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Brain tumours are themost common solid tumours in children, representing 20%of all cancers. Themost frequent posterior
fossa tumours aremedulloblastomas, pilocytic astrocytomas and ependymomas. Texture analysis (TA) of MR images can be
used to support the diagnosis of these tumours by providing additional quantitative information.MaZda softwarewas used
to performTAon T1- and T2-weighted images of childrenwith pilocytic astrocytomas,medulloblastomas and ependymomas
of the posterior fossa, who had MRI at Birmingham Children’s Hospital prior to treatment. The region of interest was se-
lectedon three slices per patient in Image J, using thresholding andmanual outlining. TAproduced279 features,whichwere
reduced using principal component analysis (PCA). The principal components (PCs) explaining 95% of the variance were
used in a linear discriminant analysis (LDA) and a probabilistic neural network (PNN) to classify the cases, using DTREG
statistics software. PCA of texture features from both T1- and T2-weighted images yielded 13 PCs to explain >95% of the
variance. The PNN classifier for T1-weighted images achieved 100% accuracy on training the data and 90% on leave-one-
out cross-validation (LOOCV); for T2-weighted images, the accuracy was 100% on training the data and 93.3% on LOOCV.
A PNN classifier with T1 and T2 PCs achieved 100% accuracy on training the data and 85.8% on LOOCV. LDA classification
accuracies were noticeably poorer. The features found to hold the highest discriminating potential were all co-occurrence
matrix derived, where adjacent pixels had highly correlated intensities. This study shows that TA can be performed on stan-
dard T1- and T2-weighted images of childhood posterior fossa tumours using readily available software to provide high di-
agnostic accuracy. Discriminatory features do not correspond to those used in the clinical interpretation of the images and
therefore provide novel tumour information. © 2014 The Authors. NMR in Biomedicine published by JohnWiley & Sons Ltd.
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INTRODUCTION

Brain and spinal cord tumours are the most common solid tumours
in children (1,2), representing 20% of all childhood cancers (3). Brain
tumours also cause the highest number of deaths among paediatric
cancer patients (4), and the combination of the tumour and its treat-
ment commonly causes significant morbidity in terms of physical
deficits, neuropsychological and neuroendocrine effects (5).

ConventionalMRI is collectedonall casesofpaediatricbrain tumour,
and is usually assessed qualitatively; quantitative analysis is not under-
taken routinely. However, there is apotentialwealthof informationnot
visible to the human eye, which can be extracted fromMR images and
quantified using texture analysis (TA) techniques. This may yield addi-
tional information to characterise paediatric brain tumours, provide
new insights on the characteristic features and enable the combina-
tion of MRI and data from other quantitative techniques, such as MRS.
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In this study, TA was employed for the diagnosis of paediatric
posterior fossa tumours. Posterior fossa tumours are studied
here, as they are relatively common and usually biopsied, there-
fore providing a useful test-bed for the technique. The most
common posterior fossa tumours are pilocytic astrocytomas
(grade 1), medulloblastomas (grade 4) and ependymomas
(grade 2 or 3) (4). Although posterior fossa tumours are generally
resected (except those located in the brainstem) (6), having a
means of non-invasive diagnosis is useful in guiding and
planning treatment. Conventionally, radiologists use a set of
characteristics known to be associated with a particular tumour
type and deduce a diagnosis from these (7–9). However, each
type of tumour can have variable appearances within the group
(10,11), and it is to be expected that the diagnosis from conven-
tional radiological reporting will not be completely accurate.
Given the skilled nature of the process, the accuracy of diagnosis
will also depend on the training, expertise and judgment of the
radiologist. The accuracy of diagnosis by conventional radiologi-
cal reporting of MRI for paediatric brain tumours has been
quoted as 63%, with a further 10% having the correct diagnosis
in the differential; expert retrospective review of the images
increased the accuracy of diagnosis to 71% (12). Similar rates
have been found for posterior fossa tumours in children (8).
Diffusion-weighted imaging can provide some extra discrimination
between the tumour types, but quantitative analysis shows that
there is overlap in the mean apparent diffusion coefficients
between the different tumour types (13).
There is increasing interest in whether a more sophisticated

quantitative analysis of MRI may add to the conventional reporting.
The analysis of diffusion-weighted imaging by a combination of
quantitative image analysis and automated pattern recognition
has been reported to show high accuracies in the diagnosis of child-
hood brain tumours (14), and a similar approach has shown a high
diagnostic accuracy for MRS (15). Less attention has been paid to
the application of these quantitative pattern recognition techniques
to the T1- and T2-weighted images collected as part of routine
clinical practice. TA provides a method for the quantification of
the variation in image patterns, which can also include data not
taken into account in conventional radiological reporting because
of its small scale (7). The quantitative and largely automated nature
of the technique may be particularly valuable, and its combination
with automated pattern recognition may provide a powerful
method for the quantitative analysis of conventional images. The
availability of conventional MRI and analysis packages means that
no additional infrastructure, expertise or cost is required, and the
technique can potentially be widely implemented.
TA has shown promise in the discrimination between lesions on

MR images (7) and provides quantitative, reproducible results. It has
beenused in brain tumours, epilepsy,multiple sclerosis and other dis-
orders (7,16,17), as well as for various image types (e.g. MR, X-ray)
(18–25). TA involves four issues: feature extraction, texture discrimina-
tion, texture classification and shape from texture (26).
In this study, feature extraction and texture classification are

used. There are many textural features that can be investigated
and various ways of computationally implementing the analysis.
One of the methods, which has been used in research and is well
documented in the literature, is MaZda software (25,27,28), a
software package for two- and three-dimensional image TA; this
was used in this study. There are four approaches to TA, namely
structural, statistical, model based and transform methods (26).
Another issue in TA is to ensure that the features computed

characterise the image texture exclusively, regardless of the global

image characteristics, such as overall brightness, contrast or other
bias (25). This is achieved in MaZda using a normalisation proce-
dure, which reduces the dependence of higher order parameters
on first-order gray-level distribution. Previous studies have shown
that TA can provide reproducible results under different MRI
acquisition protocols if appropriate normalisation is used. (29–31).

CLASSIFICATION

The general purpose of feature selection is to find the optimum
combination of features which provides the best classification
result. Features that are not relevant to the classification problem
should be eliminated. Principal component analysis (PCA) is an
unsupervised feature reduction technique, which is widely used
in pattern recognition studies (32–36).

Various types of artificial neural network (ANN) have found
widespread use in a great number of medical diagnostic decision
support system applications, as they are believed to be efficient
and reliable algorithms with a great predictive power, when
compared with other statistical modelling techniques, such as
statistical regression (37–41). Probabilistic neural networks
(PNNs) can provide a very general and powerful classification
model when there are adequate data of known classification.
PNNs offer several advantages over back-propagation networks,
such as shorter training time (42), effectiveness on small datasets,
and easier and better interpretability (37,43,44). Moreover, PNNs
allow true incremental learning, where new training data can be
added at any time, without requiring re-training of the entire
network (44–49). The explanation of PNN parameters that can
influence classification has been described previously (37,44,50,51).
In this study, we combine TA with PNN to provide a quantitative
method for decision support in the non-invasive diagnosis of
childhood posterior fossa tumours.

METHODS

MRI

Children with pilocytic astrocytomas, medulloblastomas and
ependymomas of the posterior fossa, who had MRI at Birmingham
Children’s Hospital prior to treatment (except stereotactic biopsy),
were included in the study.

Acquisition protocol

Images were acquired on a Siemens (Germany) Symphony 1.5-T
ΜR scanner. T1-weighted (pre-contrast) axial two-dimensional
turbo spin echo images were acquired using a TR of 700ms
and a TE of 10–20ms. T2-weighted axial two-dimensional turbo
spin echo images were acquired using a TR of 3000ms and a
TE of 100ms. The images were anonymised and stored, in
DICOM format, on a research database, available at the Institute
of Child Health’s Brain Tumour Research Group. Radiology
reports made at the time of MRI were reviewed for all cases to
identify whether a diagnosis had been proposed. Radiologists
would have had access to clinical information and all radiological
information available at the time when making the report.

TA

T2 images were analysed first, as tumours were generally easier
to detect on these, and three image slices per patient were
chosen, where the tumour was most visible/largest. Three
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images were used per patient in order to account for intra-
tumour variability and increase the amount of data available
on the MR image that was used for TA. The tumour or region
of interest (ROI) was chosen in Image J using thresholding ±
manual outlining. The image slices and ROI were selected as a
consensus from the multi-disciplinary team. The ROI was saved
in .bmp format, opened in MaZda (v. 3.3) (25,27,28) and saved
in .roi format. For T1 images, the slices most closely matching
the T2 slices were used, and the same ROI was employed. In
MaZda, the image was viewed, normalised, the ROI was loaded
over it and TA was run (Fig. 1). Normalisation was performed by
choosing the intensity range of each ROI to be within three stan-
dard deviations below and above the mean.

TA yielded 279 features based on histogram, gradient map,
co-occurrence matrix produced for four directions and five
inter-pixel distances, run length matrix, autoregressive model
and Harr wavelet transform. Briefly, histogram-based features
refer to statistical parameters of the intensity of pixels within
the ROI. Gradient map-based features use the histogram of the
image gradient and a feature set is calculated for the image
intensity distribution. The co-occurrence matrix is a second-
order histogram, which is calculated from the intensities of pairs
of pixels, with the spatial relationship of the pairs of pixels
defined. Run length matrix features refer to counts of pixel runs
with the specified grey-scale level and length (performed for four
directions). The autoregressive model assumes that the pixel in-
tensity may be predicted as a weighted sum of four neighbouring
pixel intensities (with reference to the mean value of the image
ntensity). The model’s parameters are the weights associated with
these pixels and the variance of the minimised prediction error.

Finally, in the Harr wavelet transform method, the wavelet images
are scaled up to five times, transforming the image into 20
frequency channels. The texture-characterising features arise from
data on texture frequency components extracted from the
energies computed within the channels.

Feature reduction

PCA was applied in Minitab 15 (52), a commercially available
statistics package, in order to identify the underlying data
structure and to achieve dimensionality reduction. The number
of principal components (PCs) to be used in the classifiers was
chosen in order to account for 95% of the cumulative variance.

Classification

Classification of the posterior fossa tumours based on the MR
image features was performed using the PC scores as input
variables in a PNN and linear discriminant analysis (LDA) in
DTREG v.9.6 (53), a commercially available software. Different
PNN training schemes can be examined using the commercial
software DTREG: (i) a Gaussian kernel or a reciprocal kernel;
and (b) one smoothing parameter σ for all input random
variables or a different σ for each input random variable or a
separate σ for each input random variable and class. A Gaussian
kernel and a separate σ for each input random variable and class
were used as the training scheme, as these gave the best results.
Smoothing parameters may take values of different orders of
magnitude. As these parameters have a great effect on the
classification performances of PNN, their optimal values were
automatically assessed. The PNN had 51 and 43 hidden neurons
in the second layer for T1 and T2, respectively, and 84 hidden
neurons for the combined T1 and T2 classifier, determined using
the minimum error criterion; three summation layer neurons;
and one output layer neuron. Classification errors were determined
using the known class labels from histopathology. As a result of the
small numbers of data (40 patients), the classifier was validated
using leave-one-out cross-validation (LOOCV) [leaving one patient
out at a time (three images)]. Ten-fold cross-validation was also
performed to further test the reliability of the classifier in terms of
over-fitting errors.

RESULTS

MR images from 21 patients with medulloblastomas, 14 patients
with pilocytic astrocytomas and five patients with ependy-
momas were investigated using TA. In the conventional radio-
logical review, 11 of 21 (52%) medulloblastomas, one of five
(20%) ependymomas and six of 14 (43%) pilocytic astrocytomas
had the correct diagnosis specified as the most likely, giving an
overall accuracy of 18 of 40 (45%). In four of these cases, alterna-
tive possible diagnoses were proposed, showing some degree of
diagnostic uncertainty. One medulloblastoma was incorrectly
diagnosed as an ependymoma and one ependymoma was
incorrectly diagnosed as a medulloblastoma. Two tumours in
each category had two or more diagnoses proposed with no
preference given. In six medulloblastomas, one ependymoma
and six pilocytic astrocytomas, no diagnosis or differential was
proposed. Scrutiny of the reports for these cases showed that
tumour features were often present which could cause difficulty
in diagnosis, and most reports were from radiologists who had
proposed a diagnosis for other tumours, implying that diagnostic
uncertainty existed, rather than a bias towards certain radiologists

Figure 1. Region of interest (ROI) in red loaded over image in MaZda
after image normalisation. The tumour is a pilocytic astrocytoma with a
characteristic peripheral solid nodule and large cyst. It should be noted
that the large cyst is not included in the ROI.
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systematically not reporting a diagnosis. However, if these cases
are excluded from the analysis, the accuracy of diagnosis is 11
of 15 (73%) for medulloblastomas, one of four (25%) for
ependymomas and six of eight (75%) for pilocytic astrocytomas,
giving 18 of 27 (67%) overall. The sensitivities and specificities
for each tumour category are given in Table 1.
PCA of texture features from T1-weighted images yielded 13

PCs to explain >95% of the variance. The first PC (PC1) mostly
represents co-occurrence matrix-derived parameters (Sum Entropy):
S(1,0)SumEntrp, S(0,1)SumEntrp. PC2 mostly represents co-occur-
rence matrix-derived parameters (Correlation): S(4,0)Correlat, S(3,–3)
Correlat, S(2,–2)Correlat [equations for the calculation of these
parameters can be found in ref. (54)]. S(x,y) represents the co-
occurrence matrix for inter-pixel distance x along the rows and y
along the columns. A plot of PC2 versus PC1 is shown in Fig. 2,
demonstrating the difficulty in separating the three tumour groups
based on the PCs alone.

These PCs were then used as input for the PNN to classify the
tumours into the three categories (pilocytic astrocytoma,
ependymoma and medulloblastoma). The classifier achieved
100% accuracy on training the data and 90% on LOOCV
(validation data accuracy: medulloblastoma, 96.8%; ependymoma,
60%; pilocytic astrocytoma, 90.5%). Ten-fold cross-validation gave
the same training and validation accuracies with the number of
hidden neurons increasing to 120. The sensitivity and specificity
were calculated for each category, treating the category of
interest as the positive category and grouping the other two
categories as negative. The results are shown in Table 2.

Using the same PCs in an LDA resulted in noticeably poorer
classification accuracy. The classifier achieved 62.5% accuracy
on training the data and 37.5% on LOOCV (validation data
accuracy: medulloblastoma, 36.5%; ependymoma, 6.7%; pilocytic
astrocytoma, 50.0%). The sensitivity and specificity are reported
in Table 3 and the canonical discriminant function scores are
presented in Fig. 3.

PCA of texture features from T2-weighted images also yielded
13 PCs to explain >95% of the variance. The first PC (PC1) mostly
represents co-occurrence matrix-derived parameters (Difference en-
tropy): S(1,–1)DifEntrp, S(2,–2)DifEntrp, S(0,2)DifEntrp. PC2 mostly
represents co-occurrencematrix-derived parameters (Sumvariance):
S(0,2)SumVarnc, S(0,1)SumVarnc, S(1,–1)SumVarnc [equations for
the calculation of these parameters can be found in ref. (54)]. S(x,y)
represents the co-occurrence matrix for inter-pixel distance x along
the rows and y along the columns. A plot of PC2 versus PC1 is shown
in Fig. 4, demonstrating the difficulty in separating the three tumour
groups based on the PCs alone.

These PCs were then used as input for the PNN to classify the
tumours into the three categories. The classifier achieved 100%
accuracy on training the data and 93.3% on LOOCV (validation
data accuracy: medulloblastoma, 95.2%; ependymoma, 80%;
pilocytic astrocytoma, 95.2%). Ten-fold cross-validation gave a
training accuracy of 100% and an overall accuracy for LOOCV
of 88.3% (validation data accuracy: medulloblastoma, 93.7%;
ependymoma, 66.7%; pilocytic astrocytoma, 88.1%), with the
number of hidden neurons increasing to 120. The sensitivity
and specificity are reported in Table 2.

Using the same PCs in an LDA resulted in noticeably poorer
classification accuracy. The classifier achieved 68.3% accuracy
on training the data and 57.5% on LOOCV (validation data
accuracy: medulloblastoma, 58.7%; ependymoma, 13.3%; pilocytic
astrocytoma, 71.4%). The sensitivity and specificity are reported in
Table 3 and the canonical discriminant function scores are
presented in Fig. 5.

PNN and LDA classification were also performed using the
combined data from T1 and T2 to establish whether the
additional information improves the results further. The PNN
classifier achieved 100% accuracy on training the data and
85.8% on LOOCV (validation data accuracy: medulloblastoma,

Table 1. Sensitivity and specificity of radiological diagnosis
for each tumour category

Sensitivity (%) Specificity (%)

Medulloblastoma 58 47
Ependymoma 20 55
Pilocytic astrocytoma 43 75

Figure 2. Principal component 2 (PC2) versus PC1 from texture features
of T1-weighted images. Groups: 1, medulloblastoma; 2, ependymoma; 3,
pilocytic astrocytoma.

Table 2. Sensitivity and specificity of probabilistic neural network (PNN) classification at leave-one-out cross-validation for each
tumour category

T1 T2 T1 + T2

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Medulloblastoma 96.8 84.2 95.2 91.2 94.4 81.6
Ependymoma 60.0 100 80.0 98.1 63.3 98.1
Pilocytic astrocytoma 90.5 96.2 95.2 98.7 81.0 94.2
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94.4%; ependymoma, 63.3%; pilocytic astrocytoma, 81.0%).
Ten-fold cross-validation gave a training accuracy of 100% and
an overall accuracy of 85.4% (validation data accuracy: medullo-
blastoma, 92.9%; ependymoma, 60%; pilocytic astrocytoma,
83.3%), with the number of hidden neurons increasing to 240.
The sensitivity and specificity for the PNN classifier are reported
in Table 2. The LDA classifier gave much lower classification
accuracies, namely 56.7% on training the data, and 42.5% on
LOOCV (validation data accuracy: medulloblastoma, 44.4%;
ependymoma, 26.7%; pilocytic astrocytoma, 45.2%). The sensitivity
and specificity for the LDA classifier are reported in Table 3.

DISCUSSION

This study shows that TA can be implemented easily on standard
T1- and T2-weighted images routinely acquired when children
present with suspected brain tumours of the posterior fossa.
The analysis can be performed with commercially available soft-
ware, with extensive manuals to support its use, and therefore
does not require highly specialised computing knowledge. In
addition, it is possible to distinguish between the three most
common paediatric posterior fossa tumours with high accuracy
(90.0% and 93.3% for T1- and T2-weighted images, respectively),
making it potentially a valuable tool to aid diagnosis by contributing
information not visible to the radiologist on inspection. Combining
data from T1- and T2-weighted images does not seem to offer
additional benefits to the classification.
A review of conventional radiological reporting showed a

lower diagnostic accuracy than that estimated from TA and
PNN. However, although the correct diagnosis was specified in
only 45% of conventional radiological reports, very few cases
(2/40, 5%) had an incorrect diagnosis reported. This implies that
there is a large diagnostic uncertainty in conventional radiological
reporting of these tumours. Even in cases in which the correct
diagnosis was specified, four of 18 (22%) had an alternative
proposed. A method which can help to improve the confidence
with which the diagnosis can be given fromMRI would be a useful
aid. It is interesting to note that LDA gave similar diagnostic
accuracies to conventional radiological reporting, further demon-
strating the diagnostic challenge arising from overlapping
imaging features between tumour types, and illustrating the
potential value of non-linear classification methods.
Although radiologists are often able to distinguish the type of

tumour from inspection of the images, this usually includes a
degree of uncertainty, as shown above, and all three tumour
types may appear in the differential diagnosis in the radiologist’s
report. This is because some features can overlap between
tumour types, and each type of tumour can also have variable
appearances within the group. For example, ependymomas

Table 3. Sensitivity and specificity of linear discriminant analysis (LDA) classification at leave-one-out cross-validation for each tu-
mour category

T1 T2 T1 + T2

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Medulloblastoma 36.5 63.2 58.7 82.5 44.4 61.4
Ependymoma 6.7 70.5 13.3 70.5 26.7 71.9
Pilocytic astrocytoma 50.0 70.5 71.4 87.2 45.2 77.6

Figure 3. Principal component 2 (PC2) versus PC1 from texture features
of T2-weighted images. Groups: 1, medulloblastoma; 2, ependymoma; 3,
pilocytic astrocytoma.

Figure 4. Canonical discriminant functions for texture analysis of T1-
weighted images. Groups: 1, medulloblastoma; 2, ependymoma; 3,
pilocytic astrocytoma.
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appear isointense to grey matter on T2-weighted images, like
medulloblastomas. Cerebellar astrocytomas can show low
signal intensity on T1-weighted images, as can ependymomas
and medulloblastomas (10,11). Arle et al. (8) studied 33 children
with primitive neuroectodermal tumours, astrocytomas and
ependymomas/other tumours of the posterior fossa with
long-TE single-voxel spectroscopy. Creatine/N-acetylaspartate
(Cr/NAA), N-acetylaspartate/choline (NAA/Cho) and creatine/
choline (Cr/Cho), 10 MRI tumour characteristics, tumour size,
and patient age and sex were used in a neural network and
compared with predictions made by a neuroradiologist blind
to the MRS and histopathology results. The neuroradiologist
predicted the tumour type with 73% accuracy, and neural
networks with different data combinations as inputs achieved
accuracies of 58–95%. The neural network which included all
data achieved a prediction accuracy of 94.6%.
The current method relies on manual outlining of the ROI, and

this can be both time consuming and open to the interpretation
of the radiologist. Automated methods for tumour segmentation
are becoming available, but, at present, are not completely
robust, especially for complex tumours. Semi-automated
methods can reduce the time taken to define the ROI, but are
still open to the interpretation of the radiologist.
The texture features found to hold the highest discrimination

potential are all co-occurrence matrix derived. The co-occurrence
matrix is a second-order histogram, computed from the intensities
of pairs of pixels. The spatial relationship of the pixels in a pair is
defined. When divided by the total number of neighbouring
pixels in the ROI, this matrix becomes the estimate of the joint
probability of two pixels, a distance d apart along a given direction
θ, having particular co-occurring values i and j. The result is a
square matrix with dimensions equal to the number of intensity
levels in the image, for each distance d and orientation θ (25,54).
It is worth noting the classification method used here, namely

PNN, as most previous studies have used some form of LDA (7).
Although LDA is a reasonable approach, and a more straightfor-
ward and perhaps more intuitive method, it is important to
incorporate and test more advanced methods, which may
substantially improve classification, as in this study. Discriminant

analysis is a traditional statistical classification method built on
the Bayesian decision theory, where the posterior probability
for the classification decision must be calculated by assuming
an underlying probability model. A disadvantage of applying
the simple Bayes decision rule is that the density functions are
usually not known or cannot be assumed to be normal, and
therefore the posterior probabilities cannot be determined
directly. In contrast, neural networks estimate the posterior
probabilities directly, the basis for establishing a classification
rule. Although statistical pattern classifiers are based on Bayes
decision theory and posterior probabilities, thus linking them
to neural networks, a direct comparison between them may
not be possible, as neural networks are non-linear model-free
methods, whereas statistical methods are linear and model
based (55). Neural networks have an advantage over conven-
tional classification methods for a number of other reasons. They
are data-driven self-adaptive methods, which can adjust to the
data without explicit specification of functional or distributional
form for the underlying model. They can also approximate any
function arbitrarily closely. Furthermore, they are non-linear
models, and are thus flexible in modelling complex relationships
(55). LDA has been shown to perform well when datasets are
linearly separable, but classification accuracies decrease when
non-linearity is present. However, with real datasets, the degree of
non-linearity is often not known; thus the use of both LDA and neu-
ral networks to compare performance is useful (56). Linear classifiers
may not have the power to learn the underlying relationships
sufficiently well, resulting in under-fitting of the data (55).

Classification performance tends to increase with increasing
number of hidden nodes, but results in increasing computation
cost. This may be important in complex applications, where best
validity and computational cost factor need to be balanced (57).
In this study, we had a relatively small sample size and therefore
focused on improving the classification results and their
generalisability in order to demonstrate the value of TA in the
diagnosis of paediatric posterior fossa tumours. The technique
is used on this test-bed of tumours and can be extended to
larger datasets and other types of brain tumour classifiers. The
size of neural networks can be decreased when there are larger
datasets, and even more so when these datasets are large
compared with the complexity of the decision surface (58).

Posterior fossa tumours are a good test-bed for the technique
as they are easy to identify on imaging, and usually belong to
one of the three categories mentioned. TA and classification
could also be applied to other brain tumours, such as low-grade
gliomas, using the analysis scheme described in this study, and
the results combined with MRS in the same cohort. In addition,
TA can be used in prognostication and treatment monitoring
to provide additional, robust and reproducible information. An
important advantage of quantitative analysis, such as that
presented here, is the ability to combine results with other
quantitative techniques, such as MRS and diffusion imaging.

CONCLUSION

This study shows that TA can be implemented easily on standard
T1- and T2-weighted images, routinely acquired when children
present with suspected brain tumours of the posterior fossa.
Discriminatory features are mainly associated with small-scale
structure and thus do not correspond to the macroscopic
features used in the clinical interpretation of the images.

Figure 5. Canonical discriminant functions for texture analysis of T2-
weighted images. Groups: 1, medulloblastoma; 2, ependymoma; 3,
pilocytic astrocytoma.
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Therefore, TA can provide novel tumour characteristics. This
methodology can be extended to other paediatric brain
tumours, such as low-grade gliomas, and combined with MRS
metabolite values in a pattern recognition method. Information
from the two techniques is likely to be independent and the
combination could provide improved characterisation. TA can
be performed with commercially available software, with exten-
sive manuals to support its use, and therefore does not require
highly specialised computing knowledge. TA can produce a quan-
titative analysis of MR images which can aid in the diagnosis of
childhood posterior fossa tumours and could play an important
role in the radiological investigation of these patients.

Acknowledgements

We would like to thank all members of the Brain Tumour
Research Group for their support, as well as staff at the Tumour
Registry at Birmingham Children’s Hospital. In addition, we
would like to thank staff at the Radiology Department of
Birmingham Children’s Hospital. Finally, we thank the Samantha
Dickson Brain Tumour Trust and the EU Framework 6, Cancer
Research UK, the Engineering and Physical Sciences Research
Council, Medical Research Council, National Institute for Health
Research (NIHR), Poppy Fields, Birmingham Children’s Hospital
Charities and an NIHR Research Professorship for funding this
work. The study sponsors had no involvement in the preparation
of the manuscript.

REFERENCES
1. Levy AS. Brain tumors in children: evaluation and management. Curr.

Probl. Pediatr. Adolesc. Health Care, 2005; 35(6): 230–245.
2. Stevens MCG, Cameron AH, Muir KR, Parkes SE, Reid Η, Whitwell H.

Descriptive epidemiology of primary central nervous system tu-
mours in children: a population-based study. Clin. Oncol. 1991; 3:
323–329.

3. Stiller CA, Nectoux J. International incidence of childhood brain and
spinal tumours. Int. J. Epidemiol. 1994; 23(3): 458–464.

4. Panigrahy A, Bluml S. Neuroimaging of pediatric brain tumors: from
basic to advanced magnetic resonance imaging (MRI). J. Child
Neurol. 2009; 24(11): 1343–1365.

5. Blaney SM, Kun LE, Hunter J, Rorke-Adams LB, Lau C, Strother D,
Pollack IF. Tumors of the central nervous system. In: Pizzo PA,
Poplack DG (eds). Principles and Practice of Pediatric Oncology, 5th
edn. Lippincott Williams & Wilkins: Philadelphia, PA, 2006; 786–864.

6. Sievert AJ, Fisher MJ. Pediatric low-grade gliomas. J. Child Neurol.
2009; 24(11): 1397–1408.

7. Kassner A, Thornhill RE. Texture analysis: a review of neurologic MR
imaging applications. Am. J. Neuroradiol. 2010; 31(5): 809–816.

8. Arle JE, Morriss C, Wang ZJ, Zimmerman RA, Phillips PG, Sutton LN.
Prediction of posterior fossa tumor type in children by means of
magnetic resonance image properties, spectroscopy, and neural
networks. J. Neurosurg. 1997; 86(5): 755–761.

9. Barkovich AJ, Raybaud C. Pediatric Neuroimaging, 5th edn. Lippincott
Williams & Wilkins: Philadelphia, PA; 2012.

10. Jansen JFA, Backers WH, Nicolay K, Kooi ME. 1H MR spectroscopy of
the brain: absolute quantification of metabolites. Radiology, 2006;
240: 318–332.

11. Koeller KK, Rushing EJ. Medulloblastoma: a comprehensive review
with radiologic–pathologic correlation. Radiographics, 2003; 23(6):
1613–1637.

12. Panigrahy A, Nelson MD Jr, Blüml S. Magnetic resonance spectros-
copy in pediatric neuroradiology: clinical and research applications.
Pediatr. Radiol. 2010; 40(1): 3–30.

13. Jaremko JL, Jans LBO, Coleman LT, Ditchfield MR. Value and limita-
tions of diffusion-weighted imaging in grading and diagnosis of
pediatric posterior fossa tumors. Am. J. Neuroradiol. 2010; 31:
1613–1616.

14. Bull JG, Saunders DE, Clark CA. Discrimination of paediatric brain
tumours using apparent diffusion coefficient histograms. Eur. Radiol.
2012; 22(2): 447–457.

15. Vicente J, Fuster-Garcia E, Tortajada S, García-Gómez JM, Davies N,
Natarajan K, Wilson M, Grundy RG, Wesseling P, Monleón D, Celda
B, Robles M, Peet AC. Accurate classification of childhood brain
tumours by in vivo 1H MRS – a multi-centre study. Eur. J. Cancer,
2013; 49(3): 658–667.

16. Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM,
Cairncross JG, Mitchell JR. An analysis of image texture, tumor location,
and MGMT promoter methylation in glioblastoma using magnetic
resonance imaging. Neuroimage, 2010; 49(2): 1398–1405.

17. Brown R, Zlatescu M, Sijben A, Roldan G, Easaw J, Forsyth P, Parney I,
Sevick R, Yan E, Demetrick D, Schiff D, Cairncross G, Mitchell R. The use
of magnetic resonance imaging to noninvasively detect genetic signa-
tures in oligodendroglioma. Clin. Cancer Res. 2008; 14(8): 2357–2362.

18. Yu O, Parizel N, Pain L, Guignard B, Eclancher B, Mauss Y, Grucker D.
Texture analysis of brain MRI evidences the amygdala activation by
nociceptive stimuli under deep anesthesia in the propofol–formalin
rat model. Magn. Reson. Imaging, 2007; 25(1): 144–146.

19. Bonilha L, Kobayashi E, Castellano G, Coelho G, Tinois E, Cendes F, Li
ML. Texture analysis of hippocampal sclerosis. Epilepsia, 2003; 44(12):
1546–1550.

20. Chen G, Jespersen S, Pedersen M, Pang QI, Horsman MR, Jørgensen
HS. Evaluation of anti-vascular therapy with texture analysis.
Anticancer Res 2005; 25(5): 3399–3406.

21. Jirák D, Dezortová M, Taimr P, Hájek M. Texture analysis of human
liver. J. Magn. Reson. Imaging, 2002; 15(1): 68–74.

22. Harrison L, Dastidar P, Eskola H, Järvenpää R, Pertovaara H, Luukkaala
T, Kellokumpu-Lehtinen PL, Soimakallio S. Texture analysis on MRI
images of non-Hodgkin lymphoma. Comput. Biol. Med. 2008; 38(4):
519–524.

23. Mayerhoefer ME, Breitenseher MJ, Kramer J, Aigner N, Hofmann S,
Materka A. Texture analysis for tissue discrimination on T1-
weighted MR images of the knee joint in a multicenter study:
transferability of texture features and comparison of feature
selection methods and classifiers. J. Magn. Reson. Imaging, 2005;
22(5): 674–680.

24. Blouin S, Moreau MF, Baslé MF, Chappard D. Relations between
radiograph texture analysis and microcomputed tomography in
two rat models of bone metastases. Cells Tissues Organs, 2006; 182
(3–4): 182–192.

25. Szczypinski P, Strzelecki M, Materka A, Klepaczko A. MaZda – a
software package for image texture analysis. Comput. Methods
Programs Biomed. 2009; 94(1): 66–76.

26. Materka A, Strzelecki M. Texture Analysis Methods – A Review, COST
B11 Report. Technical University of Lodz: Lodz; 1998.

27. Szczypinski P, Strzelecki M, Materka A. MaZda – a software for
texture analysis. Proceedings of the International Symposium on Infor-
mation Technology Convergence (ISITC), Jeonju, South Korea, 2007;
245–249.

28. Strzelecki M, Szczypinski P, Materka A, Klepaczko A. A software tool
for automatic classification and segmentation of 2D/3D medical
images. Nucl. Instrum. Methods Phys. Res. A, 2013; 702: 137–140.

29. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition
protocols and image intensity normalization methods on texture
classification. Magn. Reson. Imaging, 2004; 22(1): 81–91.

30. Lerski RA, Schad LR, Luypaert R, Amorison A, Muller RN, Mascaro L,
Ring P, Spisni A, Zhu X, Bruno A. Multicentre magnetic resonance
texture analysis trial using reticulated foam test objects. Magn.
Reson. Imaging, 1999; 17(7): 1025–1031.

31. Herlidou-Même S, Constans JM, Carsin B, Olivie D, Eliat PA, Nadal-
Desbarats L, Gondry C, Le Rumeur E, Idy-Peretti I, de Certaines JD.
MRI texture analysis on texture test objects, normal brain and intra-
cranial tumors. Magn. Reson. Imaging, 2003; 21(9): 989–993.

32. Wilson M, Davies NP, Brundler M, McConville C, Grundy RG, Peet AC.
High resolution magic angle spinning 1H NMR of childhood brain
and nervous system tumours. Mol. Cancer, 2009; 8(6).

33. Davies NP, Wilson M, Harris LM, Natarajan K, Lateef S, MacPherson L,
Sgouros S, Grundy RG, Arvanitis TN, Peet AC. Identification and
characterisation of childhood cerebellar tumours by in vivo proton
MRS. NMR Biomed. 2008; 21(8): 908–918.

34. Thomas CG, Harshman RA, Menon RS. Noise reduction in BOLD-
based fMRI using component analysis. Neuroimage, 2002; 17(3):
1521–1537.

E. ORPHANIDOU-VLACHOU ET AL.

wileyonlinelibrary.com/journal/nbm © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. NMR Biomed. 2014; 27: 632–639

638



35. Grahn H, Szeverenyi NM, Roggenbuck MW, Delaglio F, Geladi P. Data
analysis of multivariate magnetic resonance images I. A principal
component analysis approach. Chemometrics Intell. Lab. Syst. 1989;
5(4): 311–322.

36. Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip.
Rev. Comput. Stat. 2010; 2(4): 433–459.

37. Behzadi SS, Prakasvudhisarn C, Klocker J, Wolschann P, Viernstein H.
Comparison between two types of artificial neural networks used for
validation of pharmaceutical processes. Powder Technol. 2009; 195
(2): 150–157.

38. Hajmeer M, Basheer I. A probabilistic neural network approach for
modeling and classification of bacterial growth/no-growth data.
J. Microbiol. Methods, 2002; 51(2): 217–226.

39. Hajmeer MN, Basheer IA, Marsden JL, Fung DYC. New approach for
modeling generalized microbial growth curves using artificial neural
networks. J. Rapid Methods Automation Microbiol. 2000; 8(4): 265–283.

40. Übeyli ED, Übeyli M. Estimation of radiation damage at the structural
materials of a hybrid reactor by probabilistic neural networks. Expert
Systems Appl. 2009; 36(3, Part 1): 5184–5189.

41. Übeyli ED. Implementing automated diagnostic systems for breast
cancer detection. Expert Systems Appl. 2007; 33(4): 1054–1062.

42. Wasserman PD. Advanced Methods in Neural Computing (Vnr Com-
puter Library). Van Nostrand Reinhold: New York; 1993.

43. Tsai C-Y. An iterative feature reduction algorithm for probabilistic
neural networks. Omega, 2000; 28(5): 513–524.

44. Shan Y, Zhao R, Xu G, Liebich HM, Zhang Y. Application of probabi-
listic neural network in the clinical diagnosis of cancers based on
clinical chemistry data. Anal. Chim. Acta, 2002; 471(1): 77–86.

45. Specht DF. Probabilistic neural networks and polynomial Adaline as
complementary techniques for classification. IEEE Trans. Neural
Netw. 1990; 1(1): 111–121.

46. Specht DF. Probabilistic neural networks. Neural Netw. 1990; 3(1):
109–118.

47. Musavi MT, Chan KH, Hummels DM, Kalantri K, Ahmed W. A probabi-
listic model for evaluation of neural network classifiers. Pattern
Recogn. 1992; 25(10): 1241–1251.

48. Masters T. Advanced Algorithms for Neural Networks: A C++ Source-
book. Wiley: New York; 1995.

49. Masters T. Practical Neural Network Recipes. Wiley: New York; 1993.
50. Muniz AM, Liu H, Lyons KE, Pahwa R, Liu W, Nobre FF, Nadal J.

Comparison among probabilistic neural network, support vector ma-
chine and logistic regression for evaluating the effect of subthalamic
stimulation in Parkinson disease on ground reaction force during
gait. J. Biomech. 2010; 43(4): 720–726.

51. Chtioui Y, Bertrand D, Barba D. Reduction of the size of the learning
data in a probabilistic neural network by hierarchical clustering. Ap-
plication to the discrimination of seeds by artificial vision.
Chemometrics Intell. Lab. Syst. 1996; 35(2): 175–186.

52. Minitab 15. Available at: http://www.minitab.com [accessed 2009].
53. Sherrod PH. DTREG Software for Predictive Modeling and Forecast-

ing, 2004. Available at: http://www.dtreg.com [accessed 2009].
54. Materka A, Strzelecki M, Szczypinski P. MaZda Manual [online], 2006.

Available at: http://www.eletel.p.lodz.pl/mazda/download/mazda_manual.
pdf [accessed 12 November 2008].

55. Zhang GP. Neural networks for classification: a survey. IEEE Trans.
Syst. Man Cybernet. Part C: Appl. Rev. 2000; 30(4): 451–462.

56. Curram SP, Mingers J. Neural networks, decision tree induction and
discriminant analysis: an empirical comparison. J. Opl. Res. Soc.
1994; 45(4): 440–450.

57. Wanas N, Auda G, Kamel MS, Karray F. On the optimal number of
hidden nodes in a neural network. IEEE Canadian Conference on Electri-
cal and Computer Engineering, Ontario, Canada, 1998; Vol. 2, 918–921.

58. Wilson DR, Martinez TR. Improved center point selection for probabi-
listic neural networks. Proceedings of the International Conference on
Artificial Neural Networks and Genetic Algorithms (ICANNGA’97),
Norwich, England, 1997: 514–517.

DISCRIMINATION OF PAEDIATRIC BRAIN TUMOURS BY MR IMAGE TEXTURE ANALYSIS

NMR Biomed. 2014; 27: 632–639 © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. wileyonlinelibrary.com/journal/nbm

639

http://www.eletel.p.lodz.pl/mazda/download/mazda_manual.pdf
http://www.eletel.p.lodz.pl/mazda/download/mazda_manual.pdf

