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Abstract

Brain-derived neurotrophic factor (BDNF) has been shown to be important for neuronal survival 

and synaptic plasticity in the hippocampus in non-human animals. The Val66Met polymorphism 

in the BDNF gene, involving a valine (Val) to methionine (Met) substitution at codon 66, has been 

associated with lower BDNF secretion in vitro. However, there have been mixed results regarding 

associations between either circulating BDNF or the BDNF Val66Met polymorphism with 

hippocampal volume and memory in humans. The current study examined the association of 

BDNF genotype and plasma BDNF with hippocampal volume and memory in two large 

independent cohorts of middle-aged and older adults (both cognitively normal and early-stage 

dementia). Sample sizes ranged from 123 to 649. Measures of the BDNF genotype, plasma 

BDNF, MRI-based hippocampal volume and memory performance were obtained from the Knight 

Alzheimer Disease Research Center (ADRC) and the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). There were no significant differences between BDNF Met+ and Met- groups on 

either hippocampal volume or memory in either cohort. In addition, plasma BDNF was not 

significantly associated with either hippocampal volume or memory in either cohort. Neither age, 

cognitive status nor gender moderated any of the relationships. Overall, current findings suggest 
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that BDNF genotype and plasma BDNF may not be robust predictors for variance in hippocampal 

volume and memory in middle age and older adult cohorts.

Introduction

Healthy and pathological aging, particularly Alzheimer’s disease (AD), are associated with 

shrinkage of the hippocampus and memory decline (Allen, Bruss, Brown, & Damasio, 2005; 

Barnes et al., 2009; C. Jack et al., 1997; Martin & Gorenstein, 2010; Raz et al., 2005; Raz, 

Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010; Zelinski & Burnight, 1997). Multiple 

environmental, physiological and genetic factors may influence these age effects. Recent 

work has suggested that brain derived neurotrophic factor (BDNF) may be a contributing 

factor. BDNF is a neurotrophin that plays an important role in neurogenesis, neuronal 

survival and synaptic plasticity (Barnabé-Heider & Miller, 2003; Beck, Lindholm, Castrén, 

& Wree, 1994; Burke et al., 1994; Kojima et al., 2001; J. Lee, Duan, & Mattson, 2002; Bai 

Lu, 2003). BDNF is highly expressed in the hippocampus (Murer et al., 1999; Murer, Yan, 

& Raisman-Vozari, 2001), and has been implicated in hippocampal plasticity and in 

facilitating hippocampus-dependent memory functions (B Lu & Gottschalk, 2000; Ma, 

Wang, Wu, Wei, & Lee, 1998; Tyler, Alonso, Bramham, & Pozzo-Miller, 2002).

In humans, a Val66Met polymorphism (rs6265) has been identified in the BDNF gene. This 

single nucleotide polymorphism (SNP) substitutes valine (Val) for methionine (Met) at 

codon 66. This substitution interferes with intracellular trafficking of BDNF and activity-

dependent BDNF secretion (Bath & Lee, 2006; Chen et al., 2004; Egan et al., 2003) in non-

human animals. A number of studies have observed smaller hippocampal volumes (Bueller 

et al., 2006; Frodl et al., 2007; Pezawas et al., 2004; Schofield et al., 2009; but see Richter-

Schmidinger et al., 2011; Szeszko et al., 2005) and lower episodic memory performance 

(Dempster et al., 2005; Egan et al., 2003; Goldberg et al., 2008; Hariri et al., 2003; Ho et al., 

2006; Kennedy et al., 2014; Schofield et al., 2009; but see Richter-Schmidinger et al., 2011) 

in healthy young adult human Met allele carriers.

In contrast, past studies have generally not observed significant associations between the 

BDNF genotype and hippocampal volume in middle-aged and older adult cohorts (Benjamin 

et al., 2010; Karnik, Wang, Barch, Morris, & Csernansky, 2010; Miyajima et al., 2008; but 

see Pezawas et al., 2004). In addition, findings have been inconsistent in regards to episodic 

memory performance in this age range with some observations of significantly lower 

performance in Met carriers (Kennedy et al., 2014; Miyajima et al., 2008; Raz, Rodrigue, 

Kennedy, & Land, 2009), and other reports of no significant differences between Val/Val 

and Met carrier groups (Benjamin et al., 2010; Harris et al., 2006; Karnik et al., 2010; Tsai 

et al., 2008). Previous studies have used various methods for determining hippocampal 

volume, including manual tracing (Bueller et al., 2006; Frodl et al., 2007; Richter-

Schmidinger et al., 2011; Szeszko et al., 2005), point counting (Benjamin et al., 2010; 

Miyajima et al., 2008) and voxel-based morphometry (Pezawas et al., 2004; Schofield et al., 

2009). In terms of episodic memory, a variety of measures have been used, but the most 

commonly used test is the Logical Memory subtest from the Weschler Memory Scales 

(Dempster et al., 2005; Egan et al., 2003; Harris et al., 2006; Ho et al., 2006; Karnik et al., 

Kim et al. Page 2

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2010). For both hippocampal volume and memory, no consistent pattern has been observed 

for different methods used and whether or not findings with BDNF genotype are significant. 

Moreover, sample sizes do not appear to systematically differ between studies finding 

significant differences and those that did not.

In regards to pathological aging, it appears that the BDNF genotype may not confer a greater 

risk for Alzheimer’s disease (e.g., Bian, Zhang, Zhang, & Zhao, 2005; Combarros, Infante, 

Llorca, & Berciano, 2004; Desai, Nebes, DeKosky, & Kamboh, 2005; Forlenza et al., 2010; 

Yu et al., 2008; Zhang et al., 2006; but see Fehér, Juhász, Rimanóczy, Kálmán, & Janka, 

2009; Matsushita et al., 2005; Tsai, Hong, Liu, Liu, & Liou, 2006). However, the presence 

of the Met allele has been associated with a greater risk for cognitive decline in individuals 

with mild cognitive impairment (MCI;Forlenza et al., 2010), which is considered a potential 

prodromal stage of AD (Flicker, Ferris, & Reisberg, 1991).

Past work has also examined associations of circulating BDNF (i.e., in serum, plasma or 

cerebrospinal fluid) with hippocampal volume and memory. A few studies have examined 

associations between serum BDNF and hippocampal volume or memory in small cohorts of 

young to middle-aged controls for psychiatric populations, and findings have been mixed 

(Dias et al., 2009; Eker et al., 2010; Rizos et al., 2011). Notably, advancing age (Erickson et 

al., 2010; Li et al., 2009; Lommatzsch et al., 2005; Shimada et al., 2014; Ziegenhorn et al., 

2007) and Alzheimer disease (Forlenza et al., 2010; Laske et al., 2007; Lee et al., 2009; Li et 

al., 2009; Yasutake, Kuroda, Yanagawa, Okamura, & Yoneda, 2006; Yu et al., 2008; but see 

Angelucci et al., 2010; Laske et al., 2006; O’Bryant et al., 2009) have generally been 

associated with lower circulating BDNF. While positive relationships between circulating 

BDNF and hippocampal volume in healthy older adults (Erickson et al., 2010) have been 

reported, other studies have not observed an association (Driscoll et al., 2012). 

Investigations of the association between circulating BDNF and memory in healthy older 

adults have demonstrated varying results with reports of positive (Erickson et al., 2010; 

Komulainen et al., 2008; Li et al., 2009), negative (Forlenza et al., 2010), and non-

significant (Driscoll et al., 2012; Gunstad et al., 2008; O’Bryant et al., 2011) correlations. 

There has also been some limited work demonstrating a positive relationship between 

circulating BDNF and memory performance in MCI (Yu et al., 2008) and combined cohorts 

of healthy and MCI individuals (Shimada et al., 2014), but a negative relationship in AD 

(Forlenza et al., 2010) individuals.

Inconsistent findings in the BDNF and aging literature may relate to a reduced penetrance of 

BDNF genotype with age. Age-related pathological changes in brain structure and function 

may take place independent of genetic influence, which then may reduce genetic 

contribution to variance in hippocampal volume and memory (Erickson, Miller, & 

Roecklein, 2012). Mixed findings may also be related to limited sample sizes in some 

investigations that may have increased the likelihood of type II errors, assessment of the 

memory domain with only one measure of memory, and/or the gender composition of the 

cohorts. The primary goal of the current study was to assess the associations of the BDNF 

genotype and plasma BDNF with hippocampal volume and memory in cognitively normal 

and very mild to mildly demented adults. The present study advances the existing literature 

by: (1) examining the relationship in two independent cohorts; (2) examining both BDNF 
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genotype and plasma BDNF within the same cohorts; (3) examining both hippocampal 

volume and memory within the same cohorts; and (4) use of composite estimates of the 

memory domain rather than analyses with single tasks.

Methods

Participants

Alzheimer’s Disease Neuroimaing Initiative (ADNI)—Data for one cohort used in the 

current study were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was 

launched in 2003 by the National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-

year public-private partnership. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 

Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative 

is Michael W. Weiner, MD, VA Medical Center and University of California – San 

Francisco. ADNI is the result of efforts of many co-investigators from a broad range of 

academic institutions and private corporations, and subjects have been recruited from over 

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but 

ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols have 

recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of 

cognitively normal older individuals, people with early or late MCI, and people with early 

AD. The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 

and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to 

be followed in ADNI-2. For up-to-date information, see www.adni-info.org.

Participants were classified using the Clinical Dementia Rating (CDR) scale, a reliable and 

validated protocol for staging dementia (Morris, 1993). CDR 0 corresponds to cognitively 

normal, whereas CDR 0.5 and 1 indicate very mild and mild dementia, respectively. 536 

ADNI participants had both BDNF genotype (67% Val/Val, 30% Val/Met, 2% Met/Met) 

data and baseline MRI scans that passed quality control (see Table 1 for demographic 

information). Among these 536 participants, 355 participants had both baseline plasma 

BDNF data and baseline MRI scans that passed quality control (see Table 1 for demographic 

information). For memory analyses, data from the 12-month visit were used in the current 

report because the 12-month visit included a greater number of participants with available 

data. 649 participants had both BDNF genotype (66% Val/Val, 31% Val/Met, 3% Met/Met) 

and episodic memory data (see Table 2 for demographic information). 488 participants had 

both 12-month visit plasma BDNF and psychometric data (see Table 2 for demographic 

information).
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Washington University Knight Alzheimer Disease Research Center (Knight 
ADRC)—A second cohort of participants was recruited from the Knight ADRC. 

Participants were 45 to 100 years of age and were screened for neurological or systemic 

illnesses (e.g., Huntington’s Disease, Parkinson’s Disease). In order to compare with ADNI, 

participants who were CDR 1 or below were selected for analysis. 302 participants had both 

BDNF genotype (69% Val/Val, 30% Val/Met, 2% Met/Met) data and MRI scans that passed 

quality control (see Table 3 for demographic information). Among these 302 participants, 

142 had plasma BDNF data within two years of their MRI scan (see Table 3 for 

demographic information). In addition, 331 participants had both BDNF genotype (66% 

Val/Val, 32% Val/Met, 2% Met/Met) and data from all three memory tests (see Memory 

Assessment for more detail; see Table 4 for demographic information). Furthermore, 123 

participants had both plasma BDNF and data from all three memory tests. All plasma data 

were within two years of the memory assessment (see Table 4 for demographic 

information). BDNF genotype, MRI and memory data from a subset of the CDR 0 

participants have been previously reported in Karnik et al., 2010. The Human Research 

Protection Office at Washington University approved the study and written informed 

consent was obtained from all participants.

Genotyping

ADNI—Detailed procedures for genotyping, including for BDNF Val66Met SNP (rs6265), 

can be found in previous reports (Saykin et al., 2010; Shen et al., 2010). Briefly, 7mL of 

blood was taken in EDTA tubes, and genomic DNA was extracted using the QIAamp DNA 

Blood Maxi Kit (Qiagen, Inc., Valencia, CA). Next, to exclude for any degraded DNA 

samples, 50ng of genomic DNA was qualitatively analyzed with a 1% Tris-acetate-EDTA 

agarose gel. Samples were then analyzed using the Illumina Human-610-Quad BeadChip 

(Illumina, Inc., San Diego, CA). The APOE SNPs (rs429358 and rs7412) were not available 

on the Illumina Human610-Quad BeadChip. Thus, these SNPs were genotyped separately 

by polymerase chain reaction amplification and HhaI restriction enzyme digestion. The 

digested products were ran on a 4% Metaphor Gel and visualized by ethidium bromide 

staining to analyze the APOE genotype (Potkin et al., 2009; Saykin et al., 2010).

ADRC—Detailed procedures for genotyping in this cohort can be found in previus reports 

(Cruchaga et al., 2012, 2013). Briefly these DNA samples were genotyped with the Illumina 

610 or the Omniexpress chip. Prior to analysis all samples and genotypes underwent 

stringent QC (Cruchaga et al., 2012). The genotype data for the BDNF val66Met SNP 

(rs6265) was extracted from the QC’d data. APOE genotyping for these samples was 

performed using Taqman assays as previously described (Cruchaga et al., 2010).

Plasma BDNF

ADNI—All plasma-based biomarker data were downloaded from the ADNI website 

(www.loni.ucla.edu/ADNI/) in October 2011. Detailed methods are posted on http://

www.adni-info.org/Scientists/ADNIStudyProcedures.aspx. Briefly, blood samples were 

collected in the morning after an overnight fast, centrifuged to prepare plasma, and frozen 

on dry ice. Samples underwent an additional freeze-thaw cycle prior to measurement of 

BDNF. BDNF concentration was analyzed using the multiplex immunoassay panel, which is 
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based upon Luminex’s xMAP Technology by Rules Based Medicine (RBM, Austin, TX). 

QC was performed on all samples.

ADRC—Similar procedures were performed for the ADRC samples, with the exception that 

plasma samples underwent only a single free-thaw cycle prior to analysis.

MR Acquisition

ADNI—All MRI data were downloaded from the ADNI website (www.loni.ucla.edu/

ADNI/) in October 2011. Detailed methods are posted on http://www.adni-info.org/

Scientists/ADNIStudyProcedures.aspx and in a previous report (C. Jack et al., 2008). 

Imaging was performed using 1.5T scanners (GE, Siemens or Phillips), and T1-weighted 

sagittal 3D MP-RAGE scans (TR=2400 ms, flip angle=8°, TI=1000 ms, 0.94 × 0.94 × 1.2 

mm resolution) were acquired for each participant.

ADRC—Imaging was performed using either a Siemens Vision 1.5T scanner (n=101 for 

genotype analyses; n=39 for plasma analyses) or a Siemens Trio 3T scanner (n=201 for 

genotype analyses; n=103 for plasma analyses). For the Vision 1.5 scans, two to four T1-

weighted sagittal MP-RAGE scans (TR=9.7 ms, flip angle=10°, TI=20 ms, 1 × 1 × 1.25 mm 

resolution) were acquired for each participant. For the Trio 3T scans, up to two T1-weighted 

sagittal MP-RAGE scans (TR=2400ms, flip angle=8°, TI=1000 ms, 1 × 1 × 1 mm 

resolution) were acquired for each participant.

Regional Volumetry

Hippocampal volume estimates were obtained using the Freesurfer image analysis suite. 

Total hippocampal volume estimated from the Freesurfer includes roughly the cornu 

ammonis subfields, dentate gyrus and subiculum. For the ADNI cohort, hippocampal 

volume estimates were obtained using Freesurfer v4.3. For the ADRC cohort, the Vision 

1.5T scans were processed using Freesurfer v5.0, whereas the Trio 3T scans were processed 

using Freesurfer imaging analysis suite v5.1. The technical details of these procedures are 

described in prior publications (Dale, Fischl, & Sereno, 1999; Dale & Sereno, 1993; Fischl 

& Dale, 2000; Fischl, Liu, & Dale, 2001; Fischl et al., 2002; Fischl, Sereno, & Dale, 1999; 

Fischl, Sereno, Tootell, & Dale, 1999; Fischl et al., 2004). Briefly, this processing includes 

motion correction and averaging of multiple volumetric T1 weighted images, removal of 

non-brain tissue using a hybrid watershed/surface deformation procedure, automated 

Talairach transformation, segmentation of the subcortical white matter and deep gray matter 

volumetric structures intensity normalization, tessellation of the gray matter white matter 

boundary, automated topology correction, and surface deformation following intensity 

gradients to optimally place the gray/white and gray/cerebrospinal fluid borders at the 

location where the greatest shift in intensity defines the transition to the other tissue class. 

Once the cortical models are complete, the cerebral cortex is parcellated into units based on 

gyral and sulcal structure (Desikan et al., 2006; Fischl et al., 2004). Neuroanatomical labels 

are applied to each voxel based on a probabilistic atlas derived from a manually labeled 

training set that included older adults (Desikan et al., 2006). This procedure generates 

anatomical labeling and regional volume estimates with a high correspondence to manually 

generated labels and its delineation of the hippocampus has been validated in normal aging, 
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mild cognitive impairment, and AD (Cherbuin, Anstey, Réglade-Meslin, & Sachdev, 2009; 

Fischl et al., 2002; Sánchez-Benavides et al., 2010; Tae, Kim, Lee, Nam, & Kim, 2008).

While there is evidence of reliability of Freesurfer-derived estimates of volume across 

scanner upgrades, different manufacturers, and number of MP-RAGE acquisitions, variation 

in field strength and Freesurfer version may introduce slight bias (e.g., Fennema-Notestine 

et al., 2007; Gronenschild et al., 2012; Han et al., 2006; Jovicich et al., 2009). To address 

potential biases, scanner type/Freesurfer version was included as a covariate in the analyses 

if it showed significant associations with the predictor or outcome variables.

As there were no a priori hypotheses regarding laterality effects, hippocampal volumes were 

summed across hemispheres. Estimated total intracranial volume (ICV; Buckner et al., 

2004) was used to adjust hippocampal volumes for body size differences via a formula 

based on the analyses of covariance approach: Adjusted volume=raw volume-(b x (ICV – 

mean ICV)), where b is the slope of the regression of the ROI volume on ICV (Jack et al., 

1989; Mathalon, Sullivan, Rawles, & Pfefferbaum, 1993). Adjusted hippocampal volume 

was used as the dependent variable in analyses for both the ADNI and the ADRC cohorts.

Memory Assessment

ADNI—All psychometric data were downloaded from the ADNI website 

(www.loni.ucla.edu/ADNI/) in October 2011. Detailed methods are posted on http://

www.adni-info.org/Scientists/ADNIStudyProcedures.aspx. The episodic memory variables 

included immediate and delayed recall from the Rey Auditory Verbal Learning Test (Rey, 

1964), and immediate and delayed recall from the Wechsler Memory Scale-Revised (WMS-

R) Logical Memory subtest (Wechsler, 1987). A composite measure of memory was created 

by standardizing scores from each task (a total of 4 variables) and averaging the 

standardized scores.

ADRC—The episodic memory variables included the free recall score from the Free and 

Cued Selective Reminding Test (Grober, Buschke, Crystal, Bang, & Dresner, 1988), 

immediate and delayed recall from the WMS-R Logical Memory subtest (Wechsler, 1987), 

and WMS Associate Learning (Wechsler & Stone, 1973). A composite measure of memory 

was created by standardizing scores for each task (a total of 4 variables) and averaging the 

standardized scores.

The psychometric batteries for the ADNI and the ADRC cohorts did not include the exact 

same set of tests for assessing episodic memory. However, both cohorts included the 

immediate and delayed recall from the WMS-R Logical Memory subtest. All other memory 

measures were significantly correlated with this subtest (rs>.5, ps<.0001), suggesting that 

these tests are measures of a unitary aspect of episodic memory.

Analytical Approach

Outliers—Univariate outliers were defined as values 3.5 standard deviations from the mean 

of the cohort. For the ADNI cohort, one individual in the Genotype-MRI analyses had an 

outlier data point. For the ADRC cohort, one individual in the Plasma-Memory analyses had 
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an outlier data point. Unless otherwise specified in the Results section, results were 

unchanged when outliers were removed.

Covariates—To determine the necessity of the inclusion of age (years), education (years), 

gender (coded as female=0, male=1), APOE genotype (coded as e4 non-carrier=0, e4 

carrier=1), and CDR status (coded as CDR 0=0, CDR>0=1) as covariates in the analyses, 

the zero-order correlations (or t-tests for dichotomous variables) were examined between 

these variables and the predictors/outcomes. Pearson chi-square test was used to examine 

two categorical variables (e.g., BDNF genotype versus CDR status). Each analysis 

controlled for the covariates that were significantly associated with the predictor and/or 

outcome variables. In addition, the plasma BDNF-MRI assessment interval and scanner type 

(1.5T vs. 3T) were considered as additional covariates for ADRC MRI analyses. The mean 

interval between plasma BDNF and MRI assessments was +/− 4.2 months (SD=5.9) for the 

ADRC cohort and +/− 0.4 months (SD=1.4) for the ADNI cohort. Similarly, the plasma 

BDNF-memory assessment interval was considered as an additional covariate for ADRC 

memory analyses. The mean interval between plasma BDNF and memory assessments was 

+/− 2.3 months (SD=1.7) for the ADRC cohort and +/− 0.0 months (SD=0.6) for the ADNI 

cohort.

Statistical Analyses—A series of hierarchical regressions were conducted to address the 

primary questions regarding the main effects of BDNF genotype and plasma BDNF, and the 

moderating role of CDR on BDNF effects. The dependent variable was either hippocampal 

volume or memory performance. The predictor variable was either BDNF genotype, which 

was coded as 0 (Val/Val homozygotes) or 1 (Met allele carriers), or log-transformed plasma 

BDNF, which was a continuous variable. To correct for non-normality of residuals, a log 

transformation was applied to plasma BDNF prior to all analyses. In the regression analyses, 

covariates were entered in the first step. BDNF (i.e., genotype or plasma BDNF) was 

entered in the second step, and BDNF x CDR was entered in the last step.

The current study included 77 comparisons, including post-hoc analyses. Therefore, a false 

discovery rate correction was used to adjust all p-values that were below .1 to correct for 

multiple comparisons. Adjusted p-values were calculated by: (1) ranking the p-value of each 

comparison from smallest to largest; (2) multiplying the p-value by the total number of 

comparisons; and (3) dividing the value obtained from step 2 by the rank of p-value obtained 

from step 1.

Results

BDNF Genotype Analyses

Hippocampus—BDNF genotype was not significantly associated with hippocampal 

volume in either the ADNI or ADRC cohorts without or with covariates (i.e., ADNI: age, 

gender, APOE genotype, CDR status; ADRC: age, education, gender, APOE genotype, 

scanner type, CDR status) included (see Table 5, and Fig. 1A and 1B, respectively). 

Furthermore, the BDNF genotype x CDR interaction was not significant in either the ADNI 

or ADRC cohorts without or with covariates. Thus, there was not a significant difference in 
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the magnitude of the effect between the cognitively normal and the early-stage dementia 

groups (see Table 5).

Memory—BDNF genotype was not significantly associated with memory in either the 

ADNI or ADRC cohorts without or with covariates (i.e., ADNI: education, gender, APOE 

genotype, CDR status; ADRC: age, education, gender, APOE genotype, CDR status) 

included (see Table 5, and Fig. 2A and 2B, respectively). Furthermore, the BDNF genotype 

x CDR interaction was not significant in the ADNI cohort without covariates. There was a 

non-significant trend after controlling for covariates, but this trend was absent after adjusting 

for multiple comparisons. The BDNF genotype x CDR interaction was not significant in the 

ADRC cohort without or with covariates. Thus, there was not a significant difference in the 

magnitude of the effect between the cognitively normal and the early-stage dementia groups 

(see Table 5).

Plasma BDNF Analyses

Hippocampus—Plasma BDNF was not significantly associated with hippocampal volume 

in the ADNI cohorts without or with covariates (i.e., age, gender, APOE genotype, CDR 

status) included. In the ADRC cohort, there was a non-significant trend for an association in 

the model without covariates, but the trend was absent after adjusting for multiple 

comparisons, and after controlling for covariates (i.e., age, education, gender, APOE 

genotype, scanner type, CDR status, time interval between plasma BDNF assessment and 

MR scans) (see Table 5, Fig. 3A and 3B, respectively). Furthermore, the plasma BDNF x 

CDR interaction was not significant in either the ADNI or ADRC cohorts without or with 

covariates. Thus, there was not a significant difference in the magnitude of the effect 

between the cognitively normal and the early-stage dementia groups (see Table 5).

Memory—Plasma BDNF was not significantly associated with memory in either the ADNI 

or ADRC cohorts without or with covariates (i.e., ADNI: education, gender, APOE 

genotype, CDR status; ADRC: age, education, gender, CDR status) included (see Table 5, 

Fig. 4A and 4B, respectively). Furthermore, the plasma BDNF x CDR interaction was not 

significant in the ADNI cohort without or with covariates. Thus, there was not a significant 

difference in the magnitude of the effect between the cognitively normal and the early-stage 

dementia groups in the ADNI cohort. The plasma BDNF x CDR interaction was significant 

in the ADRC cohort without and with covariates. However, the BDNF x CDR interaction 

without covariates became non-significant after adjusting for multiple comparisons (see 

Table 5). There was a significant negative association between plasma BDNF and memory 

in the cognitively normal group and a non-significant positive trend in the early dementia 

group, but both associations became non-significant after adjusting for multiple 

comparisons.

Post-hoc Analyses: Associate Learning (ADRC cohort)

There were an additional 319 individuals with scores for the WMS Associate Learning task 

and BDNF genotype data (see Supplementary Table 1 for demographic information). In 

addition, there were an additional 66 individuals with scores from the WMS Associate 

Learning task and plasma BDNF data (see Supplementary Table 1 for demographic 
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information). In addition, Raz and colleagues (2009) observed a significant effect of the 

BDNF genotype on an associative memory task. Thus, we performed post-hoc analyses 

controlling for covariates with these increased sample sizes.

BDNF Genotype—BDNF genotype was not significantly associated with associate 

learning with covariates (i.e., age, education, gender, APOE genotype, CDR status) 

included. Furthermore, the BDNF genotype x CDR interaction was not significant with 

covariates (see Supplementary Table 2).

Plasma BDNF—Plasma BDNF was not significantly associated with associate learning 

with covariates (i.e., age, education, gender, CDR status) included. Furthermore, the plasma 

BDNF x CDR interaction was not significant with covariates (see Supplementary Table 2).

Post-hoc Analyses: BDNF x Age Interactions

Erickson and colleagues (2012) speculated that there may be lower penetrance of the BDNF 

genotype effects with advancing age in the context of age effects on brain structure and age-

related diseases. Additionally, previous studies have found that circulating BDNF decreases 

with age in healthy adults (Erickson et al., 2010; Lommatzsch et al., 2005; Ziegenhorn et al., 

2007). Thus, we examined whether there were interactive effects between BDNF and age on 

hippocampal volume and/or episodic memory performance. Hierarchical regressions were 

conducted to address these questions. In all analyses, the covariates were entered in the first 

step. Age, CDR status and BDNF (i.e., genotype or plasma) were entered in the second step. 

The BDNF x age interaction was entered in the third step. The BDNF x CDR and age x 

CDR interactions were entered in the fourth step. The 3-way interaction was entered in the 

last step.

BDNF Genotype—The BDNF genotype x age interaction was not significant in the ADNI 

cohort for hippocampal volume. The BDNF benotype x age interaction was a non-

significant trend in the ADRC sample, but the trend was absent after adjusting for multiple 

comparisons. In addition, the BDNF genotype x age x CDR interaction was not significant 

in either the ADNI or ADRC cohorts for hippocampal volume.

The BDNF genotype x age interaction was not significant in either the ADNI or ADRC 

cohorts for memory performance. In addition, the BDNF genotype x age x CDR interaction 

was not significant in either the ADNI or ADRC cohorts for memory performance (see 

Table 6).

Plasma BDNF—The plasma BDNF x age interaction was not significant in either the 

ADNI or ADRC cohorts for hippocampal volume. In addition, the plasma BDNF x age x 

CDR interaction was not significant in either the ADNI or ADRC cohorts for hippocampal 

volume (See Table 6).

The plasma BDNF x age interaction was not significant in either the ADNI or ADRC 

cohorts for memory performance. In addition, the plasma BDNF x age x CDR interaction 

was not significant in either the ADNI or ADRC cohorts for memory performance (see 

Table 6).
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Post-hoc Analyses: BDNF x Gender Interactions

Gender differences have been observed in serum BDNF levels (Shimada et al., 2014), in 

associations between plasma BDNF and episodic memory performance (Komulainen et al., 

2008, and in BDNF genotype-related risk for AD (Fukomoto et al., 2010). Thus, we 

examined whether there were interactive effects between BDNF and gender on hippocampal 

volume and/or episodic memory performance using hierarchical regressions. In all analyses, 

the covariates were entered in the first step. Gender, CDR status and BDNF (i.e., genotype 

or plasma) were entered in the second step. BDNF x gender was entered in the third step to 

examine interactive effects between BDNF and gender. BDNF x CDR and gender x CDR 

were entered in the fourth step. The 3-way interaction was entered in the last step.

BDNF genotype—The BDNF genotype x gender interaction was not significant in either 

the ADNI or ADRC cohorts for hippocampal volume. In addition, The BDNF genotype x 

gender x CDR interaction was not significant in either the ADNI or ADRC cohorts for 

hippocampal volume (See Table 6).

The BDNF genotype x gender interaction was not significant in either the ADNI or ADRC 

cohorts for memory performance. In addition, the BDNF genotype x gender x CDR 

interaction was not significant in either the ADNI or ADRC cohorts for memory 

performance (see Table 6).

Plasma BDNF—The plasma BDNF x gender interaction was not significant in either the 

ADNI or ADRC cohorts for hippocampal volume. In addition, the plasma BDNF x gender x 

CDR interaction was not significant in either the ADNI or ADRC cohorts for hippocampal 

volume (See Table 6).

The plasma BDNF x gender interaction was not significant in either the ADNI or ADRC 

cohorts for memory performance. In addition, the plasma BDNF x gender x CDR interaction 

was a non-significant trend in the ADNI, but the trend was lost after adjusting for multiple 

comparisons. The plasma BDNF x gender x CDR interaction was not significant in the 

ADRC cohort. This non-significant interaction became a non-significant trend when an 

outlier was removed, but the trend was lost after adjusting for multiple comparisons (see 

Table 6).

Discussion

The current literature on the effects of BDNF, including the Val66Met polymorphism and 

circulating BDNF, on hippocampal volume and memory in humans has yielded mixed 

results. In the current study, neither BDNF genotype nor plasma BDNF were significantly 

associated with either hippocampal volume or memory in cognitively normal and early-stage 

dementia adults. We performed post-hoc testing to further explore what factors may have 

contributed to the null findings.

Several studies in young adults have observed significant differences in hippocampal 

volume and memory based on BDNF genotype (Bueller et al., 2006; Egan et al., 2003; Frodl 

et al., 2007; Hariri et al., 2003; Schofield et al., 2009). A potential reason for the current null 
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findings in the cognitively normal cohorts may be the age of the participants. Past studies in 

healthy middle-aged and older adult cohorts have also failed to find a difference for 

hippocampal volume (Benjamin et al., 2010; Karnik et al., 2010; Miyajima et al., 2008; but 

see Pezawas et al., 2004). While two past studies including middle-aged and older adult 

cohorts observed worse memory performance for Met carriers (Miyajima et al., 2008; Raz et 

al., 2009), several others failed to find significant group differences (Benjamin et al., 2010; 

Harris et al., 2006; Karnik et al., 2010; Raz et al., 2008; Tsai et al., 2008). Thus, 

incorporating current results, the preponderance of investigations suggests minimal effects 

of the BDNF genotype on memory performance at later age ranges. Indeed, Erickson and 

colleagues (2012) have speculated that there may be lower penetrance of the BDNF 

genotype with advancing age, and other factors may have a stronger influence on brain 

structure and cognition. Furthermore, it has been suggested that the Met allele may be 

protective in older adults as there have been indications of better performance in older adult 

Met carriers in other cognitive domains (Erickson et al., 2012; Harris et al., 2006). While 

post-hoc analyses did not reveal significant interactive effects of BDNF genotype and age on 

either hippocampal volume or memory in either cohort after correcting for multiple 

comparisons, this could relate to the lack of younger adults (e.g., no participants <45 years 

of age) in the analyses.

There is some indication that Met homozygosity is associated with the lowest memory 

performance (Egan et al., 2003; Schofield et al., 2009), and so the relative proportion of this 

group in analyses may influence the degree to which significant results are observed. 

However, it has been estimated that only about 4% of the US population has the Met/Met 

genotype (Shimizu et al., 2004), and most studies combine the Val/Met and Met/Met groups. 

In studies with healthy middle-aged and older adults, the proportion of the Met/Met 

genotype has varied between 0% to 4% with no apparent differences in terms of whether 

significant BDNF effects are observed (Karnik et al., 2010; Miyajima et al., 2008; Raz et al., 

2009). The current cohorts did not have sufficient Met/Met homozygotes to perform a post-

hoc analysis (ADNI hippocampus: 2%; ADNI memory: 3%; ADRC hippocampus: 2%; 

ADRC memory: 2%). Future investigations could attempt to include a large number of 

Met/Met homozygotes to examine dose-dependent relationships with brain structure and 

function.

There were also no significant associations between plasma BDNF and hippocampal volume 

or memory in cognitively normal individuals in either cohort after correcting for multiple 

comparisons. Circulating BDNF is reduced with aging (e.g., Erickson et al., 2010; 

Lommatzsch et al., 2005; Ziegenhorn et al., 2007), and BDNF-induced long-term 

potentiation (LTP) is impaired in aged compared to younger rats (Gooney, Messaoudi, 

Maher, Bramham, & Lynch, 2004). Thus, there could be differing associations of circulating 

BDNF with hippocampal volume and memory with aging. The current study observed a 

significant negative association between age and plasma BDNF in the ADNI – hippocampus 

cohort only. Furthermore, we did not observe a significant interactive effect between plasma 

BDNF and age in either cohort. Again, interactive effects may be observed with the 

inclusion of a young adult group. Notably, conflicting findings have been observed in young 

adult cohorts as well, although these were predominately relatively small control cohorts 

(Dias et al., 2009; Eker et al., 2010; Rizos et al., 2011; Ruiz de Azua et al., 2013).
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Previous studies have found no significant difference in circulating BDNF between Val 

homozygote and Met carriers in healthy (Jiang, Wang, Liu, Zhang & Chen, 2009; Li et al., 

2009; Terracciano et al., 2009; Zhou et al., 2011) and demented (Li et al., 2009; Yu et al., 

2008) middle-aged and older adults. Similarly, in post-hoc analyses there were no 

significant differences in plasma BDNF level between Val homozygote and Met carriers in 

our largest cognitively normal (ADRC – hippocampus) and demented (ADNI – memory) 

samples. These findings suggest that BDNF genotype may not strongly contribute to 

concentration of circulating BDNF in humans, and that findings with BDNF genotype may 

be different from those with circulating BDNF.

The role of BDNF in AD risk and pathophysiology has recently received attention (see 

Diniz & Teixeira, 2011 for a review). Thus far, the majority of previous studies have found 

no significant differences between AD individuals and healthy controls in terms of BDNF 

genotype and/or allele frequencies (e.g., Dias et al., 2009; Tsai et al., 2004; Zhang et al., 

2006; but see Fukumoto et al., 2010). On the other hand, prior studies have reported a lower 

circulating BDNF level in AD individuals compared to healthy controls (e.g., Yasutake et 

al., 2006; Yu et al., 2008; Forlenza et al., 2010), though some work has observed higher 

BDNF levels in AD individuals (Angelucci et al., 2010; Laske et al., 2006) or no group 

differences (O’Bryant et al., 2009). In the current study, there were indications of lower 

plasma BDNF in early-stage dementia (see Tables). However, there were no significant 

associations of BDNF with hippocampus or memory in the AD groups in either cohort after 

correcting for multiple comparisons in the current study. These finding are inconsistent with 

one study that observed associations between circulating BDNF and memory in a cohort 

with mild cognitive impairment (Yu et al., 2008). This study consisted of a cohort of 

Chinese Han, and there is evidence of genotype frequency differences between Asian and 

European populations (e.g., Petryshen et al., 2010; Shimizu, Hashimoto, & Iyo, 2004). Thus, 

the cohort in Yu and colleagues (2008) had a higher proportion of Met homozygotes than 

our cohorts, and this may have contributed to the discrepant results. Higher BDNF has also 

been associated with slower cognitive decline in AD (Laske et al., 2011), and presence of 

the Met-allele has been associated with faster progression in individuals with mild cognitive 

impairment (Forlenza et al., 2010) in relatively small cohorts. Thus, further longitudinal 

work in larger cohorts may be warranted.

The current study measured circulating BDNF in plasma. It is possible that the particular 

sample analyzed (whole blood, serum, plasma or platelets) could contribute to conflicting 

findings (Lommatzsch et al., 2005; Trajkovska et al., 2007). However, both plasma and 

serum BDNF studies have varied in terms of whether or not significant associations with 

memory or hippocampus are observed in middle-aged to older adult cohorts (Driscoll et al., 

2012; Erickson et al., 2010; Gunstad et al., 2008; Kamulainen et al., 2008; O’Bryant et al., 

2011; Yu et al., 2008). In addition, positive associations of both serum and plasma BDNF 

with brain tissue concentrations in the prefrontal cortex and hippocampus have been 

observed (Elfving et al., 2010; Karege, Schwald, & Cisse, 2002; Klein et al., 2011; Sartorius 

et al., 2009).

Another potential reason for the null findings in terms of both BDNF genotype and 

circulating BDNF may be due to the presence of moderators. Multiple factors including 
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stress (Elzinga et al., 2011; Grassi-Oliveira, Stein, Lopes, Teixeira, & Bauer, 2008; Kauer-

Sant’Anna et al., 2007), physical exercise (Ferris, Williams, & Shen, 2007; Gold et al., 

2003; Seifert et al., 2010; Zoladz et al., 2008), anti-depressant medications (Chen, 

Dowlatshahi, MacQueen, Wang, & Young, 2001; Shimizu et al., 2003), weight, gender and 

menstrual cycle phase (Lommatzsch et al., 2005; Shimada et al., 2014) may influence 

circulating BDNF concentrations. In addition, gender, exercise and vascular factors (e.g., 

hypertension) may interact with BDNF genotype (Fukumoto et al., 2010; Kim et al., 2011; 

Raz et al., 2008, 2009). Furthermore, previous studies have shown an interactive effect 

between BDNF genotype and early childhood adversity on circulating BDNF in individuals 

with a history of depression or anxiety (Elzinga et al., 2011) and on hippocampal volume 

(Carballedo et al., 2013; Gatt et al., 2009). Based on these studies, individuals with Met 

allele(s) and higher levels of childhood stress may have smaller hippocampal volume or 

memory performance than those with Met allele(s) but without childhood adversity. The 

current cohorts did not have data on early life stress experiences. It is possible that there was 

a mixture of individuals with high and low level of childhood adversity, contributing to null 

finding when these individuals are examined together. The current study did examine the 

interactive effect of BDNF and gender, and post-hoc analyses in the current cohorts did not 

reveal any significant moderating influence of gender. Future investigation could 

systematically examine the moderating effects of lifestyle and health factors to further 

elucidate the relationship between BDNF and brain structure and function.

Sample size is another issue to be considered as a contributing factor to the lack of 

significant effects. The current sample sizes for the BDNF genotype and hippocampus 

analyses were larger than those in the existing literature (Ns=36–173) (Benjamin et al., 

2010; Bueller et al., 2006; Frodl et al., 2007; Karnik et al., 2010; Pezawas et al., 2004; 

Richter-Schmidinger et al., 2011; Schofield et al., 2009; Szeszko et al., 2005), and the 

BDNF genotype-memory samples were similar or larger than all but one of the existing 

studies (Ns=28–475) (Benjamin et al., 2010; Dempster et al., 2005; Egan et al., 2003; 

Goldberg et al., 2008; Hariri et al., 2003; Hashimoto et al., 2008; Ho et al., 2006; Karnik et 

al., 2010; Kennedy et al., 2014; Raz et al., 2008 and 2009; Richter-Schmidinger et al., 2011; 

Schofield et al., 2009; Strauss et al., 2004; Tsai et al., 2008; Yu et al., 2008; but see 

Miyajima et al., 2008; N=722). In addition, the current sample sizes for the plasma BDNF 

and hippocampus analyses were similar or larger than in the existing literature (Ns=20–142) 

(Driscoll et al., 2012; Eker et al., 2010; Erickson et al., 2010; Rizos et al., 2011), and the 

plasma BDNF-memory cohorts were similar or larger than all but two of the existing studies 

(Ns=35–429) (Dias et al., 2009; Driscoll et al., 2012; Gunstad et al., 2008; Li et al., 2009; 

O’Bryant et al., 2010; Ruiz de Azua et al., 2013; Yu et al., 2008; but see Komulainen et al., 

2008 (N=1389); Shimada et al., 2014 (N=4463). Importantly, significant associations were 

not observed in either of the two current cohorts, and the observed beta weights were in the 

small range (Cohen, Manion, & Morrison, 2007). Prior significant associations were 

observed in both large (e.g., Komulainen et al., 2008; Shimada et al., 2014) and small (e.g., 

Bueller et al., 2006; Hariri et al., 2003) sample studies. In a post-hoc analysis with the 

ADRC cohort, we were able to include additional participants to examine the effects of 

either BDNF genotype (n=647) or plasma BDNF (n=189) on the Associate Learning task. 
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However, no significant effects were observed. It appears unlikely that sample size was the 

major limiting issue in the current study.

Furthermore, the ADNI cohort consisted of three racial groups (White, Black, and Other 

races), and the ADRC cohort consisted of two racial groups (White and Black) (see 

Supplementary Tables 3 and 4). Previous studies have demonstrated differences in BDNF 

allele frequency among different racial populations (e.g., Petryshen et al., 2010; Shimizu et 

al., 2004). Some cohorts of the current study also showed frequency and/or plasma BDNF 

differences across racial groups. Thus, we examined BDNF effects in the largest racial 

group (Whites) and observed no differences in terms of results (data not shown).

There are some limitations in the current study that need to be addressed. First, for the 

ADRC cohort the scanner field strength and the Freesurfer version varied within the cohort. 

Although this variation was adjusted for in analyses, this may not have been sufficient to 

overcome any noise that was introduced into the data. In addition, different memory tests 

were administered across cohorts, which could have resulted in differing estimates of the 

episodic memory construct. However, our results also suggest that the failure to find an 

effect in one cohort was not specific to the particular set of memory tasks used for that 

cohort, but instead a more general phenonemenon observed across cohorts.

Overall, the current study did not find a significant BDNF effect, in terms of either genotype 

or plasma, on either hippocampal volume or memory. These null results were observed in 

two independent cohorts with sample sizes similar or larger than those in the existing 

literature. Thus, our findings suggest that Val66Met BDNF polymorphism and plasma 

BDNF may not be robust predictors for variance in hippocampal volume or memory in 

middle age and older adult cohorts. However, longitudinal investigations, and the 

incorporation of other brain regions and cognitive domains as well as potential moderators, 

may reveal protective roles of BDNF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
BDNF genotype and hippocampal volume. A) ADNI cohort (CDR=0: F(1,167)=.520, p=.

472; CDR>1: F(1,365)=.001, p=.973); B) ADRC cohort (CDR=0: F(1,231)=.400, p=.528; 

CDR>1: F(1,67)=1.822, p=.182). Black bars = Cognitively normal, and gray bars = Early-

stage dementia. Data represent group means for hippocampal volume, and error bars are 

standard error of the mean.
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Figure 2. 
BDNF genotype and memory. A) ADNI cohort (CDR=0: F(1,187)=.424, p=.516; CDR>1: 

F(1,458)=.515, p=.473); B) ADRC cohort (CDR=0: F(1,231)=.647, p=.472; CDR>1: 

F(1,96)=.464, p=.498). Black bars = Cognitively normal, and gray bars = Early-stage 

dementia. Data represent group means for the standardized memory composite, and error 

bars are standard error of the mean.
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Figure 3. 
Plasma BDNF and hippocampal volume. A) ADNI cohort; B) ADRC cohort. Black circles = 

Cognitively normal, and gray circles = Early-stage dementia. The black line represents the 

regression line for the cognitively normal group, and the gray line represents the regression 

line for the early-stage dementia group. P-values are adjusted FDR corrected.
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Figure 4. 
Plasma BDNF and memory. A) ADNI cohort; B) ADRC cohort. Black circles = Cognitively 

normal, and gray circles = Early-stage dementia. The black line represents the regression 

line for the cognitively normal group and the gray line represents the regression line for the 

early-stage dementia group. P-values are adjusted FDR corrected.
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