
Translational 
Neurodegeneration

Martinez-Ramirez et al. Translational Neurodegeneration  (2015) 4:12 
DOI 10.1186/s40035-015-0034-0
REVIEW Open Access
Update on deep brain stimulation in
Parkinson’s disease

Daniel Martinez-Ramirez1, Wei Hu1, Alberto R. Bona2, Michael S. Okun1,2* and Aparna Wagle Shukla1*
Abstract

Deep brain stimulation (DBS) is considered a safe and well tolerated surgical procedure to alleviate Parkinson’s
disease (PD) and other movement disorders symptoms along with some psychiatric conditions. Over the last few
decades DBS has been shown to provide remarkable therapeutic effect on carefully selected patients. Although its
precise mechanism of action is still unknown, DBS improves motor functions and therefore quality of life. To date,
two main targets have emerged in PD patients: the globus pallidus pars interna and the subthalamic nucleus. Two
other targets, the ventralis intermedius and zona incerta have also been selectively used, especially in tremor-dominant
PD patients. The main indications for PD DBS have traditionally been motor fluctuations, debilitating medication
induced dyskinesias, unpredictable “off time” state, and medication refractory tremor. Medication refractory tremor
and intolerable dyskinesia are potential palliative indications. Besides aforementioned targets, the brainstem
pedunculopontine nucleus (PPN) is under investigation for the treatment of ON-state freezing of gait and postural
instability. In this article, we will review the most recent literature on DBS therapy for PD, including cutting-edge
advances and data supporting the role of DBS in advanced neural-network modulation.
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Introduction
Parkinson’s disease (PD) is a chronic progressive neuro-
degenerative disorder affecting multiple brain circuits
leading to motor symptoms such as bradykinesia, rigid-
ity, resting tremor, and loss of postural reflexes [1]. PD
also has non-motor manifestations such as neuropsychi-
atric symptoms, cognitive abnormalities, autonomic dis-
orders, sleep and gastrointestinal problems [2]. The
crude incidence rate of PD varies from 1.5 to 19 per
100,000 population per year [3]. The crude prevalence
rates have shown steady age-related increase, shifting
from 41 per 100,000 in the 40–49 age group to 1903 per
100,000 in people older than age 80 [4]. PD incidence
and prevalence are expected to grow over next decades
because of increasing efforts at extending the lifespan.
Among the chronic disorders, PD is also considered one
of the most difficult and challenging syndromes, and be-
sides affecting a patient’s quality of life [5], it substan-
tially increases caregiver burden [5].
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Since levodopa was introduced by George Cotzias in
1967 [6], remarkable pharmacotherapy improvements
have been made and new drugs and therapeutic strat-
egies have been brought to the marketplace. However
with progression of disease and development of drug-
induced motor fluctuations and dyskinesias, surgical
therapies have assumed an important role in treatment
of this selected group of patients [7]. PD approved brain
surgical treatments include deep brain stimulation (DBS)
and stereotactic ablation; two procedures which aim to
modulate abnormal neuronal activity within a circuit,
and alleviate symptoms [8]. Our review focuses on DBS,
highlighting the important aspects of this therapy, and
discussing the historical aspect of brain focused elec-
trical stimulation, We also discuss the biology and
mechanisms of action related to DBS, the current state
of cutting-edge methods to deliver electricity to the
brain and important future directions.
Review
History of DBS
Ancient Egyptians used a fish capable of generating
powerful current discharge to treat some types of pain
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[9]. Roman physician Scribonius Largus was credited
with the first medical use of electricity describing in his
text a number of remedies using an electric torpedo fish
[10]. Many experts attribute much of the underlying
basis supporting neurostimulation to Michael Faraday, a
British scientist who discovered that an electrical current
can produce a magnetic field [11]. In the 20th century,
different types of stereotactic procedures between the
20’s and 60’s were developed around the world and abla-
tive surgery was predominantly used to treat movement
disorders symptoms and to alleviate some psychiatric
symptoms. After the introduction of levodopa for PD in
the mid 1960’s, this new drug temporarily ended the era
of ablative surgery. However, the emergence of levodopa
related complications and recognition of symptoms re-
fractory to levodopa, forced the development of better
treatments in spite of the new dopamine based ap-
proach. Lesional therapy studies in non-human primate
MPTP models of PD also has led the field to a clearer
understanding on the pathophysiology of PD and a bet-
ter rationale for surgical intervention. In 1987 the
French neurosurgeon Alim Benabid introduced the
“chronic” high-frequency DBS approach and opened the
door to a new era of human treatment for PD [12]. Over
the past two decades a renaissance of neurosurgical
treatments has emerged for both neurological and
neuropsychiatric disorders.

Theoretical biology and mechanisms of action
DBS is considered a well-established therapy for PD
[13], even if it’s still unclear as to all of the biology and
the actual mechanisms of action that underpin its bene-
fits. Several theories have been proposed, implying that
more than one mechanism is likely responsible for the
therapeutic benefit.
Benabid’s group hypothesized that electrical stimula-

tion induced an inhibition of basal ganglia output struc-
tures, decreasing basic firing of neurons and suppressing
spontaneous neuronal activity [14, 15]. A reduction in
activity in brain tissue surrounding the electrode, the
possibility of depolarization blockade through K+ mediated
effects [16], Na + channels inactivation [17], pre-synaptic
depression of excitatory afferents [18], and hyperpolariza-
tion of neuronal bodies and dendrites [19] have all been re-
ported. Glutamate reduction with concomitant increases of
inhibitory neurotransmitters such as GABA [20] and ad-
enosine [21] may also play a role in the biology and mecha-
nisms of action of DBS.
Several studies have suggested an excitatory output

from the stimulated neuronal target as another potential
mechanism [22]. This idea has been supported by an ob-
served increase in excitatory neurotransmitters [23]. Pre-
vious studies have shown that electrical stimulation
induced an increase in blood flow in the globus pallidus
internus (GPi) during subthalamic nucleus (STN) stimu-
lation and also that cortical blood flow changes during
thalamic stimulation. These studies are consistent with
the activation of output hypotheses, and are further
supported by PET and fMRI studies [24, 25], which
have revealed correlations with Parkinson’s disease
motor symptom improvement [26]. Furthermore ad-
vanced computational studies showed a possible simul-
taneous cell body inhibition mechanism with an axonal
excitation [27]. Astrocytes (e.g. calcium release) are
thought to play a role in this orchestra of changes in-
cluding inhibiting cells, exciting fibers, changing cere-
bral blood flow, releasing excitatory neurotransmitters,
and also stimulating neurogenesis [28]. The biological
changes however, have not all been linked to mechan-
ism of action. This simultaneous excitatory and inhibi-
tory theory of DBS mechanism or DBS induced de-
coupling, suggests that modifying the network activity
and some of the overall positive benefits may underpin
this therapy [29].
Beside these theories, it has been recently proposed

that electrical stimulation may generate an “information
lesion” by disrupting pathologic oscillatory patterns, pre-
venting or disrupting the pathological basal ganglia ac-
tivity from being transmitted [30]. This effect could be
achieved by replacing irregular bursting cells, with regu-
lar high-frequency firing, and/or by promotion of “proki-
netic” frequencies and abolition of pathological beta-
band frequencies [31]. A recent study found that the
electrical stimulation of the STN in PD patients using
therapeutic parameters and a DBS electrode did not re-
sult in a profound or long-lasting inhibition of surround-
ing neurons, partially normalizing or “jamming” the
pathological signal in the basal ganglia-thalamocortical
network [32–34].
Recently, researchers have been looking at motor cor-

tex activity when attempting to regulate motor function
with DBS [35]. An emerging hypothesis is that the bene-
fit of DBS is derived from direct modulation of primary
motor cortex (M1) as observed in non-human primate,
where STN DBS influenced both motor performance
and M1 neuronal activity systematically according to
stimulus intensity [36]. A recent study by Starr and col-
leagues showed that decoupling of the neuronal network
and beta oscillations between STN and M1 was corre-
lated to motor improvement [37].
Overall, it is currently believed that the application of

electricity to the brain has definite inhibitory compo-
nents, especially on neuronal cell bodies close to the ori-
gin of the current however there are important
excitatory mechanisms at work as well. Although it re-
mains unknown what the mechanisms underlying the
therapeutic effects of DBS are, it is likely that DBS re-
sults in inhibition of the cell bodies close to the
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electrical field, and excitation of the axons. DBS could
induce neurochemical changes that may be induced by
stimulation of astrocytes and propagation of calcium
waves resulting in release of chemicals such as adenosine
and glutamate [28]. Important neurovascular and neuro-
genic changes may be induced by electrical stimulation
of the brain as well [24, 25]. It is now clear that stimula-
tion of small nodes can result in a large network-wide
changes that may profoundly improve Parkinson’s dis-
ease and other movement disorders [38]. Additionally,
important changes in oscillatory behavior (i.e. beta and
theta bands) have emerged as clues to the underlying
pathophysiology [39, 40].

Current and new DBS targets
Chronic degeneration of dopamine neurons in the SNc
and consequent striatal dopamine deficiency seems to
lead to a cascade of functional changes, which underpin
many clinical features of PD [41]. Studies published in
the early 1990s using MPTP primate models of parkin-
sonism support the hypothesis that abnormally increased
activity in STN leads to abnormal GPi activity [42]. This
seems to lead to excessive inhibition of the thalamocorti-
cal [43] and brainstem motor projections [44].
Randomized, controlled, clinical trials have shown that

DBS therapy can be superior to the best medical therapy
for improving motor function and quality of life when
carefully applying the therapy to a select group of PD
patients [45–48]. The most important factor for success-
ful outcomes is appropriate patient selection and in the
last years, the concept of “tailoring” DBS according to a
patient’s needs has been increasingly recognized [49].
Delivering electricity into the basal ganglia, specifically
the STN or the GPi has replaced in most cases the ini-
tially studied nucleus, the ventral intermediate nucleus
(VIM) of the thalamus. VIM DBS remains a valid option
in select PD patients who have tremor as the main and
disabling feature [7]. A multi-target strategy of stimula-
tion could be a promising approach in the future, and
several groups have used “rescue leads” when inadequate
symptom relief has been achieved [50, 51]. Impulse con-
trol disorders and dopamine dysregulation syndrome
have to be considered carefully because these conditions
have been reported to be affected by DBS. Some studies
have reported them as complications of DBS [52, 53],
while others have observed an improvement after surgery,
probably related to a reduction of dopamine agonist dos-
age [54]. Patient’s phenotype also has to be considered
since a “brittle levodopa response” can be seen particularly
in female candidates with low body weight. These patients
have been reported to have a good response to DBS [55].
New targets are currently being investigated to treat
symptoms that are less responsive to standard DBS targets
such as the centromedian thalamus, zona incerta ZI, and
the pedunculopontine nucleus [56]. The pedunculopon-
tine nucleus (PPN) [57], and more recently the substantia
nigra [58] have been used in an effort to improve gait and
balance, however more carefully controlled studies will be
needed to assess the potential benefits and risks as well as
the appropriate selection criteria. Stimulation of the motor
cortex has also been proposed as an alternative strategy,
but the results have been inconsistent and with current
methods in general have been disappointing [59]. Finally
cerebellar outflow pathways have been suggested as pos-
sible targets as well however …….. [60].

DBS controversies
Best target
Four randomized controlled trials have compared tar-
geted therapies to STN and GPI and all have provided
similar clinical results. In the extended study by Ander-
son and colleagues [61], no significant differences were
found regarding the UPDRS motor scores (30 SD = 17
vs. 27 SD = 11; p = 0.4) when comparing GPi vs STN
DBS at 12-months post DBS surgery. However, a ten-
dency was observed for more levodopa reduction (38 %
vs. 3 %), although greater cognitive and behavioral issues
were seen in the STN group. Additionally, dyskinesia
improved more in the GPi group (89 % vs. 62 %).
The COMPARE trial revealed no significant difference

in motor outcomes between the two targets (p = 0.08,
and p = 0.16, respectively) [62]. Furthermore, no UPDRS
motor subscale difference was found between the two
groups (STN 29.9 % vs. GPi 26.6 %; p = 0.64). However,
word finding and letter verbal fluency worsening was
observed (p < 0.03) and an increase in anger was ob-
served particularly in the STN target group. In the
follow-up studies on this cohort, patients receiving
GPi DBS reported greater improvements in their qual-
ity of life as compared to the STN group (38 % vs.
14 %; p = 0.03) [63]. In addition, no differences in
weight changes between targets were observed (STN 4.29
SD = 6.79 vs. GPi 5.38 SD = 10.32 lb.; p = 0.68) [64].
In the CSP 468 Study Group article (VA Multi-center

VA study) [65], changes in UPDRS-III motor score did
not differ significantly between study groups (−11.8 SD =
2.3 vs. 10.7 SD = 2.2; p = 0.50). Secondary outcomes did
however reveal significant changes. Patients with subtha-
lamic stimulation required lower doses of dopaminergic
agents (165.4 SD = 143.7 mg difference; p = 0.02), process-
ing speed declined more after subthalamic stimulation
(2.5 SD = 2.2 difference; p = 0.03), and depression wors-
ened after subthalamic stimulation, but improved with
pallidal stimulation (p = 0.02). Serious adverse events were
more common in patients undergoing subthalamic stimu-
lation. Therefore, the authors concluded that non-motor
factors should be included in target selection for DBS. In
their 36-month follow-up study [66], motor function was
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better than baseline and there were similar improvements
between targets (GPi 41.1 to 27.1 vs. STN 42.5 to 29.7;
p = 0.59), however dementia scores declined faster for
STN than GPi patients (p = 0.01). This study provides
evidence that improvement in motor symptoms could
possibly remain stable for several years post-DBS in a
subset of patients.
In the most recent paper, the NSTAPS study, no sig-

nificant differences were observed at 12 months in pri-
mary outcomes between STN and GPi DBS: disability
and number of patients with a composite score of cogni-
tive, mood, and behavioral effects [67]. Secondary out-
comes that showed greater improvements in the off-
drug phase favoring the STN group in the change in
UPDRS motor scores (20.3 SD = 16.3 vs. 11.4 SD = 16.1;
p = 0.03), change in ALDS scores (20.3 SD = 27.11 vs.
11.8 SD = 18.9; p = 0.04), and levodopa equivalent dose
reduction (546 SD = 561 vs. 208 SD = 521; p = 0.01). The
authors concluded that STN could be the preferred tar-
get for DBS in some patients with advanced PD.
Collectively and based on these results, our group rec-

ommends that the DBS target should be tailored on in-
dividual patient’s needs [68]. Cognition, behavior and
dyskinesias for example should all be factors that are
weighed in a decision for a best target. These discussions
are best accomplished by the use of a multidisciplinary
screening team.
Earlier DBS
Earlier PD DBS intervention has been recently ad-
dressed. The EARLYSTIM Study [69] was a 2-year trial
on PD patients with 7.3 (SD = 3.1) years of disease dur-
ation and with very early motor complications (dyskin-
esia 1.4 SD = 0.8 and motor fluctuations 1.6 SD = 0.8
mean years of duration) who underwent bilateral STN
DBS plus best medical therapy, or alternatively a second
group was randomized to best medical therapy. For the
primary outcome of the change in PDQ-39 QoL, the
mean score in the DBS group improved 7.8 points
(26 %) vs. the medication group, which worsened by 0.2
points (1 %). These results suggested that STN DBS was
superior to medical therapy in patients with PD and
early motor complications. The study however enrolled
only young patients with an average age of 52.9 (SD = 6.6),
and therefore it was unclear how these findings would
generalize to older populations especially those in their
60’s and 70’s. Vanderbilt University is currently conducting
a prospective, randomized, single-blind clinical trial of op-
timal drug therapy (ODT) as compared to medication plus
DBS (ODT +DBS) in subjects with early stage idiopathic
PD without motor fluctuations or dementia [70]. The
safety study was recently published, providing evidence
that DBS is well tolerated in early PD [71].
Utility of intraoperative microelectrode recording (MER)
Some groups have determined the final DBS lead loca-
tion by relying on image targeting only, but the majority
now use intraoperative microelectrode recording in
order to define an optimal lead location. Physiology (mi-
croelectrode or semimicroelectode recordings, microsti-
mulation) can be used to map and to localize a DBS
target, and behavioral responses can be recorded as well.
Factors in favor of using these targeting methods to re-
fine electrode location include: 1- imaging inaccuracy or
distortion, 2- inaccuracy of frame or frameless-guided
navigation, and/or 3- brain shift due to cerebrospinal
fluid loss and brain atrophy. The number of microelec-
trodes and the technique (target verification vs. map-
ping) is widely variable between centers. Microelectrodes
generally have impedances greater than 0.5 MΩ and are
capable of isolating single neural unit activity, and thus
are useful in defining individual neurons within thalamic
and basal ganglia nuclei. It is possible to deliver stimula-
tion through microelectrodes. Semi-microelectrodes
have impedances of approximately 100 kΩ and can pro-
vide information on group neural activity and local field
potentials; they can also be used for stimulation. Macro-
electrodes are low-impedance electrodes that can be
used for recording field potentials or for local tissue im-
pedance, but are used almost exclusively for stimulation
and clinical responses. Response of the recorded signal
to passive movements of the face or limb can confirm
the location of the motor sub-territory of an intended
brain target (STN, GPi or thalamus). Additionally a
physiological response to a light directed to the eyes can
aid in determining the location of the optic tract in GPi
internus targeted cases. Stimulation can also be used to
reveal the proximity of the lead or microelectrode to the
motor fibers (i.e. internal capsule). Whilst MER is
thought to slightly increase the risk of bleeding [72] and
therefore many experts have been more judicious in the
number of passes utilized, a recent study reported no
bleeding complications on 590 MER tracks performed,
suggesting that a carefule pre-surgical planning and a se-
quential MER approach could prevent this complication
[73]. There are now several MRI and imaging based
technologies in trial that do not use MER.

DBS complications
Deep brain stimulation surgery is well tolerated and its
complications rate is very acceptable from the “elective
neurosurgery” standpoint. Complications can be catego-
rized in surgery-related and hardware-related. First cat-
egory consists of intracranial hemorrhage (with a mean
incidence of 1.9 % in multicentric studies) [45, 65, 74, 75],
seizures (mean incidence of 1.3 % in multicentric studies)
[45, 74, 75], intraoperative bradycardia and hypotension,
deep venous thrombosis and pulmonary embolism (0.7 %
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incidence in a multicentric study) [75], and pneumonia
due to aspiration (incidence vary between 1 and 4 % in
multicentric studies) [45, 65]. Second category consists of
infection (incidence vary from 0 to 15.2 % among different
groups) [76–80], skin erosion (incidence vary from 1 to
16 % among different groups) [81–83], DBS-lead migra-
tion and fracture (5 % incidence) [84].

Emerging DBS technology
DBS as a surgical treatment for PD and other movement
disorders has been historically delivered in an open-loop
fashion, meaning in a pre-programmed chronic and con-
tinuous stimulation pattern. Newer or “smarter” delivery
devices have been designed and have emerged to im-
prove clinical efficacy, to decrease stimulation-induced
side effects, and to prolong battery life.
Scheduled DBS delivery systems can be personalized

to the frequency and duration of the manifestation or
symptom of a particular disorder, such as in epilepsy
[85]. A recent proof-of-concept study used scheduled
DBS technology for Tourette syndrome (TS) tailoring
stimulation pulse trains with long time intervals intro-
duced between on and off stimulation revealing sig-
nificant improvements in the clinical scores (mean
change −17.8 SD = 9.4) of 5 patients after 6 months
follow-up [86]. Although promising for movement dis-
orders presenting in episodic pattern such as TS, fur-
ther and larger studies will be necessary to confirm
these results across other diseases and symptoms. It is
unknown if the scheduled DBS system can provide
better clinical outcomes than the chronic and continu-
ous DBS system in the PD population. Additionally
changing the shape of the pulse and using biphasic
pulses (author observations) may be another avenue to
improve outcomes.
Impedance is the amount of voltage required to deliver

electricity divided by the resistance (Ohm’s law), and
plays a critical role in how stimulation is delivered to the
brain. Constant-current DBS systems are devices that
hold impedance steady [87]. In the first study assessing
the safety and efficacy of constant-current DBS, 136 PD
patients underwent bilateral STN implantation and were
randomly assigned to receive immediate vs. delayed
stimulation [88]. Both groups revealed an increase in the
duration of good quality “on” time after 3 months, sig-
nificantly greater in the stimulation group (difference
2.51 h, p = 0.003) and UPDRS part-III scores improved
by 39 % from the baseline in immediate stimulation
group. A recent single-center study comparing safety
and clinical impact of constant-current vs. constant-
voltage STN DBS in PD patients, revealed no significant
differences in motor scores between the electricity deliv-
ery methods after 2 years of surgery [89]. Although these
were small studies, constant-current devices seem to be
a promising method to delivery electricity to a changing
brain. There is little information available on direct com-
parisons between voltage and constant current devices,
and there may also be advantages of constant current in
high current density situations (dystonia).
The concept of current steering refers to the use of

multiple stimulation sources to direct current flow
through targeted regions of brain tissue. There are sev-
eral new systems where segmented electrodes will be
able to shape the electrical field to activate targeted
neural pathways without activating unwanted side effects
[90, 91]. A recent single-center, performance and safety
study where 8 PD patients underwent bilateral STN im-
plantation, showed that stimulation with a novel 32-
contact electrode was safe, capable of reproducing effects
equivalent to standard electrodes, and could selectively
and positively influence the thresholds for programming
[92]. Whilst this study suggested that current steering de-
vices could improve DBS effectiveness and limit side ef-
fects, more studies are needed.
Responsive or adaptive DBS systems have focused on

interpreting brain electrical or neurochemical activity
and use it as feedback to control delivery of therapeutic
electrical stimulation [93, 94]. This cutting-edge technol-
ogy is designed to “close the loop” by adjusting stimula-
tion parameters according to the neural feedback
recorded either coming from deep brain structures or
from cortical feedback [94]. Recent proof-of-principle
studies have shown that by personalizing and optimizing
stimulation parameters in real time, efficacy and effi-
ciency of continuous DBS could potentially be improved
[95–98]. The clinical trial BrainRadio (NCT01990313) is
currently enrolling patients and is using the Model
37604 Activa PC + S (Medtronic, Inc.) which is a multi-
programmable device that can deliver therapeutic elec-
trical stimulation and record bioelectric signals from leads
implanted in the brain. Our group at the University of
Florida is currently recruiting patients to explore DBS in
two specific brain regions (GPi + PPN) for freezing of gait
in PD (NCT02318927). These studies will help us better
understand the pathophysiology of the disease and hope-
fully it will improve clinical outcomes.
To date, DBS has been shown to be an effective ther-

apy for selected patients with PD. There have been rapid
advances in neuroengineering, and new “smart” DBS
stimulation delivery systems are in development to im-
prove the effectiveness and efficacy of this therapy.
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