval (ISI) will be given by 〈I〉 =θ0/μ or, equivalently, a 

stationary firing rate

(2)

Åkerberg and Chacron Page 2

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



It can be shown that the threshold value θ and the subsequent reset value θR are perfectly 

correlated by the reset rule, thereby correlating successive interspike intervals in the absence 

of a signal [9,10].

On the other hand, in the renewal model, also referred to as model B, the voltage v is reset to 

θR with θR drawn independently from the uniform distribution [−D,D] after each firing. In 

this way, since both the threshold and reset values are completely independent, successive 

interspike intervals will not be correlated. We note that model B will be more random than 

model A as the former requires that two random numbers be generated after each firing 

whereas the latter only requires one [10].

Both models A and B share the same first order statistics of threshold and reset values and 

therefore the first order statistics will be the same, such as the stationary firing rate r0 given 

by Eq. (2). We take the output of the neuron to be a train of δ functions centered on the 

times at which action potentials occur:

(3)

B. Network architecture

The neuron models described previously are then coupled with the membrane voltage v of 

the ith neuron vi is given by

(4)

where μi is the bias current for neuron i,  is the mth spike of neuron j, and Mj(t) is the 

spike count (i.e., the total number of action potentials) fired by neuron j at time t. Kij 

represents the coupling strength between neurons j and i and γ(t) is the post-synaptic 

potential waveform given by

(5)

where Θ(t) is the Heaviside function and τs determines the rate of decay. Throughout this 

study we will consider the case of homogeneous networks such that Kij = K and μi = μ.

III. THEORY OF SIGNAL TRANSMISSION BY NETWORKS OF RENEWAL 

AND NONRENEWAL NEURONS

In this section we derive an analytical expression for the mutual information between the 

input s(t) and the output of the network which we define as the average activity X(t):

Åkerberg and Chacron Page 3

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



(6)

Throughout this study, we will take that s(t) is zero mean Gaussian white noise and spectral 

height α that is low-pass filtered by an eighth-order Butterworth filter at cutoff frequency fC.

A. Information theory

Information theory was first developed by Shannon [17] in the context of communications 

systems and has become a standard measure to characterize information transmission by 

excitable systems [15,18,19]. For systems driven by a stimulus with a Gaussian probability 

distribution, a lower bound on the rate of information transmission has been derived and this 

lower bound is exact for a linear system [15,18]

(7)

where the signal to noise ratio is related to the coherence by

(8)

and the coherence function C(f) is given by

(9)

where PXX(f) =〈|X̂(f)|2〉 is the power spectrum of the averaged network activity X(t), Pss(f) =
〈|ŝt(f)|2〉 is the power spectrum of the stimulus s(t), and PXs(f) is the cross spectrum between 

the average network activity X(t) and the stimulus s(t).

B. Linear response theory

Linear response theory [14] assumes that both the stimulus s(t) as well as the activity of 

other neurons in the network are perturbations of the baseline activity of the single neuron 

x0i(t) given by setting Kij =0 and s(t) =0. Thus, we have

(10)

where γ̂(f) is the Fourier transform of γ(t) given by
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(11)

and χ(f) is the susceptibility. Previous studies have found that the susceptibility of models A 

and B are equal and given by [9,10]

(12)

We note that Eq. (10) is only valid for small values of K and s(f).

By averaging both sides of Eq. (10) and isolating for X̂(f) we obtain

(13)

The power spectrum of the network activity can thus be obtained by computing 〈X̂X̂★〉, 
where the average 〈···〉 is performed over realizations. By substituting Eqs. (11) and (12) into 

Eq. (13) and performing the averaging we get

(14)

where P00(f) = 〈|x̂0|2〉 is the baseline spectrum of a single neuron which is given by [9,10]

(15)

(16)

(17)

where β=2πd/μ.

The cross-spectrum can be found by evaluating PXs(f) = 〈X̂ŝ★〉:
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(18)

and the coherence is given by

(19)

substituting Eq. (14) into Eq. (19) gives

(20)

where P00(f) = P00A(f) or P00B(f). Which is then used in Eqs. (7) and (8) to evaluate the 

mutual information rate MI.

As in previous studies [16,20], we decompose the input from other neurons into constant and 

time-dependent components. The constant part gives a net bias current μ′ given by

(21)

substituting r0(μ′) = μ′/θ0 and solving for μ′ gives

(22)

which is then used in the theoretical expressions (15) and (16).

IV. RESULTS

A. Renewal versus nonrenewal networks

We first compare the baseline [i.e., s(t) =0 and K=0] power spectra of the two models for 

N=1. Figure 1 shows the power spectrum of the baseline activity of both renewal and 

nonrenewal single neurons which are similar to those found in previous studies [9,10]. We 

note two important differences between the curves: (1) the power spectrum of the 

nonrenewal neuron model approaches 0 as f → 0 whereas the power spectrum of the 

renewal neuron model tends towards a nonzero positive value; (2) the peaks in the power 

spectrum of the nonnenewal neuron are sharper than those of the renewal neuron. Both 

observations (1) and (2) stem from the fact that successive ISIs are negatively correlated in 

the non-renewal neuron whereas they are uncorrelated in the renewal neuron [9,10]. The 

power spectrum at f =0 is related to the coefficient of variation and the ISI correlation 
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coefficients by  [21] where 〈I〉 is the mean interspike interval and the 

coefficient of variation  is the same for both models since they have identical ISI 

distributions and ρi =0 for i>1 for both models [9,10]. The only difference is that ρ1 =−0.5 

for the nonrenewal model and ρ1 =0 for the renewal model which gives

(23)

(24)

Parameter values for the numerical simulations where chosen such as to give baseline firing 

rates r0 ≈ 100 which was inspired by the firing rates (in Hz) of neurons that tend to display 

negative ISI correlations experimentally [8,22]. We varied K and used large values in our 

numerical simulations in order to test the limits of the linear response theory that we 

presented above.

B. Network size

We first explored the effects of increasing the network size N in networks of uncoupled 

renewal and nonrenewal neurons receiving common input. Figure 2 shows the coherence of 

the networks for a stimulus with fC =10 as the network size N is varied. It is seen that the 

coherence increases as a function of the number of neurons in the network for both models. 

However, there are qualitative differences: Whereas in the renewal model the coherence has 

a constant value in the frequency range [0, fC], for the nonrenewal populations the coherence 

has a fixed value of 1 at f =0 and decreases monotonically for f>0. These differences are due 

to the differing baseline power spectra [9,10]: In the absence of any stimulus, the baseline 

power spectrum in Fig. 1 can be thought as the power carried by the intrinsic noise of the 

neurons. When the stimulus is added, the coherence between the stimulus and the response 

can be computed as in Eq. (20) which shows that the coherence is related to the inverse of 

the power spectrum of a single neuron. As such, since the baseline power spectrum of model 

A goes to zero as f → 0, the coherence of the network activity for model A at f =0 is thus 

one according to Eq. (20).

We then computed the mutual information from the coherence function using Eq. (7). 

Although networks of nonrenewal neurons had larger mutual information rate than networks 

of renewal neurons, there were differences in the rate at which this quantity increases as a 

function of network size. The range at which this is more evident is from 1 to 25 neurons 

where the rate is higher for the nonrenewal neurons that for the renewal ones. After 25 

neurons, the rate of increase appears to be the same for both models. However, the fractional 

increase of MI which stands for MI normalized to its value with one neuron is greater for the 

renewal network than for the nonrenewal network Fig. 3. We shall return to these differences 

later when we investigate the effects of the noise intensity D.
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C. Internal noise intensity

We now explain the qualitative differences in the variation of the mutual information rate MI 

as a function of network size N and stimulus intensity I seen in renewal and nonrenewal 

networks. Specifically, we hypothesize that these differences are primarily due to a lower 

effective noise in the nonrenewal model. Thus, we explore the effect of varying the amount 

of intrinsic noise as set by the noise intensity D on the information transmission properties 

of renewal and nonrenewal networks.

1. Suprathreshold stochastic resonance—First we computed the mutual information 

rate MI as a function of the noise intensity D for networks with different sizes. Figures 4(a) 

and 4(b) show MI as a function of internal noise intensity for renewal and nonrenewal 

networks, respectively. The symbols represent numerical simulations and the dashed line the 

theoretical results. There is a disagreement between theory and simulations for low values of 

noise intensity. While the theory predicts that MI should decrease monotonically as a 

function of noise intensity, the simulations show that MI reaches a maximum value at D≠0. 

The behavior of both models is similar. When D=0, MI has the same value independent of 

the model chosen as both models have completely similar dynamics. When increasing D, MI 

increases and reaches a maximum value for a nonzero value of D after which it 

monotonically decreases. The maximum value of MI is dependent on network size N as well 

as the model used. For networks with higher number of neurons, MI is higher and its 

maximum is achieved at higher values of D. Using the same parameters in both models, MI 

of the renewal model reaches a maximum for lower values of D [Fig. 4(a), inset] as 

compared to the nonrenewal model.

The resonance in the mutual information as a function of noise intensity is a phenomenon 

previously described as suprathreshold stochastic resonance [23] which is only observed in 

population of two or more excitable systems. We note that this phenomenon cannot be 

explained with linear response theory which predicts an infinite mutual information for zero 

noise intensity.

2. Effective noise intensity—The dependence on noise intensity D of the mutual 

information rate MI is qualitatively similar for both models except that the maximum in 

information is achieved for lower values of D for the renewal model (Fig. 4). This suggests 

that both models should behave the same way if we scale the value of D appropriately in 

order to have the same effective noise intensity. In order to test this, we computed MI as a 

function of network size N and stimulus intensity I for different values of D (data not 

shown). It was found empirically that for a certain relation of the noise intensity of both 

models, the information transmission behaves in a similar fashion as seen below. Namely, 

there exists a number a such that Dn = aDr where Dn is the noise intensity of the nonrenewal 

model and Dr of the renewal model for which MI as a function of stimulus intensity and 

network size N agree for both models, for the parameters used throughout this study we 

found that a=4.44.

Figures 5(a) and 5(b) show the mutual information rate MI as a function of network size N 
and stimulus intensity I, respectively. With the parameter values chosen as in Fig. 2 and by 
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suitable values of Dr and Dn MI, the mutual information rate MI behaves in a quantitatively 

similar manner as a function of both stimulus intensity and network size for both models. As 

such, the qualitative differences seen previously were primarily due to differences in the 

effective noise in the models at frequencies for which the stimulus has power.

D. Excitatory and inhibitory coupling

We now explore the effects of coupling in both networks by varying the coupling strength K. 

It was shown by Mar et al. [13] that introducing inhibitory coupling in the network can give 

rise to noise shaping and thereby increase the signal-to-noise ratio.

The effect of varying the amount of coupling K can be seen in Fig. 6. Figures 6(a) and 6(b) 

show the mutual information rate as a function of coupling for nonrenewal and renewal 

networks, respectively. It can be seen that MI decreases as a function of increasing K for the 

renewal network. Surprisingly, the behavior for the nonrenewal network is opposite: MI 

increases for increasing K. The absolute values of MI are greater for the nonrenewal than for 

the renewal network. In order to make a clear comparison between both models, MI was 

normalized to its value at K=0. Figure 6(c) shows the normalized MI for both models. The 

theory (dashed lines) predicts the behavior seen in the simulations. However, the theory best 

predicts the simulations for values of K close to zero. For larger K, nonlinear effects take 

place and the agreement between simulations and theory becomes only qualitative with the 

theory overestimating the numerical values of mutual information. This overestimation of 

information rate by linear response theory has been seen previously [16].

It is possible that this qualitatively different behavior is due to the different effective noise 

intensities in both models. As such, we scaled the values of Dr and Dn as done previously 

and compared the effects of coupling. Figure 7 shows the mutual information rate MI as a 

function of coupling strength K for both model and is qualitatively similar to Fig. 6(c). MI 

for the renewal model decreases as K is increased. On the contrary, MI for the nonrenewal 

model increases as K increases up to a certain value (K ≈ 1500) after which it decreases. 

The theory predicts the behavior of both models for a region close to K=0 where nonlinear 

effects are not too large. The drop of MI for the nonrenewal model is not predicted by the 

theory and is most probably due to strong nonlinear synchronization for large positive values 

of coupling strength K. However, our results show that the opposite effects of coupling 

persist even when both models have similar effective noise values in a neighborhood of K=0.

We now explain this counterintuitive result: Direct examination of the expression for the 

coherence C(f) shows that the only difference between the models is the baseline power 

spectrum P00(f) as seen from inspection of Eq. (20). We furthermore note that coupling will 

introduce changes in the effective value of the bias current μ used in the theory which are 

due to the changes in firing rate that are caused by coupling as explained above. Moreover, 

the power spectrum of a single neuron [Eqs. (16) and (15)] is a function of μ for both 

renewal and nonrenewal models. As such, we explored the effects of varying the baseline 

firing rate r0=μ/θ0 on the power spectra of single isolated renewal and nonrenewal models 

while keeping θ0 constant.
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Figures 8(a) and 8(b) show the power spectra of single renewal and nonrenewal neurons, 

respectively. An increase (decrease) in firing rate would correspond to positive (negative) 

coupling. For the renewal neuron it can be seen that as the firing rate increases the power 

spectrum also increases. The situation for the nonrenewal neurons is exactly opposite: as the 

firing rate increases the power spectrum decreases. This explains why the mutual 

information is greater for the nonrenewal network when introducing positive coupling as 

compared to an uncoupled network or equivalently the mutual information increasing when 

a negative coupling is introduced in a network of renewal neurons.

We now turn our attention towards the differential behavior of the baseline power spectra of 

each model as μ is increased. In order to better understand the behavior of each spectrum at 

low frequencies we performed Taylor series expansions of Eqs. (15) and (16) around f=0 and 

obtained

(25)

(26)

(27)

(28)

(29)

Figure 9 shows GA,B(μ) and HA,B(μ) as a function of μ. The zeroth order term of the renewal 

model increases linearly with μ, whereas the zeroth order term of the nonrenewal model is 

zero. In both models the second order terms decay as 1/μ. For the renewal model, the 

behavior of the baseline power spectrum near f=0 is dominated by the zeroth order term 

GB(μ) which increases linearly with μ. For the nonrenewal model, the behavior of the 

baseline power spectrum near f=0 is dominated instead by the second order term HA(μ) 

which decreases as 1/μ since GA(μ)=0. This explains the results of Fig. 8.
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V. DISCUSSION

We have compared information transmission in networks of renewal and nonrenewal 

neurons. Our results show theoretically and through numerical simulations that both 

networks will behave in a similar manner when stimulus intensity, network size, and cutoff 

frequency are varied although the fractional increase in mutual information rate was higher 

for the renewal network. Both networks were shown to display suprathreshold stochastic 

resonance when the noise intensity was varied although the maximum for the renewal 

network was obtained for a lower noise intensity than the nonrenewal network. We then 

hypothesized that the differences seen between both networks where primarily due to a 

lower “effective” noise in the nonrenewal network. To test that hypothesis, we compared the 

mutual information rates of both networks for different noise intensities. Our results showed 

that, for noise intensities that would give similar information rates at the single neuron level, 

the behavior of the information rate for both networks was essentially the same. We then 

looked at the effects of coupling on both renewal and nonrenewal networks and found 

opposite effects: While inhibitory coupling increased information transmission for the 

renewal network, it actually decreased information transmission for the nonrenewal network. 

Examination of the theoretical results leads to the fact that the influence of the quality of the 

coupling is done directly through a an effective baseline current that the neurons receive. 

The power spectrum of a single neuron has a qualitative different dependence on the bias 

current. The noise power is reduced when decreasing μ for the renewal model and is 

increased for the nonrenewal one. The effect is opposite when increasing μ. This results 

suggest that intrinsic properties of the neurons such as spike patterning are important when 

attempting to transmit a signal through a network.

Our results for uncoupled networks show that the information rate will fractionally increase 

more slowly as a function of network size for nonrenewal networks. This result has 

important applications for peripheral sensory neurons that display negative interspike 

interval correlations and that are not coupled. This is the case for electroreceptor neurons of 

weakly electric fish [7] which must detect the weak signals emitted by prey stimuli that 

impinge on only a small portion of their sensory epithelium [24]. The fact that the 

information does not increase as much suggests that only a few of these electroreceptor 

neurons would be sufficient for transmitting information about prey stimuli.

Our results make predictions for the behavior of the power spectrum at low frequencies as a 

function of bias current. For neurons displaying negative interspike interval correlations, the 

power spectrum should decrease as a function of increasing bias current whereas, for 

neurons that do not display interspike interval correlations, the power spectrum should 

increase. This prediction can be directly tested experimentally in intracellular recordings in 

which the bias current can be varied. As experimental results have shown values of 0≥ρ1>

−0.5 [6], the value of the power spectrum for such neurons at f=0 is then proportional to the 

firing rate times the coefficient of variation squared [21]. In order for this quantity to 

decrease as a function of increasing bias current, it is sufficient for the coefficient of 

variation to decrease faster than  with r the mean firing rate. Previous experimental 

studies have shown that the coefficient of variation will decrease as a power law for 

sufficiently high firing rates although the power law exponent remains to be measured [25]. 
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Incidentally, a recent experimental study has shown that neurons displaying negative 

interspike interval correlations tended to have larger firing rates than neurons that did not 

[22]. Further experimental studies are needed to verify this.

Our results show that coupling can have profound consequences on information transmission 

depending on the intrinsic dynamics of the neurons from which the network is comprised of. 

Indeed, it was found by Mar et al. [13] that inhibitory coupling would lead to an increased 

signal-to-noise ratio for networks of integrate-and-fire neurons. Our results for the renewal 

model were consistent with those of Mar et al. and we have extended their results using 

information theory. However, our results show that it is excitatory coupling, and not 

inhibitory coupling, that will lead to increased information transmission for the nonrenewal 

model. Anatomical studies have found that the majority of synaptic connections between 

neurons are excitatory [26] and that neurons can display intrinsic interspike interval 

correlations experimentally [6,7]. As such, our results suggest that noise shaping may occur 

at the network level in the brain. Further theoretical studies should incorporate other forms 

of intrinsic dynamics such as resonance [27], time delays, as well as burst firing [4] to look 

at their effects on information transmission.
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FIG. 1. 
Power spectrum of the baseline of a single renewal and nonrenewal neuron. Numerical 

simulations are represented with the symbols and were averaged between 50 trials. The 

theoretical value is represented as a black dashed line. The parameters used were μ =290, θ0 

=4, d =0.7.

Åkerberg and Chacron Page 14

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



FIG. 2. 
Coherence C(f) as function of frequency f for different values of the network size N with 

renewal (a) and nonrenewal (b) neurons. In both panels the number of neurons from bottom 

to top: 3,10,25,50 neurons. Solid color shows simulation and dashed line the theory. Dark 

gray represents the mean from ten trials surrounded in light gray by the standard error. The 

parameter values are as follows: θ0 =4, d =0.7, τs =0.001, fC =10, μ=290, I=5, K=0.
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FIG. 3. 
Mutual information as a function of the number of neurons in the network. In (a) both 

models are shown together, nonrenewal (triangles up) and renewal (triangles down) neurons. 

The triangles represent the simulations and dashed line the theoretical results. The standard 

error is less than the height of the triangles. The plots in (b) show MI for each of the models 

normalized to the value of MI for one neuron. Parameter values are the same as in Fig. 2.
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FIG. 4. 
Mutual information as a function of noise intensity D for renewal (a) and nonrenewal (b) 

networks for different network sizes. From top to bottom we used N=20, 10, 5, and 1. 

Symbols represent simulations and dashed lines theoretical values. Inset shows the MI for D 
between 0 to 0.1 to better show the MI peaks for different values of N.

Åkerberg and Chacron Page 17

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 August 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



FIG. 5. 
Renewal and nonrenewal models behave similarly for different values of the noise intensity 

D. Mutual information rate MI as a function of network size N(a) and stimulus intensity I(b) 

Here Dn =0.7, Dr =0.158 while other parameters have the same value as in Fig. 4. Up and 

down triangles represent simulations for nonrenewal and renewal networks, respectively, and 

the dashed lines the theoretical values.
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FIG. 6. 
Mutual information as a function of coupling strength K of renewal (a) and nonrenewal (b) 

networks. The triangles represent the simulations and the dashed line the theoretical values. 

(c) Shows MI normalized to the value of coupling at K=0. A clear qualitative difference can 

be seen for both models.
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FIG. 7. 
Mutual information rate as a function of coupling strength for renewal and nonrenewal 

models with different noise intensities. Here we set N=20, I=40, Dr=0.4, Dn=1.78 with other 

parameters having the same value as in Fig. 6.
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FIG. 8. 
Power spectrum of a single renewal (a) and nonrenewal (b) neuron as a function of 

stationary firing rate. Symbols represent numerical simulations. Crosses represents r0=25, 

circles r0=75, and diamonds r0=125. Dashed lines represent the theoretical values 

accordingly. Other parameters of the single neuron are the same as in Fig. 1.
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FIG. 9. 
First and second coefficients of the Taylor expansion of the power spectra P00A and P00B. 

Both second order terms decrease as μ increases while the zeroth-order term is nonzero only 

for model B and increases linearly with μ. Here θ0=4, D=0.7, and μ =290.
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