
REVIEWARTICLE

Purinergic signalling during development and ageing

Geoffrey Burnstock1,2
& Nicholas Dale3

Received: 20 April 2015 /Accepted: 23 April 2015 /Published online: 20 May 2015
# Springer Science+Business Media Dordrecht 2015

Abstract Extracellular purines and pyrimidines play major
roles during embryogenesis, organogenesis, postnatal devel-
opment and ageing in vertebrates, including humans.
Pluripotent stem cells can differentiate into three primary
germ layers of the embryo but may also be involved in plas-
ticity and repair of the adult brain. These cells express the
molecular components necessary for purinergic signalling,
and their developmental fates can be manipulated via this
signalling pathway. Functional P1, P2Y and P2X receptor
subtypes and ectonucleotidases are involved in the develop-
ment of different organ systems, including heart, blood ves-
sels, skeletal muscle, urinary bladder, central and peripheral
neurons, retina, inner ear, gut, lung and vas deferens. The
importance of purinergic signalling in the ageing process is
suggested by changes in expression of A1 and A2 receptors in
old rat brains and reduction of P2X receptor expression in
ageing mouse brain. By contrast, in the periphery, increases
in expression of P2X3 and P2X4 receptors are seen in bladder
and pancreas.
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Introduction

Most early studies of the roles of nucleotide in development
have been discussed in terms of their intracellular roles and as
a source of energy. However, purines and pyrimidines are now
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generally accepted to have potent extracellular actions medi-
ated by the activation of specific membrane receptors (see
[1]); many of these previous studies can now be reinterpreted.
ATP and adenosine play key roles from the very beginning of
life, i.e. the moment of conception. Adenosine 5′-triphosphate
(ATP) is obligatory for sperm movement [2] and is a trigger
for capacitation, the acrosome reaction necessary to fertilize
the egg [3]. Extracellular ATP also promotes a rapid increase
in Na+ permeability of the fertilized egg membrane through
the activation of a specific ATP receptor [4]. Mg2+–ATPase
activity has been localized on the entire surface of unfertilized
eggs and in preimplantation and postimplantation embryos [5,
6]. Together with the demonstration that ATP-activated sper-
matozoa show very high success rates in fertilization tests [3],
this strongly suggests that ATP is a key sperm-to-egg signal in
the process of fertilization.

In this review, the extracellular roles of purines and pyrim-
idines will be considered as signalling molecules in both em-
bryological and postnatal development in a wide variety of
systems in amphibians, birds and mammals, including
humans. Readers are referred to reviews of the earlier litera-
ture about the involvement of purinergic signalling in both
embryonic and postnatal development [7, 8] and very good
reviews specifically about the development of the nervous
system [9–11]. There have been relatively few reports about
changes in purinergic transmission during ageing, and these
are mostly concerned with the brain and cardiovascular
system.

Together with muscarinic cholinergic receptors, extracellu-
lar receptors to ATP were shown to be the first functionally
active membrane receptors in chick embryo cells at the time of
germ layer formation. In gastrulating chick embryo, ATP
caused rapid accumulation of inositol 1,4,5-trisphosphate
(IP3) and Ca2+ mobilization in a similar way and to the same
extent as acetylcholine (ACh), whereas other neuroendocrine
substances such as insulin and noradrenaline (NA) had much
weaker effects. This suggests that, alongside ACh, other phy-
logenetically old and universal regulators of cell metabolism
such as ATP (and perhaps nitric oxide (NO)) might play lead-
ing roles in the functional regulation of gastrulation via the
activation of specific receptors triggering Ca2+ mobilization.

Early embryos

The expression patterns of purinergic receptors and the
ectonucleotidase enzymes that convert ATP to downstream
nucleotides and nucleosides vary during development. This
suggests, in turn, that these molecules may have important
developmental roles, either to mediate particular physiological
functions at different stages of development or to control the
developmental processes themselves [12].

Zebrafish

Trigeminal ganglia of zebrafish express P2X3 receptors from
a very early stage of development, most likely in neural crest-
derived trigeminal cells rather than placode-derived cells [13].
Spinal sensory Rohon–Beard cells also expressed P2X3 re-
ceptors, also in the putative lateral line ganglion and in the
early developing zebrafish. Ectodermal p2rx3.1 receptor, a
paralog of the mammalian P2X3 receptor, is expressed in
subpopulations of both neural and ectodermal cells in the em-
bryonic head of zebrafish [14]. Knockdown of expression of
this receptor disrupted craniofacial development, suggesting a
critical role in this process.

Frog embryos

A novel P2Y receptor (p2y8) was cloned and sequenced and
was expressed (as seen by Northern blots and in situ hybrid-
ization) in the neural plate ofXenopus embryos from stages 13
to 18 and again at stage 28when secondary neurulation occurs
in the tail bud [15]. It differs from other members of the P2Y
receptor family having an intracellular C terminus with 216
amino acid residues (compared to 16 to 67 in the known P2Y
receptors). It shows equipotent responses to the triphosphates
ATP, uridine 5′-triphosphate (UTP), inosine triphosphate, cy-
tidine triphosphate and guanosine triphosphate (GTP) and
smaller responses to diphosphates and tetraphosphates when
expressed as a recombinant receptor in Xenopus oocytes but is
not responsive to inorganic phosphates. Activation of the
p2y8 receptor evoked long duration responses (40–60 min).
It was suggested that this novel P2Y receptor may be involved
in the early formation of the nervous system.

Suramin and trypan blue, both substances that are known to
be antagonists at P2 receptors (see [16]) as well as having
other actions, have been shown to interfere with gastrulation
[17]. If injected early when the dorsal lip is first invaginating,
the Xenopus embryo develops no head or trunk and some-
times no tail; somites and notochord are also missing. If they
are injected midway in gastrulation, embryos develop without
heads, but with trunks and tails, while if injected at the end of
gastrulation, the embryo is completely unaffected.

The nicotinic channels in myotomal muscle cells cultured
from Xenopus embryos at stages 19–22 were shown to be
opened by micromolar concentrations of exogenous ATP
[18], following the earlier demonstration that ATP increases
the sensitivity of receptors in adult frog skeletal muscles with-
out increasing the affinity of ACh for the receptor or inhibitory
acetylcholinesterase [19]. Since then, there have been a num-
ber of studies of the actions of ATP in developing Xenopus
neuromuscular synapses (see [20]). Extracellular applications
of ATP to developing Xenopus neuromuscular synapses in
culture potentiate ACh responses of developing muscle cells
during the early phase of synaptogenesis [21–23]. The
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possibility that extracellular ATP coreleased with ACh may
serve as a positive trophic factor at developing neuromuscular
synapses has also been raised [20, 21]. It is further suggested
that calcitonin gene-related peptide (CGRP) and ATP
coreleased with ACh from the nerve terminal may act together
to potentiate postsynaptic ACh channel activity during the
early phase of synaptogenesis [24]; it is claimed that CGRP
actions are mediated by cyclic adenosine monophosphate
(cAMP)-dependent protein kinase (PK) A, while ATP exerts
its effects via PKC. In a later report from this group [25], they
present results that suggest that endogenously released ATP,
acting in concert with various PKs, is involved in the mainte-
nance and/or development of the quantum size of synaptic
vesicles at embryonic neuromuscular synapses.

Purine-mediated signalling triggers eye development in
Xenopus [26]. The authors have shown that overexpression
of ecto-NTPDase2 (that converts ATP to adenosine 5′-diphos-
phate (ADP)) caused ectopic eye-like structures and occasion-
ally complete duplication of the eye. Expression of ecto-
NTPDase2 is essential for the expression of key genes re-
quired for eye development such as Rx1 and Pax6 (Figs. 1
and 2). It appears that the ecto-NTPDase2 produces ADP from
ATP which is necessary for activation of the P2Y1 receptor.
Although knockdown of P2Y1 expression had relatively mild
effects, combined knockdown of ecto-NTPDase2 and the
P2Y1 receptor could completely prevent eye development
(Fig. 2). All the key components of purinergic signalling are
present around stage 12 of embryogenesis when the key de-
termination of eye development occurs (Fig. 3). In the eye

field (the site of the future development of the eye and where
key genes are activated to achieve this), a period of transient
ATP release was observed (Fig. 3). However, this mechanism
may be specific to lower vertebrate embryos, as knock out of
NTPDase2, even in combination with knock out of the P2Y1

receptor, in mice does not prevent or alter eye development
[27].

Chick embryos

In the chick, the thyroid gland most likely forms from the
thyroid primordium via a process of evagination that appears
to be induced by ATP [28]. The requirement for ATP was very
precise, since it could not be replaced by pyrophosphate, AMP
or ADP nor by GTP, suggesting a high degree of specificity of
the ATP-induced effect. Together with muscarinic cholinergic
receptors, extracellular receptors to ATP were shown to be the
first functionally active membrane receptors in chick embryo
cells at the time of germ layer formation [29]. In gastrulating
chick embryo, ATP causes rapid accumulation of inositol
phosphate and Ca2+ mobilization in a similar way and to the
same extent as ACh, whereas other neuroendocrine sub-
stances such as insulin and NA have much weaker effects
[29]. This suggests that, alongside ACh, other phylogenetical-
ly old and universal regulators of cell metabolism such as ATP
(and perhaps NO) might play a leading role in the functional
regulation of gastrulation via the activation of specific recep-
tors triggering Ca2+ mobilization. Wide distribution of P2Y1

receptors in the 1-day-old chick brain was reported.
ATP acts on embryonic and developing cells of both ner-

vous and non-nervous systems by increasing intracellular
Ca2+ concentrations. Release of Ca2+ from intracellular stores
is evoked in the otocyst epithelium of the early embryonic
chick, incubated for 3 days (stage 18 to 19) [30] (Fig. 4), in
developing chick myotubes [31] and in dissociated cells from
whole early embryonic chicks [29, 32]. Programmed cell
death was demonstrated in proliferative regions of chick optic
tectum during early development, particularly in the ventricu-
lar zone between stages E7.5 and E8. This is of interest since
P2X7 receptors mediate apoptosis. A P2X receptor subunit in
embryonic chick brain has been cloned and characterized,
which is highly homologous to the mammalian P2X4 receptor
(human and rat) with approximately 75 % sequence identity
[33].

In a study, the expression of the G protein-coupled P2Y1

receptor during embryonic development of the chick was de-
scribed [34]. During the first 10 days of embryonic develop-
ment, the P2Y1 receptor is expressed in a developmentally
regulated manner in the limb buds, mesonephros, brain, so-
mites and facial primordia (Fig. 5), suggesting that there may
be a role for ATP and P2Y1 receptors in the development of
these systems.

Fig. 1 Purinergic signalling is upstream of the eye field transcription
factors (EFTFs) that are expressed very early in development of the
frog embryo and to control development of the eye (see [364]). ATP
released in the presumptive eye field is converted to ADP via
NTPDase2. The ADP can activate the P2Y1 receptor (P2Y1R), which
then triggers expression of the transcription factor Rx1
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Fig. 3 The expression of the components of purinergic signalling and
Pax6 and Otx2 during frog embryonic development. a NTPDase2
expression precedes induction of Pax6, and expression of the P2Y1R is
coincident with the upregulation of Pax6 that occurs at St 12.5. b Both
NTPDase2 and P2Y1 are expressed more strongly in the mesoderm/
endoderm, suggesting that it is this tissue layer that initiates expression

of the EFTFs in the ectoderm. c ATP is released from the neural plate
during development. The inset diagram indicates the positioning of ATP
biosensors in the very early frog embryo. A large transient signal is seen
in the anterior region—the site of the eye field. ATP signalling is also seen
in the posterior regions. The ATP release event is blown up in the inset
traces (reproduced with permission from [26])

Fig. 2 Morpholino
oligonucleotide knockdown of
NTPDase2 (NTPD2MO) or the
P2Y1 receptor (P2Y1MO) alters
the expression of Pax6 and Rx1
(a–h). The morpholino constructs
were injected on just one side of
the early embryo to facilitate a
comparison with the uninjected
side as an internal control.
NTPD2MO either on its own or in
combination with P2Y1MO
reduced Pax6 and Rx1 expression
only on the injected side (arrows).
However, injection of P2Y1MO
on its own or a control
morpholino (CMO) has no effect
on expression of Pax6 andRx1 (i–
k). This reduced expression of
Pax6 and Rx1 results in smaller
eyes on the injected side
(indicated by lacZ staining) or, in
the case of the dual morpholino
knockdown, no eyes (k, arrow)
(reproducedwith permission from
[26])
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Adenosine has been implicated in growth regulation of the
vascular system in the chick embryo [35], in common with a
similar role claimed for experimental angiogenesis in the cho-
rioallantoic membrane [36–38].

Mammalian embryos

Puff-applied ATP has been shown to have two main effects on
a mouse mesodermal stem cell line: an increase in intracellular
Ca2+ concentrations and a subsequent hyperpolarization due
to Ca2+-activated K+ conductance [39] (Fig. 6). The author
speculated that the transient increase in intracellular Ca2+

may influence mesodermal cell differentiation, particularly
in relation to muscle differentiation. In a subsequent paper
[40], two myoblastic cell lines, one from rat, the other from
mouse, showed similar properties to those of the myogenic
clonal cells derived from the mouse mesodermal stem cell line
described above.

ATP and ADP have been shown to enhance, reduce or have
no effect (depending on the dose used) on the incidence of
trypan blue-induced teratogenic malformations in the rat foe-
tus at day 20 [41]. Concomitant administration of ATP and
cortisone in mice either decreases the teratogenic effect of
cortisone (50 μg ATP) or enhances its teratogenic effect
(>100 μg ATP) [42]. Mouse heads of embryos from 14 to
24 pairs of body somites exposed to an ATP-containing me-
dium have been demonstrated to undergo rapid epithelial
thickening and invagination, a process that appears to take

Fig. 4 Interaction between acetylcholine (ACh) and ATP recorded in an
otocyst from chick embryo. a The response to 10 μM ACh. b The
response to 100 μM ATP. c The response to the coapplication of
10 μM ACh and 100 μM ATP. The records in a–c were taken in this
order at 5-min intervals. The bath solutions contained 25 mM Ca2+

(reproduced with permission from [30])

Fig. 5 Expression of P2Y1 receptors during embryonic development of
the chick as visualized by whole-mount in situ hybridization. Stages of
development are shown in bottom right corner. aVentral view of stage 20
embryo showing P2Y1 expression in mesonephros and limb buds (scale
bar=200 μm). b Lateral view of the chick somite at stage 21 showing
P2Y1 expression in the anterior region. The dark area in the head region
is due to an artefact of photography (scale bar=200 μm). c Dorsal view

of stage 36 brain (anterior to the left), showing increased levels of
expression in telecephlon (tel), dorsal diencephlon and posterior
midbrain. mes mesencephalon, cb cerebellum (scale bar=1 mm). d An
anterior-uppermost view of a leg at embryonic stage 33. Expression of
P2Y1 is seen in the digits, but not in areas of joint formation. The same
expression pattern is also seen in the wing (scale bar=100 μm)
(reproduced with permission from [34])
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part in the shaping of nasal pits and formation of the primary
palate [43]. The trophoblast appears at the blastocyst stage of
embryogenesis and contributes to placentation. ATP increases
[Ca2+]i via a P2Y receptor in proliferating bovine trophoblast
cells [44].

Besides ATP, a number of reports implicate adenosine as
one of the endogenous effectors that can selectively modulate
cell growth during embryonic development. For example,
adenosine is shown to potentiate the delaying effect of
dibutyryl cAMP (a membrane-permeable analogue of
cAMP) on meiosis resumption in denuded mouse oocytes
[45]. The role of adenosine has been particularly well charac-
terized in the morphogenetic outgrowth of vertebrate limb
buds [46]. Embryonic limb development in the mouse is driv-
en by rapid mesenchymal cell proliferation induced by trophic
substances secreted by the apical ectodermal ridge. This inter-
action can be restricted experimentally by pharmacological
agents that elevate intracellular cAMP levels or physiological-
ly by the onset of programmed cell death triggered by natu-
rally occurring negative regulators of growth. Mutations that
affect the pattern of limb/bud outgrowth provide invaluable

experimental means to investigate these growth-regulatory
processes. Knudsen and Elmer [46] studied the regulation of
polydactylous outgrowth (an expression of the Hemimelia-
extra toe (HmX/+) mutant phenotype) in hindlimb bud ex-
plants. Polydactylous growth is enhanced by exogenous aden-
osine deaminase, the enzyme which catalyzes the inactivation
of endogenous adenosine. This effect was reversed by
coexposure to hydrolysis-resistant adenosine analogues.
Since the P1 receptor antagonist, caffeine, could completely
prevent suppression of polydactylous outgrowth, the effects of
an adenosine analogue were most likely mediated by activa-
tion of specific extracellular receptors.

Micromolar concentrations of adenosine, inosine and hy-
poxanthine, but not guanosine, block the second or third
cleavage of mouse embryos developing in vitro [47].
Zygotes or early two-cell embryos, cultured in a purine-
containing medium for 24 h, resume development following
transfer to purine-free conditions. The precise mechanism of
the purine-sensitive process is not known, but embryos con-
ceived in vivo are sensitive until approximately 28–30 h after
fertilization and are no longer sensitive by 34 h [48]. However,
a later study by this group has shown that the purine-induced
block can be reversed by compounds that elevate cAMP [49].
In mouse embryonic development, adenosine deaminase in-
creased 74-fold between days 7 and 9; deoxyadenosine kinase
increased 5.4-fold during the same period; adenosine kinase,
deoxyguanosine kinase and purine nucleoside phosphorylase
exhibited less than 2-fold changes in activity between days 7
and 13 [50]. The authors concluded that while phosphoryla-
tion of adenosine was the principal route of metabolism up to
day 9, after which, there is a switch to deamination. The pos-
sible role of ecto-adenosine deaminase in the development of
the nervous system and the neurological abnormalities that
occur in adenosine deaminase-deficient patients is discussed
in a review by Franco et al. [51].

Taken together, these results point to a role for purines in
both physiological fertilization and normal development and
also underline that alterations of the purinergic regulation of
embryonal growth might be involved in the onset of morpho-
logical malformations. Depending upon the purine derivative,
and probably upon the purinoceptor involved as well, ATP
and adenosine can act as both positive and negative regulators
of growth. This is also consistent with data obtained from
in vitro cell lines which implicates purines in both cell prolif-
eration and apoptosis. Further studies are needed to better
characterize the receptor subtypes involved and also to iden-
tify more precisely the developmental events specifically con-
trolled by purines.

Human embryos

A few studies have been made of receptors to purines and
pyrimidines in human embryos. Human embryonic kidney

Fig. 6 K+ responses to ATP analogues of a mouse mesodermal cell line.
Each of the two traces was obtained from the same cell (a–e). The
responses induced by ATP (left traces) and ATP analogues (right
traces) are shown. The names of the analogues are shown near the
traces. Each drug was applied at 20 μM, and the holding potentials
were 0 mV (reproduced with permission from [39])
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cells (HEK293) endogenously express P2Y1 and P2Y2 recep-
tors [52]. These embryonic cells have also been shown to
express an endogenous A2B receptor [53]. ATP and adeno-
sine-5′-O-3-thiotriphosphate were shown to stimulate DNA
synthesis in human foetal astrocyte cultures [54]. In addition,
ATP stimulated a mitogen-activated protein kinase (MAPK)
termed extracellular signal-regulated protein (ERK), a key
component of signal transduction pathways involved in cellu-
lar proliferation and differentiation. The activation of MAPK
was mediated, at least in part, by P2 receptors since suramin
produced 50 % block.

There has been a study of plasmaATP levels in the foetus at
the time of obstetrical delivery, samples being collected im-
mediately after clamping of the cord [55], and the results
showed that the plasma ATP was significantly higher in arte-
rial compared to venous or maternal venous blood. It was
suggested, therefore, that the ATP in arterial blood was of
foetal origin and that the levels decrease in response to stress
during vaginal delivery and correlate with the oxygen sup-
plied from the placenta.

In a study of human fibroblasts, differential sensitivity to
adenosine was demonstrated in donors of different ages [56].
Foetal fibroblasts were the most sensitive to adenosine, which
produced inhibition of growth and RNA synthesis; in contrast,
fibroblasts taken from 4-year-old donors showed growth stim-
ulation to adenosine. Activation of A2 receptors by adenosine
stimulates L-arginine transport and NO synthase in human
foetal endothelial cells [57]. Adenosine selectively inhibits
tumour necrosis factor-α production in the human newborn
[58]. Expression of purinergic P2X4, P2X7 and P2Y2 recep-
tors and their activation led to increase in [Ca2+]i, which is
involved in the changing demand for calcium with increased
foetal growth over gestation in the first trimester and term
human placenta [59].

Overall, our survey of purinergic signalling during early
development in a range of species provides substantial evi-
dence favouring its involvement in a variety of developmental
processes. The current state of the literature therefore suggests
that, in future, more precise molecular genetic manipulations
of specific components of purinergic signalling to determine
their roles in the regulation of development would be well
worthwhile.

Development in different systems

Cardiovascular system

Heart

Studies of the development of pharmacological sensitivity to
adenosine analogues in embryonic chick heart [60, 61] show
that pharmacological sensitivity to A1 receptor agonists begins

at embryonic day 7 and then increases continuously to day 12
when the atria became fully responsive. Ligand binding shows
that A1 receptors are present at days 5 and 6, but are not
responsive to adenosine, and the author concluded that the
development of sensitivity to A1 receptor-mediated negative
chronotropic responses was not paralleled by developmental
changes in adenosine inhibition of adenylyl cyclase or by the
development of sympathetic and parasympathetic innervation.
Chronic exposure of the embryonic chick heart (15–17 days
old) to R-N6-2-phenylisopropyladenosine (R-PIA) produces
down-regulation of A1 receptors and desensitization of the
negative inotropic response to adenosine [62]. A study of
ventricular cells cultured from chick embryos 14 days in ovo
showed that a functional A2A receptor is expressed and medi-
ates augmentation of myocyte contractility [63]. The A2A re-
ceptor coexists with an A2B receptor, although it has 50-fold
higher affinity, and the authors suggest that high affinity A2A

receptors play an important modulatory role in the presence of
low levels of adenosine, while the low affinity A2B receptor
becomes functionally important when the adenosine level is
high.

In foetal sheep, centrally administered adenosine influ-
ences cardiac function [64]. The ontogeny of A1 receptors
was studied in rats with binding assays (using [3H]1,3-
dipropyl-8-cyclopentylxanthine (DPCPX)), an A1 antagonist,
and by in situ hybridization of messenger RNA (mRNA) [65].
In a later study of mouse embryo cardiac function [66], aden-
osine, via A1 receptors, was shown to potently regulate heart
rate via multiple effector systems at very early stages of pre-
natal development (9–12 days postconception). At gestational
days 8–11, mRNA expression for A1 receptors was detected in
the atrium (one of the earliest G protein-coupled receptor
genes to be expressed in the heart), but not in other foetal
structures, while at gestational day 14, A1 mRNAwas present
in the CNS (thalamus, ventral horn of spinal cord) as well as
the atrium; by gestational age 17, patterns of A1 receptor ex-
pression in the brain were similar to those observed in adults
[67, 68]. Determination of A1 receptor density in developing
rat heart using [3H]DPCPX showed that functional A1 recep-
tors are present in greater numbers in the immature perinatal
heart than in the adult heart [69].

Intravenous infusion of adenosine analogues into foetal
lambs produced dose-dependent bradycardia and hypotension
[ 7 0– 72 ] . I n c o n t r a s t , i n t h e n ewbo r n , 5 ′ -N -
ethylcarboxamidoadenosine (NECA) produced dose-
dependent tachycardia, while R-PIA and cyclohexyladenosine
produced dose-dependent bradycardia. Although adenosine
causes cardiovascular changes in pregnant ewes, the effects
are well tolerated and do not significantly affect the cardiore-
spiratory status of the foetus [73].

P2 receptors are expressed in human foetal heart [74].
P2X1, P2X3 and P2X4 receptor subtypes as well as P2Y2,
P2Y4 and P2Y6 receptors were present. A subunit of the
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P2X receptor family was isolated from cardiomyocytes and
brain from 14-day-old chick embryos that had 75 % identity
with the rat and human P2X4 receptor [33].

The postnatal development of A1 receptors in the heart has
been studied extensively (see [7]). In preinnervated immature
rat myocytes, A1 receptors are present in greater numbers
compared to the adult and they are functionally coupled at
their effector sites [69].

Adenosine formation and release by neonatal rat ventricu-
lar myocytes in culture have been described [75, 76].
Adenosine and hypoxia effects on the atrioventricular node
of neonatal rabbit hearts have been reported [77]. The adeno-
sine agonist NECA increases cardiac output in developing
Xenopus tadpoles through a combination of increased filling
and accelerated growth of heart and vessels [78]. Adenosine
was claimed not to be as effective as a vasodilator of internal
carotid arteries in the newborn pig as it is in the adult. In foetal
sheep, centrally administered adenosine influences cardiac
function. Expression of A1 and A2A receptor genes in rat pe-
ripheral arterial chemoreceptors is differential during postnatal
development [79, 80].

Expression of P2Y receptor subtypes in myocytes changes
from neonate rat heart to the adult [81]. Expression of P2Y1

receptors is higher in comparison to P2Y2, P2Y4 and P2Y6

receptors in the neonatal myocyte, while P2Y4 receptors were
not detected in adult myocytes. In neonatal heart fibroblasts,
P2Y1 and P2Y6 receptors were expressed at higher levels than
P2Y2 and P2Y4 receptors. RT-PCR studies of the foetal hu-
man heart showed that P2X1, P2X3 and P2X4 subtypes were
expressed together with P2Y2, P2Y4 and P2Y6 receptors [74].
ATP and α,β-methylene ATP (α,β-meATP) intravenous in-
jection increased heart rate via P2X receptors in rats aged 21,
56 and 100 days, with the most potent effect in 21-day-old
animals [82]. It was claimed that P2Y receptor-mediated
changes were more prominent in the later developmental
stages [83]. ATP increased expression of the immediate-
early genes c-fos and jun B in cultured neonatal cardiac
myocytes by a different pathway from that produced by NA
[84]. UTP caused hypertrophic growth in neonatal rat
cardiomyocytes, while prolonged exposure to ATP had hyper-
trophic growth inhibitory effects [85]. P2Y4 receptors were
shown to be involved in myocardial contractile activity in rats
during postnatal development [86].

Blood vessels

Adenosine was claimed not to be as effective as a vasodilator
of internal carotid arteries in the newborn as it was in the adult
pig [87]. It was suggested that neonatal brain adenosine may
play a role in regulating blood flow during hypoxia [88].
Adenosine appears to play an important role in the regulation
of coronary blood flow in the newborn lamb [89]. Adenosine-
induced vasodilatation of the guinea pig coronary vascular

bed is greater in immature guinea pig heart (5 days) compared
to mature heart (1–2 months) [90]. Responses of isolated mes-
enteric arteries of the beagle to both β-adrenoceptors and P1
receptors are less in old compared to young animals [91].

In the mesenteric artery of the rat, the sympathetic and
sensory nerve fibre plexuses develop over the first three post-
natal weeks, but functionally mature nerve-mediated contrac-
tile responses cannot be elicited before 14 days postnatal [92],
correlating with the appearance of adult-like excitatory junc-
tion potentials (EJPs) [93]. Prior to this period, intracellular
recordings from animals aged 4 to 9 days old showed slow
depolarizing potentials which were mediated by α-
adrenoceptors. From day 9 onwards, EJPs, which were resis-
tant to α-adrenergic antagonists, were recorded [93] and are
likely to be mediated by ATP (see [94]). Following denerva-
tion studies in the rat mesenteric vascular bed, electrical re-
sponses similar to those seen during the early stages of devel-
opment were recorded [95], suggesting that a similar sequence
of events occurs during regeneration as takes place during
development. P2X receptor subtype mRNA expression in rat
mesenteric artery showed high expressions for P2X1 and
P2X4 at postnatal day 7, which remained during development
until day 360 [96, 97]. A reduction in spontaneous and α1-
adrenoceptor-induced release of ATP from endothelial cells of
the rat tail artery occurs with advancing age [98]. The
endothelium-dependent relaxant response of the aorta to
ATP, mediated by NO, was greatest in 4-week-old rats but
declined progressively at 45 and 105 weeks [99].

Oxygen-induced pulmonary vasodilatation is mediated by
ATP in newborn lambs; it is attenuated by combined admin-
istration of P1 and P2Y receptor antagonists [100]. However,
it appears to differ from the mechanism of oxygen-induced
pulmonary vasodilatation in the late gestational foetal lamb
[101–103]. Infusion of ATP caused a significant decrease in
pulmonary vascular resistance in normoxic and hypoxic new-
born lambs [104]. Adenosine is also a pulmonary vasodilator
in newborn lambs [71].

Skeletal muscle

ATP actions on patched membranes of myoblasts and
myotubes cultured from 12-day-old chicken embryos were
first demonstrated by Kolb and Wakelam [105]. Using bio-
chemical methods, ATP-induced cation influx was later dem-
onstrated in myotubes prepared from 11-day-old chick embry-
os and shown to be additive to cholinergic agonist action
[106]. Later papers from this group claimed that the myotube
P2 receptor triggers phosphoinositide turnover [31, 107] and
alters Ca2+ influx through dihydropyridine-sensitive channels
[108]. ATP has a potent depolarizing action on myotubes de-
rived from pectoral muscle cultured from 11-day chick em-
bryos [109], and its physiological and pharmacological prop-
erties have been described in a series of papers [110–114]. The
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myotube P2 receptor is not activated by ADP, AMP, adeno-
sine or the non-hydrolyzable ATP analogues α,β-meATP or
β,γ-methylene ATP [109]. A single class of ATP-activated
ion channel conducts both cations and anions in the myotube
[111], and the P2 receptors involved showed marked desensi-
tization [112]. The sensitivity of extracellular ATP has been
tested at various stages of development of different muscles
[115]. At embryonic day 6, ATP (50–100 μM) elicited vigor-
ous contractions in all the muscles tested, but by embryonic
day 17, none of the muscles contracted in response to ATP.
The distribution of 5′-nucleotidase during the development of
chick striated muscle showed that there is a more restricted
distribution in the adult compared to the embryo [116]. A
mammalian P2X1 receptor orthologue was identified in em-
bryonic chicken skeletal muscle, perhaps forming
heteromultimers with P2X4 and P2X5 receptor subunits
[117]. Both P2X5 and P2X6 receptors were present in devel-
oping chick skeletal muscles [34, 118].

Purinoceptors were present in mouse C2C12 myotubes
[119–123]. P1 receptors activating cAMP were identified as
well as P2Y2 receptors, sensitive to ATP and UTP. Occupation
of the receptor by ATP or UTP led to formation of IP3 and
release of Ca2+ from internal stores as well as from the extracel-
lular space. The responses to ATP of myotubes prepared from
E18 mouse embryos from normal and mutant mdg/mdg mice
with muscular dysgenesis were studied by Tassin et al. [124].
Using Fura-2 as a probe, they showed that many of the mdg/
mdg myotube preparations showed little or no increase in cyto-
plasmic Ca2+ levels. The presence of functional P2X receptors
in freshly isolated skeletal muscle cells from prenatal mice has
been reported [125]. A punctate staining pattern for P2X7-like
receptors was present at postnatal day 1 in mouse motor nerve
terminals [126]. It was concluded that P2X7 receptors are
expressed by both myelinating Schwann cells and motor neuron
terminals, so an autoregulatory role for ATP released by nerve
terminals during synaptic transmission was suggested.

P2 receptor expression and responses to ATP change dur-
ing development of skeletal muscle [34, 115, 127, 128].
P2X5, P2X6 and P2X2 receptors were expressed sequentially
with P2X5 and P2X6 receptors associated with the develop-
ment of the myotube, while P2X2 and P2Y1 receptors ap-
peared to be involved in the formation of the skeletal neuro-
muscular junction [128–131]. The possibility that extracellu-
lar ATP, coreleased with ACh, may serve as a trophic factor
during the development of the Xenopus neuromuscular junc-
tion has been considered [20, 25]. P2Y13 receptors regulate
phosphate metabolism and fibroblast growth factor-23 secre-
tion during skeletal bone development [132].

Urinary bladder

Expression of P2X1 receptor transcripts was much lower in
foetal human bladder than in adult bladder; P2X4 and P2X7

receptors were also expressed in the foetus [133]. The P2
receptor expression shifted from the dome to the body of the
bladder with increasing gestation. Obstruction of the foetal
male sheep bladder resulted in enlarged, hypocontractile and
compliant bladder [134]. However, there was no conclusive
evidence for changes in purinergic (or in cholinergic or
nitrergic) neurotransmission.

Responses of the rabbit urinary bladder to both parasym-
pathetic cotransmitters ACh and ATPwere recognized in new-
born animals, but adrenoceptors were poorly expressed until a
later stage (see [135]). Newborn bladders generated much
greater tension in response to ATP than adult tissue and then
declined, while the response to cholinergic agonists did not
decline. Rat urinary bladder responses to adenosine
(inhibitory) and ATP (excitatory) mediated by P1 and P2X
receptors, respectively, occurred at P2, the earliest day studied.
In the neonate, adenosine was more potent than in the adult,
while ATP potency initially increased with age but then de-
clined; it was highest between P10 and P25. The main path-
way for nerve activation of the urinary bladder of newborn
mice was cholinergic, with only a small contribution of the
purinergic component; this was in contrast to adult bladder,
which was equally dependant on cholinergic and purinergic
components [136]. These differences were due to changes in
ATP release, rather than to changes in receptor function.

In neonates and adults, the rate and pattern of breakdown of
ATP and adenosine by ectoenzymes in the rat urinary bladder
were identical. This suggested that the marked differences in
potency to ATP and adenosine during development were like-
ly to be due to changes in receptor number and/or agonist
affinity or efficacy. Small clusters of P2X receptors (about
0.4 μm in diameter) were present on smooth muscle cells at
day P1 in rat urinary bladder, although few varicose nerve
fibres were present at that time [137]. At P4, many varicose
fibres were present and some small clusters of P2X receptors
were seen in association with varicosities. Many of the P2X
receptor clusters were found adjacent to varicosities of para-
sympathetic nerve fibres by P21. Increased purinoceptor-
mediated contractions were elicited in newborn rat detrusor
smooth muscle, which reached adult levels 1 month after birth
[138].

Contractile responses of the rat bladder to ATP, released as
a cotransmitter from parasympathetic nerves, increased with
age [139].

Nervous system

Central nervous system

The emphasis in earlier studies of purines in the CNS was
largely about adenosine [7, 140, 141], but since purinergic
neurotransmission involving ATP as a transmitter was clearly
demonstrated in the medial habenula of the rat brain [142],
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many more papers have been appearing concerning P2 recep-
tors in the brain and spinal cord (see [8, 143, 144]).

Adenosine receptors appeared early and reached higher
adult levels in the brains (most notably in the cerebellum) of
mice pups chronically exposed in utero to caffeine [145]. A
study of the distribution of adenosine-binding sites in the cat
visual cortex showed changes in the laminar binding pattern
during postnatal development [146]. Adenosine receptors
were detected in the rat forebrain in young neonates, preced-
ing N-protein coupling [147]. In a study of the developing
guinea pig brain, A1 receptors were present from E19 and it
was claimed that in cerebellum, but not in forebrain, postnatal
coupling of adenosine A1 receptors to associated G proteins is
much more extensive than in the prenatal period [148].The
developmental properties of adenosine A2A receptors differ
from those of A1 receptors during postnatal development of
rat striatum. A2A receptor binding sites were low at birth
(about 3 % of adult levels) and then increased mostly between
birth and 5 days and then again from 15 days to adulthood
[149]. In contrast, expression of A1 receptor mRNA in the
brain was first described at gestation day 14. It was restricted
to portions of neuroepithelium caudate putamen, piriform cor-
tex, hypoglossal nucleus and ventral horn of spinal cord. By
gestational age 17, A1 receptor expression pattern in the brain
was similar to those observed in adults. The development of
adenosine uptake sites in the guinea pig brain has been de-
scribed. A1 receptors are widely distributed at birth (about
10 % of adult levels) and then increase gradually until adult-
hood, with a peak during the second week of postnatal life
[150–152]. The ratio of adenosine (A2A) receptors to dopa-
mine D2 receptors in the rat striatum increases with age, in-
volving both presynaptic and postsynaptic mechanisms [153].
A decrease in striatal A2 receptor mRNA expression has been
demonstrated with in situ hybridization histochemistry in rat
striatum between 3 and 24 months, but it was suggested that
this may be related to neuronal loss over the same period
[154]. Postnatal changes in expression of A2A receptors have
been described in various brain regions [155]. It was sug-
gested that postnatal changes in adenosine receptors may ex-
plain age-dependent differences in stimulatory caffeine effects
and protection against seizures throughout development.
Further, since A2A receptors show a codistribution with D2

receptors throughout development, they also speculate that
caffeine may partly exert its actions via dopamine receptors.
Wide distribution of P2Y1 receptors was reported in the 1-day-
old chick brain [156]. Age-dependent changes in presynaptic
neuromodulation via A1 receptors have been described in hip-
pocampus of mouse [157] and rat [158, 159]. There is a down-
regulation and reduced responsiveness to presynaptic A1 re-
ceptors modulating ACh release during postnatal develop-
ment and ageing. A1 receptor down-regulation occurred in
foetal brain after caffeine or theophylline treatment of preg-
nant rats [160]. Down-regulation and reduced responsiveness

to presynaptic A1 receptors modulating ACh release in the
hippocampus during postnatal development and ageing were
reported [161].

Caffeine decreased the incidence of neonatal respiratory
disturbances, perhaps reflecting the early dominance of the
adenosinergic system in the brainstem [162]. The develop-
mental properties of adenosine A2A receptors differed from
those of A1 receptors during postnatal development of rat
striatum. A2A receptor binding sites were low at birth (about
3 % of adult levels) and increased mostly between birth and
5 days and then again from 15 days to adulthood. The ratio of
adenosine A2A receptors to dopamine D2 receptors in the rat
striatum increased with age, at both presynaptic and postsyn-
aptic sites. A1 and A2A receptors played a major role during
the development of the rat uncrossed retinotectal pathways
[163].

Rhythmic movements were regulated by purinergic trans-
mitters in frog embryos [164]. ATPwas released during swim-
ming that activated P2Y receptors to cause an increase in the
excitability of the spinal motor circuits by inhibiting voltage-
gated K+ currents via a P2Y1 receptor [164, 165]. Adenosine,
resulting from the breakdown of ATP, acted on P1 receptors to
reduce the voltage-gated Ca2+ currents lowering excitability
of the motor circuits to oppose the actions of ATP [166]. It was
suggested that a gradually changing balance between ATP and
adenosine underlies the rundown of the motor pattern for
swimming in Xenopus. In an earlier study, Dale [167] present-
ed evidence to suggest that delayed production of adenosine
underlies temporal modulation of swimming in the frog em-
bryo and is likely to result from feed-forward inhibition of the
5′-ectonucleotidase in the spinal cord. A homologue of apy-
rase was identified in Xenopus during early development
[168]. Subsequent comprehensive studies have shown that
the NTPDase, NPPase gene families and CD73 are expressed
at all stages of development in Xenopus [26, 169, 170].

ATP [171] and adenosine [172] modulate the activity of
inspiratory neurons in the brain stem of neonatal rats (see
[7]). The activity of neurons in the rostral ventrolateral medul-
la and the respiratory motor output were depressed by adeno-
sine, with a more pronounced decrease in respiratory activity
in younger animals. During the first 2 weeks of postnatal
development, ATP excitation of glutamate inspiratory drive
to mouse hypoglossal neurons remained constant. A second-
ary inhibitory response occurred, mediated by adenosine act-
ing via A1 receptors after enzymatic breakdown of extracellu-
lar ATP [173]. Adenosine, acting on A1 receptors after break-
down of ATP, evoked a secondary inhibitory response. It has
been claimed that adenosine plays a central role in modulating
ventilation in the newborn piglet and is involved in the dipha-
sic ventilatory responses to hypoxia. R-PIA, an adenosine
receptor agonist, caused a decrease in ventilation which was
blocked by theophylline indicating mediation by P1 receptors
[174]. R-PIA caused a considerably more pronounced effect
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in 1- to 3-day-old animals than in 8-day-old animals and was
shown to bind with higher affinity in the brains from newborn
animals compared to older animals. The authors suggested
that this might explain the potent therapeutic effect of the
adenosine antagonist, theophylline, on recurrent apnea in pre-
term infants. In studies of anesthetized newborn piglets, it was
concluded that adenosine contributes to ventilatory depression
caused by hypoxia [175, 176]. In another investigation of the
role of adenosine in the hypoxic ventilatory response of the
newborn piglet, the authors concluded that adenosine plays a
central role in modulating ventilation in the newborn piglet
and is involved in the biphasic ventilatory responses to hyp-
oxia [177]. It has been claimed that the inspiratory output of
XII motor neurons that control the airways in mammals is
potentiated by P2Y1 receptors in neonatal rat in vitro [178].

Responses of sympathetic preganglionic neurons in a
neonatal rat brain stem–spinal cord preparation were
evoked by ATP and adenosine. In rat locus coeruleus neu-
rons, P2 receptors first appear to be functional soon after
birth, increasing thereafter to reach maturity in animals
older than 18 days [179]. α,β-MeATP was strongly active
on glycinergic presynaptic nerve terminals projecting to rat
substantia gelatinosa neurons at P28–30, perhaps contrib-
uting to the fine control of the pain signal in spinal cord
dorsal horn neurons [180]. Excitatory synapses, mediated
by both glutamate and ATP in rat superficial dorsal horn,
were functional from the first postnatal days [181]. P2X3
receptors on motoneurons of the nucleus ambiguus were
down-regulated during the first two postnatal weeks, indi-
cating their involvement in the control of oesophageal mo-
tor activity in early development [182].

Extracellular ATP facilitated the release of dopamine via
P2 receptor activation in parts of the mesolimbic system, in-
cluding organotypic slice cocultures of the ventral tegmentum,
substantia nigra and prefrontal cortex [183]. These authors
showed a time-, region- and cell type-dependent in vitro and
in vivo expression pattern of different P2 receptor types in the
dopaminergic systems, suggesting an important role of
purinergic signalling in development and growth. Both ATP
and adenosine have been shown to modulate the activity of
inspiratory neurons in the brain stem of neonatal rats (see [7]).
Adenosine depressed both the activity of neurons in the rostral
division of the ventrolateral medulla and the respiratory motor
output, with a more pronounced decrease in respiratory activ-
ity in younger animals. ATP excitation of glutamate inspira-
tory drive to mouse hypoglossal neurons remained constant
during the first 2 weeks of postnatal development. A second-
ary inhibitory response was due to adenosine acting on A1

receptors after breakdown of ATP. ATP and adenosine medi-
ate responses of sympathetic preganglionic neurons in a neo-
natal rat brain stem–spinal cord preparation. Activation of
P2Y1 receptors in the glomerulus stimulated neuronal network
activity in the developing olfactory bulb [184].

Intense immunolabelling of P2X3 receptors in the postnatal
(P7 and P14), but not adult, rat brain was reported [185].
Staining was restricted to the hindbrain, in particular, the mes-
encephalic trigeminal nucleus, the superior and inferior olive,
the intermediate reticular zone, the spinal trigeminal tract and
the prepositus hypoglossal nucleus at E16. P2X7 receptor
mRNA was detected in the E19 rat by in situ hybridization
in brain ependymal, but not neurons [186]. Human foetal as-
trocytes expressed low levels of P2X7 receptor mRNA and
protein in primary cultures [187]. P2X7 receptors mediated
caspase-8/9/3-dependent apoptosis in developing rat primary
cortical neurons [188].

Green fluorescent protein-tagged P2X2 receptor studies of
embryonic hippocampal neurons led to the claim that ATP
application can lead to changes in dendritic morphology and
receptor distribution [189]. P2X2 receptors were identified on
Purkinje neurons in the neonatal cerebellum, mRNAs
for P2X1-4 and P2X6 subunits were identified in the
cerebellum during the first postnatal week, and
coexpression of two units in Purkinje cells demonstrated
with patch clamping [190].

Purinergic signalling in precursor cells, neuroglial progen-
itors and differentiating neurons during neurogenesis of em-
bryonic rat neocortex was reported [191]. Neuroglial progen-
itors from the ventricular and subventricular zones showed
increase in [Ca2+]i in response to ATP. A detailed study of
the expression pattern for P2X3 receptors in embryonic
neurogenesis was published [192]. P2X3 receptors first ap-
peared in the hindbrain neural tube and sensory ganglia at
E11–11.5. At E14.5, P2X3 receptors appeared in the optic
tract, nucleus tractus solitarius and mesencephalic trigeminal
nucleus. However, P2X3 immunoreactivity was down-
regulated in early postnatal brain stem.

P2X receptor expression changed during postnatal devel-
opment of the rat cerebellum [193]. All P2X receptor subtypes
were expressed (except P2X3) on Purkinje cells and deep
cerebellar nuclei at P3. At P7, there was upregulation of
P2X5 and P2X6 receptors, and microglial cells expressed
P2X1 and P2X7 receptor immunoreactivity. Dendritic trees
of Purkinje cells were intensely labelled for P2X1-7 receptors
(except for P2X3) at P14. P2X4 receptors were expressed on
microglia and P2X5 receptors on granular cells. At P21 and
P66, the P2X receptors were down-regulated on Purkinje cells
and deep cerebellar nuclei, but P2X5 receptors on granular
cells were upregulated. Endogenous release of ATP started
to enhance synaptic activity in rat Purkinje neurons by the
end of the second postnatal week [194].

The sequential expression of P2X receptor subtypes during
embryonic rat brain development revealed that P2X3 recep-
tors appeared first at E11, P2X2 and P2X7 receptors at E14,
while P2X4, P2X5 and P2X6 receptors did not appear until
birth and P2X1 receptors even later [195]. ATP inhibited mo-
tor axon outgrowth during early embryonic neurogenesis,

Purinergic Signalling (2015) 11:277–305 287



probably via the P2X3 receptor, and it was suggested that
P2X7 receptors were involved in programmed cell death dur-
ing embryogenesis. At E9.5, P2X3 receptors were shown to
be present in the hindbrain, midbrain, diencephalon and fore-
brain neuroectoderm of mouse brain and, at E10.5, in the
marginal layer of diencephalon, midbrain and hindbrain
[196]. Spontaneous and evoked postsynaptic currents in em-
bryonic chick hypothalamus appeared to arise from the con-
current activation of both γ-aminobutyric acid (GABA) and
P2X receptors [197].

ATP acting via P2X and P2Y receptors contributed to mod-
ulate network-driven giant depolarizing potentials in the rat
hippocampus during early stages of postnatal development
[198]. ATP, via both P2X and P2Y receptors, appeared to
shape hippocampal connectivity during postnatal develop-
ment [199]. Activation of P2Y1 receptors increased the fre-
quency of GABAA-mediated spontaneous postsynaptic cur-
rent in CA3 principal neurons in early postnatal (P1–P6) rat
hippocampus [200]. In vitro studies of sensorimotor cortical
neurons from 14-day-old and 30-day-old rats have shown that
Ca2+ release could be evoked by ATP indicating the presence
of P2Y receptors [201]. Almost all P14 neurons appeared to
possess such receptors, whereas only about one third of
neurons from P30 rats responded to ATP, suggesting that
substantial changes in signalling mechanisms occur in neo-
cortical neurons in the third to fourth week of postnatal
development.

Changes in the distribution of the ectoenzymes involved in
the breakdown of ATP and adenosine in the brain during foe-
tal and neonatal development have been reported [7, 202].
Ecto-5′-nucleotidase was redistributed during development
of the cat visual cortex. Ecto-5′-nucleotidase levels were low
at 30 and 35 days of gestation of foetal guinea pigs but in-
creased rapidly during the 40- to 60-day period. In contrast,
adenosine deaminase was present at 30 days of gestation and
was maintained at the same level until 60 days. Adenosine
deaminase-staining neurons were observed in the olfactory
cortex of rat embryos as early as E15. Ca2+–ATPase in the
rat spinal cord during embryonic development was intensely
active in the roof and floor plates, but not in the basal and
lateral plates at E12, suggesting a role for Ca2+–ATPase in
early differentiation of neuroepithelial cells. ATP induced a
rise in [Ca2+]i in embryonic spinal cord astrocytes. P1 and
P2 receptor involvement in the proliferation of human foetal
cortical astrocytes was reported. Postnatal development of
ATPase, ADPase and ATP diphosphohydrolase activity in
the cerebral cortex has also been studied [203, 204]. The ac-
tivities increased steadily from birth, reaching maximum
values at 21 days of age. A marked increase in activity of
ecto-5′-nucleotidase was also seen in rat olfactory bulb during
neonatal development [205]. During early postnatal life, the
enzyme was found within synapses in the brain, but a glial
pattern of expression dominated in the adult, with the

exception of the olfactory bulb where both glial and synaptic
staining was present in mature adults. Ecto-NTPDase2 was
expressed transiently at E18 in astrocytic cells in the outer
molecular layer of the dentate gyrus and in cerebellar white
matter [206]. Postnatal development of ecto-nucleotidase ac-
tivity in the cerebral cortex increased steadily from birth,
reaching maximum values at 21 days of age. Increased activ-
ity of ecto-5′-nucleotidase was also seen in rat olfactory bulb
during neonatal development. Ecto-5′-nucleotidase was pres-
ent first in immature Purkinje cells at birth and increased
throughout postnatal development. In contrast, alkaline phos-
phatase activity did not appear on the granular neurons in the
developing cerebellum until day 7 postnatal. Ecto-ATPase,
ecto-ADPase and ecto-5′-nucleotidase activities were shown
to change in relation to age in synaptosomes of rat spinal cord
[207]. In synaptic plasma membranes isolated from rat cere-
bral cortex, NTPDase1 activity increased from birth to day 30,
after which it declined [208]. In general, ATP and ADP hy-
drolysis decreased in older animals.

It is known that neonatal hypothyroidism leads to abnormal
development of the CNS. Hypothyroidism changes adenine
nucleotide hydrolysis by ecto-5′-nucleotidase activities in syn-
aptosomes from hippocampus and cerebral cortex in rats in
different phases of postnatal development [209]. Neonatal hy-
pothyroidism enhances the metabolism of adenine nucleotides
in astrocyte cultures from rat brain [210]. Interactions between
thyroid hormones and adenosine receptor-mediated responses
during brain development are discussed in a review byAhmed
et al. [211]. Leukaemia inhibitory factor is required for normal
development of hippocampal astrocytes, a process that is reg-
ulated by spontaneous release of ATP from neurons [212].

Peripheral nervous system

The neural ectoderm folds to form the neural tube during early
embryological development. Cells in the neural crest migrate
into the mesoderm and then differentiate and mature to be-
come glial cells and neurons. Some form primary afferent
neurons of the dorsal root ganglia (DRG), while others form
postganglionic neurons of the sympathetic and parasympa-
thetic ganglia. Other cells form the enteric nervous system
and adrenomedullary chromaffin cells. The sensory neurons
of nodose, petrosal and trigeminal ganglia are derived partly
or entirely from the neural placodes. Adenosine inhibited
neurite outgrowth of chick sympathetic neurons taken from
11-day chick embryos and killed by apoptosis about 80 % of
sympathetic nerves supported by growth factor over the next
2 days in culture [213]. Specific A1 or A2 agonists were not
neurotoxic. The toxic effects of adenosine were not antago-
nized by aminophylline but were prevented by an adenosine
transporter or adenosine deaminase inhibitor, suggesting an
intracellular site of action for the toxic effects of adenosine.
It was concluded that adenosine and its breakdown enzymes
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play an important role in the regulation of growth and devel-
opment of sympathetic neurons. In follow-up experiments, the
authors suggested that adenosine induced apoptosis by
inhibiting mRNA and protein synthesis [214].

Responses to ATP were described in ciliary neurons acute-
ly dissociated from embryonic chick ciliary ganglia taken at
day 14 [215]. The relative potency of agonists in producing
transient inward currents with patch recording is ATP > 2-
methylthioATP > ADP; neither adenosine, AMP nor α,β-
meATP is effective, but suramin is an antagonist. The authors
suggest that the P2 receptor subtype involved might be
P2Y, but in view of subsequent knowledge about the
functional properties of cloned subtypes of the P2 re-
ceptor family, it seems more likely to belong to the P2X
receptor family. ATP-evoked currents in cultured DRG neu-
rons from rat embryos modulate spontaneous glutamate re-
lease via P2X2 and P2X3 receptors [216]. Early expression
of P2X3 receptors in prenatal human DRG neurons has been
reported [217].

P2X receptors on cultured embryonic DRG neurons medi-
ate the release of substance P [218]. P2X3 receptors were
expressed on most neurons in embryonic mouse trigeminal
ganglia and DRG. This was in contrast to adult ganglia, which
do not express P2X3 receptors on large-diameter neurons
[192, 196, 219]. Most sensory neurons in mouse DRG, tri-
geminal and nodose ganglia expressed P2X3 receptors at E14.
However, after birth, there was a decline to about 50 % of
neurons showing positive staining [219]. Isolectin B4 (IB4)-
positive neurons in sensory ganglia appeared at birth. They
increased to about 50 % by P14, when they mostly expressed
P2X3 receptors. Peptide release from neurons in embryonic
DRG is augmented by ATP via P2Y receptors [220].

Rat superior cervical ganglia (SCG) sympathetic neurons
were responsive to ATP and α,β-meATP at E18, birth and
during the early postnatal period, via P2X2/3 heteromultimer
receptors; these responses were reduced in mature rats [221].
This change in P2X receptor expression occurs when synap-
togenesis is taking place in the SCG, suggesting a role for
purinergic signalling in this process. During early postnatal
life, IB4-binding DRG neurons (that express P2X3 receptors)
switch from nerve growth factor to glial cell-derived neuro-
trophic factor dependence [222]. P2 receptors modulated NA
release from chick sympathetic neurons cultured from 12-day-
old embryos [223, 224]. This suggested that both a facilitatory
P2 receptor and an inhibitory receptor were involved.
Cultured mice and rat paravertebral sympathetic neurons from
the first few days after birth appeared to express different
purinoceptors [225]. Neurons from both species responded
via P2Y receptors activated by UTP to cause depolarization
and NA release.

Ninety-three percent of the tyrosine hydroxylase-negative
(parasympathetic) neurons in the rat pelvic ganglion
expressed P2X2 receptors in both young and old rats [226].

P2X7 receptors in satellite glial cells were shown to mediate
functional expression of P2X3 receptors in immature DRG
neurons [227].

Retina

There are many studies of purinergic signalling in the retina of
adult mammals, but relatively few reports about embryonic
retina. Spontaneous waves of excitation in the developing
rabbit retina were detected at E22, and involvement of
purinergic receptor activation in these waves was investigated
[228]. Adenosine has been implicated in chick retinal devel-
opment. A1 receptors were suggested to have different func-
tions in the embryonic retina [229].

ATP-induced rise in intracellular Ca2+ was mediated by
P2Y2 or P2Y4 receptors in embryonic chick neural retina,
and there was a decline of ATP-induced rise in intracellular
Ca2+ just prior to synaptogenesis (see [7]). Large Ca2+ signals
in chick retinal cells were triggered at E3 by ATP and UTP,
acting via P2Y receptors [230]. Simultaneously, ATP, ADP
and UTP stimulated proliferation of retinal cells via P2Y1

and P2Y4 receptors and multiple intracellular signalling cas-
cades [231]. Autocrine or paracrine release of ATP has been
claimed to be involved in the regulation of DNA synthesis in
the neural retina at early embryonic stages [232]. Suramin and
pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid
inhibited the ATP-induced increase in [3H]thymidine incorpo-
ration in retinal cultures from E3. The change in Ca2+ signal-
ling mediated by P2u (i.e. P2Y2 or P2Y4) receptors during
development may be involved in the differentiation of
neuroepithelial cells or progenitor cells into neurons. P2 re-
ceptors appear to mediate the regulation of retinal progenitor
cell proliferation at early embryonic stages, perhaps in collab-
oration with growth factors [232]. Proliferation of both bipolar
and Müller cells in early developing chick retina at E6–8 is
probably mediated by P2Y1 receptors [233]. ATP induced
proliferation of cultured retinal cells [233]. ATP evoked in-
crease in [Ca2+]i in radial Müller cells in the postnatal rabbit
retina [234].

ATP signalling associated with Ca2+ waves is present in
both retinal pigment epithelium [235, 236] and in the devel-
oping neural retina [230, 237]. Activation of P2 receptors in
the chick embryo retina evoked an increase in [Ca2+]i and
controls the rate of division of progenitor cells [231, 236].
Pearson et al. [236] showed that the ATP release in the retinal
pigment epithelium came about through the spontaneous gat-
ing of connexin43 hemichannels. Blockade of these hemi-
channels with a connexin mimetic peptide not only greatly
reduced ATP release but also greatly reduced the proliferation
of progenitor cells in the adjacent neural retina.

Guanine nucleotides block agonist-driven Ca2+ influx in
chick embryo retinal explants [238]. RT-PCR studies revealed
changes in the expression of P2X3 and P2X5 receptor mRNA
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at different postnatal stages, P23 to P210, of pigmented retinas
[239]. Also, P2X7 mRNA showed positive identification in
the retina of postnatal rats (P23–P210) [240]. Data has been
presented that suggests that purinergic signalling via P2Y1 and
P2Y4 receptors on Müller cells may contribute to differentia-
tion in the postnatal rat retina [241].

Inner ear

P2X2 receptor mRNA expression was present in the precur-
sors of the cells bordering the cochlear endolymphatic com-
partment at E12 and in spinal and vestibular ganglia during
embryonic development of the rat inner ear [242]. P2X2 re-
ceptor mRNAwas not expressed in inner and outer hair cells
until after P10 through P12, concomitant with the onset of
hearing. These data are in accordance with the roles of the
P2X2 receptor both in the process of labyrinthine develop-
ment and in the regulation of auditory and vestibular sensory
transduction. P2X1 receptors provide the signal transduction
pathway for development of afferent and efferent innervation
of the sensory hair cells and cochlea morphogenesis [243].
Using confocal immunofluorescence, P2X3 receptor expres-
sion has been characterized in the mouse cochlea from E16
[244]. Spiral ganglion neuron cell bodies and peripheral
neurites projecting to the inner and outer hair cells were la-
belled for P2X3 receptor protein from E18 to P6. They were
diminished around P6 and were no longer present at the onset
of hearing (around P11). This suggests a role for P2X3
receptor-mediated purinergic signalling in cochlea synaptic
reorganization and establishment of neurotransmission that
occurs just prior to the onset of hearing function [245].
Brain-derived neurotrophic factor-mediated development of
spiral ganglion neurons was shown to be inhibited by P2X3
and P2X2/3 receptor-mediated signalling in neonatal rat co-
chlea [246].

P2X7 receptor immunolabelling was observed in the pri-
mary auditory neurons of the spiral ganglion fromE18 to adult
and in the fibres innervating the sensory inner and outer hair
cells from birth to adult [247]. The authors speculated that
P2X7 receptors may be involved in signal transduction and
modulation as well as in regulating cell death during develop-
ment and in pathological conditions. It was reported that P2Y4

and P2X2 receptors were coexpressed and contributed to the
regulation of short circuit currents in rat cochlear neonatal
outer sulcus cells [248]. They showed further that P2Y4 re-
ceptor expression rapidly declined postnatally and reached
near adult levels on postnatal day 14. In a later paper, the
expression of P2Y1, P2Y2, P2Y4, P2Y6 and P2Y12 receptors
was identified in the rat cochlea during development [249].
Beginning in the late embryonic period, P2Y receptors were
found in the cells lining the cochlea partition associated with
the electrochemical environment that provides the driving
force for sound transduction. Early postnatal P2Y2 and P2Y4

protein expression in the greater epithelial ridge supported the
view that initiation and regulation of spontaneous activity in
the hair cells prior to hearing onset are mediated by purinergic
signalling.

Evidence was presented to suggest that P2X3 receptors
mediate vestibular synaptic augmentation in the inner ear of
chicken embryos [250]. They showed further that P2Y recep-
tor (P2Y1, P2Y2 and P2Y6) mRNA was present during the
early stage (E15) rather than the later stage (E21) of the de-
velopment of the vestibular system. It was suggested that tem-
poral changes in P2Y receptor expression during development
might be involved in the establishment of the endolymphatic
ion composition needed for vestibular and auditory transduc-
tion. A transient structure, Köllicker’s organ, consisting of
epithelial cells that lie adjacent to the hair cells, appears during
the development of the cochlea. Spontaneous electrical poten-
tials in these cells were mediated by spontaneous release of
ATP via connexin hemichannels to act via P2X and P2Y re-
ceptors [251, 252]. These cells exhibit spontaneous Ca2+

waves activated by ATP [253] and may allow the establish-
ment of the tonotopic organization of the cochlea and spiral
ganglion cell innervation, although this is disputed [254].
Changes in expression of the ectonucleotidases, NTPDase5
and NTPDase6, and uridine diphosphate-activated P2Y6 re-
ceptors were observed during rat cochlea development [255].

In the developed cochlea, hemichannel-mediated ATP re-
lease may be important in regulating the electromotility of the
outer hair cells [256]. This electromotility is an active ampli-
fier of mechanical movement of the basilar membrane and
determines the sensitivity of the cochlea to sound stimulation.
A review by Mammano [254] summarizes the current under-
standing of the roles of ATP in cochlear development and
function and the possible roles of connexin hemichannels.
Interestingly, mutations or deletions of connexins, in particu-
lar, Cx26 [257] and Cx30, cause sensorineural hearing loss,
suggesting that ATP release via these hemichannels may have
fundamentally important roles in the development and main-
tenance of a functional cochlea [254, 258].

Gastrointestinal tract

Non-adrenergic, non-cholinergic (NANC) nerve-mediated re-
sponses were observed before birth in mouse and rabbit small
intestine [259]. Quinacrine fluorescence, which is a marker for
high levels of vesicle-bound ATP, was observed before birth in
enteric neurons of rabbit ileum and stomach, 3 days before
catecholamine fluorescence was detected in enteric nerves
[260]. In the guinea pig taenia coli, the purinergic NANC
inhibitory system appeared at 8 weeks of gestation, while
cholinergic excitatory transmission was not present until birth
[261].

P2X3 receptor immunoreactivity in the myenteric plexus of
the embryonic rat stomach was present on both extrinsic and
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intrinsic nerves [262]. The extrinsic sensory nerve fibres first
expressed P2X3 receptors as early as E12, which extended
rapidly on to the whole stomach by E14. However, the intrin-
sic enteric neuron cell bodies slowing positive P2X receptor
immunoreactivity did not appear until birth (P1), peaked by
P14 and then decreased in maturing animals. P2X3 and P2X5
receptors are present in large numbers of myenteric neurons in
newborn guinea pigs compared to adults, whereas P2X5 re-
ceptor mRNA is found more frequently in adults [263].
Intraganglionic laminar nerve endings and intramuscular ar-
rays were seen first postnatally at P1 and P7, respectively
[262].

Several studies of postnatal developmental changes in
purinergic signalling in the small intestine have been reported.
ATP and ADP produced contractile responses in rat duodenal
segments at P1 [264]. This response increased with age to day
7, followed by a decrease, and was non-existent by day 21.
The relaxant responses to ATP and ADP, however, appeared at
day 21 and continued to increase up to day 70 and probably
later. Responses to adenosine or AMP were not elicited until
day 14.

A2B receptors in the longitudinal muscle of the rat duode-
num were present at day 15, while A1 receptors did not appear
until after day 20; both receptor subtypes mediated relaxation.
A2B receptors in the muscularis mucosa mediated contraction
from day 10. P2Y receptors mediated relaxation of the longi-
tudinal muscle at day 25, while in the muscularis mucosa,
P2Y receptors mediated contraction. After day 20, contrac-
tions were mediated by both P2X and P2Y receptors. The
longitudinal muscle of the rat colon relaxed via A2B and
P2Y receptors, while the muscularis mucosa contracted via
A1 and probably P2Y2 or P2Y4 receptors [264].

In the mouse gastrointestinal tract, combined pharmacolog-
ical and immunohistochemical studies showed that contrac-
tion was mediated by P2Y1 receptors from P3 to P8 [265].
However, relaxation of longitudinal muscle throughout the
gastrointestinal tract from day 12 onwards was via P2Y1 re-
ceptors located both on smooth muscle and on a subpopula-
tion of myenteric neurons. P1, P2Y2 and/or P2Y4 receptors
and were also present on intestinal smooth muscles. The re-
laxant response during postnatal development was mediated
by P2Y1 receptors that gradually appeared along the length of
the gastrointestinal tract, in the stomach from day 3, from day
6 in the duodenum, day 8 in the ileum and day 12 in the colon.
The shift from contraction to relaxation occurred 1 week be-
fore weaning, suggesting that this may contribute to the
changes that take place in the gut when the food compositions
change from maternal milk to solid food.

Adenosine deaminase was localized predominantly on the
keratinized squamous epithelium that lines the mucosal layer
of the oesophagus, forestomach and the simple columnar ep-
ithelium of proximal small intestine of the mouse gastrointes-
tinal tract. The levels of adenosine deaminase in these tissues

were low at birth but reached very high levels within the first
2 weeks of postnatal life [266]. There was strong immuno-
staining of P2X4 receptors on the epithelial cells of proximal
and distal newborn rat gut, P2X6 receptor immunostaining in
capillary vessels in proximal newborn gut and differences in
the amounts of P2X4 and P2X6 receptor expression in new-
born compared to adult proximal and distal intestine [267].

Lung

The development of purinergic signalling in the lung de-
scribed in early papers has been reviewed [7]. Increase in
[Ca2+]i signals in rat foetal lung epithelial cells was evoked
by ATP and UTP. In epithelia explanted from foetal rat lung,
receptors to adenosine, ATP and UTP were located on apical
membranes throughout the lung, while basolateral receptors
for these agonists were functional later in gestation in distal
lung and in trachea. P2X7 mRNA was detected in E19 rat
embryos by in situ hybridization in bronchial epithelium.
ATP increased surfactant secretion as early as day 1 in new-
born rats, but the effect of UTP did not appear until 4 days
after birth. Adenosine analogues interrupted foetal breathing
movements, but apnea was not produced in newborn lambs.
Adenosine, ATP and ADP evoked oxygen-induced pulmo-
nary vasodilatation in foetal lambs, probably via both A2A

and P2Y receptors [268]. P2X3 receptors are expressed on
vagal sensory nerve terminals in rat lung where they make
contact with neuroepithelial bodies (NEBs) a few days before
birth [269]. This is consistent with the function of NEBs as
oxygen sensors before the carotid body O2 sensory system is
fully developed at about 2 weeks after birth. Adenosine played
a central role in modulating ventilation in the newborn piglet
and was involved in the biphasic ventilatory responses to
hypoxia.

Adenosine has a regulatory role in lung surfactant secretion
in the newborn rabbit [270]. Ventilation-induced increase in
secretion of lung surfactant was inhibited by P1 receptor an-
tagonists. ATP stimulation of surfactant in type II cells in adult
rats is mediated by both a P2Y2 receptor coupled to phospho-
lipase C and a receptor coupled to adenylate cyclase; UTP also
activated the P2Y2 receptor but did not stimulate cAMP for-
mation. ATP increased cAMP formation in newborns but did
not promote phospholipase D activation until day 4. Thus, the
adenylate cyclase-coupled ATP signalling mechanism is func-
tional early in development, but the P2Y2 receptor pathway is
not.

Vas deferens

Rats are not sexually active until about 10 weeks, so that
changes in purinergic signalling in the developing vas
deferens might occur later than in the gut. ATP and NA are
cotransmitters in the sympathetic nerves supplying the vas
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deferens (see [271]). EJPs produced by ATP in response to
sympathetic nerve stimulation of the vas deferens were not
observed inmice less than 18 days postnatal [272]. At 3 weeks
postnatal (the earliest time studied), the responses of the rat
vas deferens to field stimulation with single or trains of pulses
lacked the adrenergic component, but the non-adrenergic
component was present [273]. Responses to ATP first ap-
peared at day 15 and then increased with age [264].

Adenosine, acting via prejunctional A1 receptors, inhibited
sympathetic neurotransmission in the rat vas deferens when
nerve-mediated contractions were first seen at day 15, but its
potency decreased with age. Inhibitory postjunctional A2-like
receptors and prejunctional A1 receptors were present from
days 10 to 15, respectively. Postjunctional excitatory A1 re-
ceptors did not appear until after day 20. Stimulation of the
hypogastric nerve produced monophasic contractions of
the vas deferens in 2-week-old guinea pigs. Nerve-
evoked contractions of the circular muscle layer of the
guinea pig vas deferens decreased with increasing age, ap-
parently due to purinergic postjunctional rather than
prejunctional mechanisms. Postnatal androgen exposure
of hypogonadal mice that are deprived of androgens after
birth resulted in inhibition of purinergic EJPs in the vas
deferens in adult mice, and P2X1 receptors could not be
demonstrated with immunofluorescence [274].

Other organs

Chondrocytes, isolated from the cephalic region of day 19
chick embryo sterna, release nucleotides into the extracellular
milieu, although they are rapidly degraded; it is claimed that
they are involved in both chondrocyte maturation and matrix
mineralization [275]. Extracellular ATP modulates [Ca2+]i in
retinoic acid-treated chondrocytes isolated the cephalic por-
tion of day 14 chick embryonic sterna [276]. They speculate
that immature chondrocytes may generate adenine nucleotides
that then act in a paracrinal manner on chondrocytes that are at
a later stage of maturation. Rapid deamination of adenosine in
cultures of foetal mouse calvarial bones was shown and taken
to account, at least in part, for the failure to observe effects of
adenosine in bone metabolism in culture [277]. Cells of oste-
ogenic and chondrogenic lineage derived from foetal metatar-
sal bones were exposed to ATP4-; cells of haemopoietic origin
were permeabilized and killed, while cells of non-
haemopoietic origin (e.g. osteoblasts, chondrocytes) were in-
sensitive to ATP4- and survived [278]. This system allows the
study of the properties and functions of osteogenic or
chondrogenic cells without interference by the presence of
cells of haemopoietic origin. ATP pyrophosphohydrolase has
been purified and partially characterized from foetal bovine
epiphyseal cartilage of patients with chondrocalcinosis [279].
The most prominent location of P2X7 receptor mRNA in E19
rat embryos is the bone marrow, but bone marrow cells from

mouse femur also showed strong immunoreactivity for P2X
receptors [186].

In the liver, the hepatic ATP/ADP ratio showed significant
decrease during the first day of postnatal life in starved new-
born rats, correlating directly to the gluconeogenic flux [280].

Enzymes for the breakdown of extracellular purines were
described in the developing rat testis, but full metabolic in-
volvement in terms of Mg2+ ATPase and 5′-nucleotidase was
not achieved until 45 days postnatal [281].

In rat kidney, intrarenal adenosine is a physiological regu-
lator of glomerular filtration rate and renal blood flow and
appears to play a key role in the hypoxaemia-induced renal
insufficiency in newborn rats [282]. Adenosine is involved in
the regulation of the action of insulin on rat fat cell metabolism
during postnatal development and ageing [283].

ATP and ADP and, to a lesser extent, AMP and adenosine
increased insulin secretion from the isolated perfused newborn
dog pancreas [284].

P2Y2 receptors are strongly expressed on NA-containing
adrenal chromaffin cells, but very little on adrenaline-
containing cells in mature rats [285]. In contrast, in newborn
rats, P2Y2 receptors are expressed equally on both NA and
adrenaline-containing cells. A loss of P2Y2 receptor expres-
sion on both NA- and adrenaline-containing cells occurs in the
adrenal gland of old (22 month) rats compared to newborn
animals. It was suggested that ATP, acting via P2Y2 receptors,
may influence the phenotypic expression of chromaffin cells
into NA- or adrenaline-containing cells during early
development.

Differential coupling of P2Y1 receptors to Gα14 and Gαq/11

proteins during the development of rat sal ivary
(submandibular) gland has been described, with two bands
(42 and 52 kDa) present in 1-week-old rats, but only the 42
kDa band was detected in the submandibular gland cells of 4-
to 6-week-old rats [286, 287].

In the skin, Merkel cells appear in the epidermis of planum
nasale of rat foetuses from the 16th day of intrauterine devel-
opment and nerve fibres form close associations with them by
day 20 [288]. Since it is known that Merkel cells contain high
levels of peptide-bound ATP and are in close association with
sensory fibres expressing P2X3 receptors (see [289]), this is of
interest.

Figure 7 summarizes the expression of purinoceptors dur-
ing postnatal development of duodenum, colon, vas deferens
and urinary bladder.

Stem cells

Pluripotent stem cells (embryonic carcinoma and embryonic
stem cells) have features of early embryonic cells [290, 291].
They are capable of differentiating into the three primary germ
layers of the embryo. Embryonic stem cells are present in
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foetal as well as in adult tissue. The importance of purinergic
signalling in stem cell biology, including regulation of prolif-
eration, differentiation and cell death, has been revealed [9,
292–294].

The P19 murine embryonal carcinoma cell line has been
used for studying mechanisms of early neurogenesis [295].
Cultured P19 cells treated with retinoic acid form tri-
dimensional cell aggregates, which resemble the blastula stage
of embryonic development [296–298]. Differentiation into
neuronal cells occurs by day 8, while glial cells predominate
in the culture on day 14. Purinergic receptor activity was
shown to be essential for proliferation and the progress of
neurogenesis [299]. Differentiating P19 cells at the neural
progenitor stage exposed to blockers of P2Y and P2X
receptor-mediated calcium signal transduction led to inhibi-
tion of proliferation.

P2Y2 receptors potentiate proliferation of embryonic stem
cells [300]. Early in embryonic development, P2X receptors
also appear. Neuronal progenitors, isolated from midbrain of
E10.5 mice, possess all components of the purinergic signal-
ling system. mRNA for adenosine, P2X and P2Y receptors
and ectonucleotidases are expressed, and stimulation of
purinoceptors elicited neuronal formation [301]. P2X3,
P2X4, P2Y1 and P2Y4 receptor expression was high in em-
bryonic P19 cells but then decreased following induction of
differentiation [302]. P2X4/6 and P2X2/6 heteromultimer

receptors may also be expressed on P19 cells. P2X6 receptor
subtype expression increased during prenatal and postnatal
mouse brain development [303]. P2Y1 receptors are the major
subtype involved in regulating cell proliferation and differen-
tiation, less so by the P2Y2 receptor subtype and with only a
minor role for P2X4 receptors [299]. Chronic inhibition of
P2Y1 and, possibly, P2X2 receptor activity induced differen-
tiation of P19 cells, resulting in loss of NMDA receptor activ-
ity in neuronal-differentiated cells, whereas blockade of P2Y2

and, possibly, P2X2 receptors resulted in inhibition of cholin-
ergic receptor responses.

Isolated neural stem cells from foetal brain or neurogenic
areas of adult brain proliferate as free-floating spherical ex-
pansions, called neurospheres, expressing the neural progeni-
tor marker nestin [304]. Removal of growth factors led cells of
the outer layers of the neurosphere to migrate and differentiate
into three major neural phenotypes, neurons, astrocytes and
oligodendrocytes [305, 306]. Neurospheres from foetal rat
brain expressed P2X2–7, as well as P2Y1, P2Y2, P2Y4 and
P2Y6 receptors [307]. Proliferation of human neural stem cells
cultured from telecephalon tissues from a 15-week gestational
age embryo was induced by ATP, and activation of P2 recep-
tors released [Ca2+]i from thapsigargin-sensitive intracellular
stores [308], indicating mediation via P2Y receptors.

Evidence was presented to identify a novel role for P2X7
receptors in control of mouse embryonic stem cells, showing
that they can mediate a pro-survival or pro-death signal de-
pending on the mode of activation [309]. P2X7 receptor ex-
pression and activity are upregulated in mouse embryonic
stem cells and modulate proliferation and suppress differenti-
ation [310]. Expression and regulation of the ATP-binding
cassette transporter, ABCG2, in human embryonic stem cells
have been reported [311].

P2Y receptors are involved in regulation of embryonic and
postnatal neurogenesis. P2Y and muscarinic ACh receptors
appear to be the first functionally active receptors, present
after gastrulation [29]. P2Y receptors, especially the P2Y1

subtype, were widely expressed in the embryonic rat brain
as early as day 11 [312]. A marked decrease in mRNA to
P2Y1 receptors and upregulation ofmRNA for P2Y2 receptors
were observed on freshly isolated astrocytes during develop-
ment of rat hippocampus [313]. P2Y receptor proteins were
strongly expressed transiently in structures that were likely to
be involved in functions specific to embryonic development.
P2Y4 receptors disappeared from the brain stem and ventral
spinal cord postnatally. Calcium waves propagate through ra-
dial glial cells in the proliferative central ventricular zone,
requiring both P2Y1 receptors and connexin hemichannels
[314].

Subventricular zone-derived neurospheres express two
ecto-nucleotidases, NTPDase2 and alkaline phosphatase,
which are markers for subsets of progenitor cells in the devel-
oping and adult mouse brain, supporting the notion that
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Fig. 7 Diagram summarizing the development of functional responses
mediated by purine receptors in the rat duodenum, colon, urinary bladder
and vas deferens. The dashed lines represent ages at which it was not
possible to study functional responses, and the solid lines show when
responses were observed, with the slope of the line indicating whether a
response, in general, increased or decreased with age (reproduced with
permission from [264])
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purinergic signalling contributes to embryonic, postnatal and
adult neurogenesis [315]. There is widespread mRNA expres-
sion for ectonucleotide pyrophosphatase/phosphodiesterase 1-
3 (E-NPP1-3) in different rat brain regions during develop-
ment and ageing [316]. There was an increase in both ATP and
ADP hydrolysis by ecto-NTPDases 1–3 in synaptic plasma
membranes isolated from rats in the first and second months
of life and then decreased in adult life [317].

Hypothalamic tanycytes comprise a third neurogenic cell
population in the adult brain capable of generating new neu-
rons in the hypothalamus [318–320]. They can also release
ATP, particularly in response to glucose, which can act at
P2Y1 receptors to trigger Ca2+ waves [321, 322]. Like other
neural stem cells in the brain, tanycytes also express
NTPDase2 [201]. The role of ATP in tanycyte proliferation
and differentiation has not, so far, been examined. Given that
tanycytes have several similarities to radial glial cells, which
are regulated by ATP signalling [314], an investigation of the
actions of ATP would seem warranted [322].

Ageing

Some studies of changes in purinergic signalling in ageing
have been published. Two populations of binding sites for
adenosine, corresponding to A1 and A2 receptors, were de-
scribed in the brain of both young and old rats, but both the
binding sites were greater in old rats [323]. Adenosinergic
inhibition of synaptic potentials was significantly enhanced
in hippocampal slices from aged rats contributing to age-
related decline in synaptic efficacy [324]. Activation by en-
dogenous adenosine via A1 receptors mediated synaptic plas-
ticity (both long-term potentiation and long-term depression),
and this was maintained in aged rats [325]. Caffeine has been
used to counteract age-related cognitive decline. For example,
acute treatment with caffeine was claimed to reverse the im-
pairment of olfactory discrimination and short-term social
memory in ageing rats [326]. In layer 5 of cortex, synapses
exhibit age-dependent changes in their integrative properties.
For young rats (<P14), the probability of transmitter release is
high and the synapses exhibit depression with repeated high-
frequency stimulation [327, 328]. However, these synapses in
older rats (>P30) exhibit a much lower release probability and
change from being depressed during high-frequency stimula-
tion to being facilitated. Kerr et al. [329] have shown that this
developmental change in the integrative properties of these
synapses can be explained by a developmental change in the
extracellular concentration of adenosine acting via the A1 re-
ceptor. At young ages, adenosine levels are low, but increase
with age. The presynaptic action of adenosine on the A1 re-
ceptor causes inhibition of transmitter release and shifts the
synapses to a low probability release mode, which is then
capable of facilitation during high-frequency trains of stimuli.

Extracellular levels of adenosine in the striatum were not af-
fected by age, although there were differences in themechanisms
of adenosine release and metabolism. For example, erythro-
2-(hydroxy-3-nonyl) adenine, an adenosine deaminase inhibitor,
increased adenosine levels in the striatum of young, but not old,
rats [330]. Maintenance of a constant extracellular adenosine
level in the ageing brain may be a homeostatic mechanism. In
old striatum, levels of A2 receptor mRNA and A2 receptor bind-
ing sites were reduced by 32 and 20 %, respectively [154]. A1

andA2A receptors both played a role in controllingmotor activity
in rats [153]. 2-[4-(2-p-Carboxyethyl)phenylamino]-5′-N-ethyl-
carboxamidoadenosine (CGS21680), an A2A receptor agonist,
significantly increased spontaneous outflow of glutamate and
aspartate in young, but not in old rats [331]. In contrast, there
was increased spontaneous outflow of GABA in old, but not
young rats exposed to CGS21680 [332]. A1 and A2A receptor
binding was modified in aged striatum, hippocampus and cortex
of the rat [333].

Modulation of cortical ACh release via P1 receptors was
decreased in ageing rats [334], and a decrease in A1 receptor
gene expression was described in mouse cerebral cortex of
aged rats [335]. Reduced efficiency of A1 receptors to modu-
late synaptic transmission in the hippocampus of aged rats has
been reported [336]. Down-regulation of adenosinergic func-
tion may underlie the enhanced excitability seen in hippocam-
pal neurons of the CA1 subregion of aged animals [159].
Cross talk between A1 and A2A receptors in the hippocampus
and cortex has been reported and A2A receptors shown to
control A1 receptor function via PKC, but not PKA, in young
adult, but not aged rats [337]. Adenosinergic activities seem to
be unaffected by ageing in the cerebellum and substantia
nigra. Neuron–glial synaptic currents were mediated by P2X
as well as glutamate receptors. In the ageing mouse brain, the
density of P2X receptors is reduced as is their role in glial
synaptic current generation [338].

Ischaemic tolerance is impaired in aged heart. RT-PCR anal-
ysis showed age-related decline of A3 receptors and induction of
A2B receptors in ageing mouse myocardium, changes that were
mimicked by ischaemia in young, but not old, hearts [339].
They showed further that in aged hearts, ischaemia selectively
reduced A1 receptor levels. An increase in density of A1 recep-
tors in rabbit heart in old age in contrast to the diminished β-
adrenergic responsiveness has been reported in the senescent
heart [340]. There are conflicting reports about changes in
purinergic signalling in the vascular system during old age.
However, this may be explained by the variation in expression
of P2 receptor subtypes in different vessels in different species
and in different pathophysiological conditions (see [341]). Age-
related changes in the relative importance of NA and ATP as
mediators of the contractile responses of the rat tail artery to
sympathetic nerve stimulation have been reported. The ATP
component was dominant in young rats but declined with age
[342]. ATP appeared to be the sole mediator of the sympathetic
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contractile response in the tail artery in some young rats.
However, there was a shift from purinergic to adrenergic signal-
ling in old age, which was reflected by the responses to ATP and
α,β-meATP, as well as the expression of P2X receptors [343].

Expression of P2Y1 and P2Y2 receptors and contractile
responses to 2-methythio ADP and UTP were also decreased
with age. It was speculated that the dramatic reduction in
expression of P2 receptors in the rat tail artery during devel-
opment and ageing was related to the role of the tail artery in
temperature regulation. Constriction of rat mesenteric arteries
by ATP decreased with age [344]. ATP is a cotransmitter with
NA in sympathetic nerves supplying blood vessels in young
human skin; NA, however, becomes the dominant neurotrans-
mitter in old age [345]. Cerebral microvessels in old rats
showed reduced ATPase activity, perhaps contributing to the
blood–brain barrier function changes found in old rats [346].
Ageing is associated with impaired ability to modulate sym-
pathetic vasoconstrictor activity and reduced exercise
hyperaemia. ATP-induced vasodilation was low in the seden-
tary elderly, and interstitial ATP content during exercise and
P2Y2 receptor expression were higher in the active elderly
compared to the sedentary elderly [347].

In the corpus cavernosum of rats, ageing was accompanied
by a decrease in P2X1, but an increase in P2X7 receptors, and
there was increased expression of P2Y4 receptors in the blad-
der [348]. It was suggested that these changes in purinergic
signalling probably contribute to the development of erectile
dysfunction and higher detrusor activation in ageing rats.

Contractile responses of the aged rat bladder to ATP were
significantly greater than those of the young bladder, compared
to little change in the responses to ACh or KCl [349]. The
purinergic component of nerve-mediated contractions of the
human bladder was also increased with age, due largely to
increased release of ATP [350]. The response of the bladder
to α,β-meATP increased with age [351], but P2X1 and P2X3
receptor mRNA did not change with age. In aged male mice,
there was an increase in bladder voiding, augmented P2X3
receptor-mediated afferent nerve firing during bladder filling
and an increase in urothelial activation by ATP [352]. The au-
thors speculated that this may reflect the increase in overactive
bladder in ageing humans. In old guinea pigs, the purinergic
component of sympathetic cotransmission was dominant in
seminal vesicles [353]. P2X4 receptor expression increased in
pancreatic islets in old age, but P2Y1 receptor expression was
lost [354].

An increase in density of A1 receptors in rabbit heart in old
age has been claimed [340] in contrast to the diminished β-
adrenergic responsiveness in the senescent heart [355]. In the
immature (25 days old) rat heart, adenosine was found to have
little role in the modulation of contractile responsiveness via
activation of either A1 or A2 receptors, but enhanced
antiadrenergic and stimulatory functions of adenosine via A1

and A2 receptor activation were present in the heart of mature

(79 days old) rats [356]. Reduced adenosine A1 receptor and
Gα protein coupling in rat ventricular myocardium during
ageing has been reported [357]. Age-related decline in β-
adrenergic and adenosine A1 receptor function in the rat heart
is attenuated by dietary restriction [358].

Age-related changes in P2 receptor mRNA have been de-
scribed in rat arteries [359]. P2X1 receptor mRNA was re-
duced in basilar artery in 19-month compared to 2-month-
old rats, while P2Y1 and P2Y2 receptor mRNA increased.
mRNA for P2X receptors was described in postnatal rat mes-
enteric arteries [360]. P2X1 and P2X4 receptors were most
strongly expressed, P2X2 and P2X7 receptors less so, while
P2X3 and P2X5 receptors were only weakly expressed and no
expression of P2X6 receptors; no differences in expression
were seen between 7 and 28 days postnatal.

Summary

Several interesting generalizations emerge from the analysis
in this review.

1. Purinergic signalling is present from the earliest develop-
mental stages (before classical adrenergic signalling) and
usually declines with maturation; sometimes, this in-
volves reduction in potency of purines and pyrimidines,
and sometimes, particular purinoceptor subtypes are
no longer expressed. In a few cases, purinergic sig-
nalling has been demonstrated to control major de-
velopmental processes.

2. There are examples where a similar sequence of events
occurs during regeneration after trauma to adult tissues as
occurs during development, e.g. skeletal muscle and mes-
enteric arteries.

3. During postnatal development, responses to nucleosides
and nucleotides increase or decrease with age depending
on the physiological demands of the particular system
involved.

4. Both P1 and P2 receptors are present early in development
of many systems, but there are a few examples where the
earliest effects of ATP are mediated via adenylate cyclase,
and only later in receptor activation does the IP3 second
messenger system for P2Y receptor transduction come
into operation (e.g. type III pneumocytes in lung). Fast
P2X purinergic signalling may appear a little later in de-
velopment compared to P1 and P2Y receptors, except
perhaps in urinary bladder.

There are some compelling pioneering studies that impli-
cate extracellular purines and pyrimidines in embryonic and
stem cell functions, but the roles of purinergic signalling in
development are still in its infancy. ATP is an ancient signal-
ling molecule utilized early in evolution and has been retained
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as a very successful communicating molecule for the activities
of most cells in the body (see [361–363]). This supports the
view that it would have also been utilized in the complex
mechanisms involved in embryonic development and regen-
eration, in keeping with the general principle that ‘ontogeny
repeats phylogeny’.
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