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Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought
to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation
of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are
elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs)
has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified
in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy.
Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to
CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular
processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs
and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The
review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for

improving cancer treatment.

1. Introduction

Reactive oxygen species (ROS), including superoxide (O, "),
hydrogen peroxide (H,0,), and hydroxyl radical (OH"), are
highly chemically reactive species derived from molecular
oxygen [1, 2]. Under physiological conditions, ROS are gener-
ated as byproducts from the mitochondrial electron transport
chain [2]. ROS can also be produced by various oxidases,
such as NADPH oxidases and peroxidases, in different
cellular compartments or organelles, such as cell membranes,
peroxisomes, and endoplasmic reticulum [3]. Furthermore,
chemotherapy, radioactivity, and even smoking can increase
ROS levels in the cell [4-6]. The low-to-moderate ROS level
in the cell will generally promote cell proliferation and growth
and increase cell survival [7]. On the contrary, when in excess,
ROS can cause cellular toxicity and trigger apoptosis [8, 9].
The antioxidant systems in the cell can scavenge ROS and

prevent irreversible cellular oxidative damage [10]. Therefore,
it is important for cells to balance ROS generation and
antioxidant systems, and redox regulation of cellular process
is essential for growth and development.

ROS levels are elevated in many cancer cells partially due
to their higher metabolism rate [11, 12]. Aberrant ROS levels
can elicit cancer cell apoptosis and necrosis [13]. Cancer cells
have high antioxidant capacity to counteract and scavenge
ROS. Because high antioxidant capacity enhances cell sur-
vival and impairs cellular responses to anticancer therapy
[14], induction of ROS-mediated damage in cancer cells by
proper pharmacological agents that either promote ROS gen-
eration beyond the cellular antioxidative capacity or disable
the cellular antioxidant system has been considered as a “radi-
cal” therapeutic strategy to preferentially kill cancer cells [14].

In recent years, the concept of cancer stem cells (CSCs)
has been gaining ground as the subpopulation of cancer cells
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with stem cell-like properties and characteristics have been
found and reported in various cancers, including leukemia
[15], breast cancer [16], and pancreatic cancer [17]. CSCs are
thought to have the ability to self-renew and differentiate [1]
and be responsible for cancer recurrence after chemotherapy
or radiotherapy as those cells can survive treatment and then
quickly generate new tumors [18, 19]. These abilities of CSCs
lead to a view that cancer therapy strategies should target not
only the normal cancer cells, but also the CSCs.

Considering the importance of redox balance in cancer
cells, conventional therapies (chemotherapy or radiotherapy)
targeting redox balance can kill most of the cancer cells [14,
20, 21]. However, the unique redox balance in CSCs and its
underlying mechanisms to protect CSCs from ROS-mediated
cell killing have not been fully understood [22-24]. In this
review, we will update the effects of ROS/redox regulation on
the properties and functions of CSCs. With special attention
given to the cross talk between CSC-related pathways and
redox regulation, we hope to generate substantial interest in
turther investigating the role of redox regulation in CSCs and
the utility of targeting ROS-dependent/redox regulation of
pathways.

2. ROS Production and Scavenging in CSCs

In cancer cells, ROS are mainly generated through high-
rate metabolism at mitochondria, endoplasmic reticulum,
and cell membranes [3]. The metabolic phenotypes observed
in tumor cells are different from the normal tissue, which
are attributed to the Warburg effect [25-28]. The glycolysis
replaces at least part of the oxidative phosphorylation for
generation of ATP in cancer cells [28]. This metabolic switch
is essential for the cancer cells to adapt to hypoxic conditions
with less mitochondrial defects and ROS production [20].

The CSCs, similar to normal stem cells, are quiescent,
slow-cycling cells with the lower level of intracellular ROS
[29, 30], which accounts for their self-renewal capacity and
resistance to chemotherapy drugs and ionizing radiation
[29]. For example, in human gastrointestinal cancer cells,
the stem-like population (CD** high) has lower ROS levels
[31]. CSCs in some human and murine breast tumors also
have lower ROS levels [29]. This lower ROS level in CSCs
could be attributed to less ROS production and/or enhanced
ROS scavenging systems. The slow division of CSCs may
generate less ROS than regular cancer cells. Indeed, Dey-
Gubha et al. reported that rapidly proliferating breast cancer
cells could produce slowly proliferating “G0-like” progeny by
asymmetric division [32]. The “GO0-like” cancer cells behave
like the stem cells in “quiescent” state and may be able to
maintain a stable “out of cycle” state for a long period of time
in vivo [32]. Intracellular ROS contents and AKT expression
are lower in these cells [32].

Many signaling pathways and transcriptional activity
contribute to scavenging ROS in normal stem cells and CSCs
as well (see details in the following sections). Among them,
forkhead homeobox type O (FOXO) is essential for main-
taining low ROS levels in haematopoietic stem cells (HSCs),
which are critical for the stemness of HSCs [33]. Furthermore,
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ataxia telangiectasia mutation (ATM) can upregulate the
antioxidant enzymes and downregulate the differentiation
and proliferation genes, as a result to help maintain the low
ROS levels and the stemness [24]. In pancreatic cancer stem
cells, activation of JNK pathway is important for their mainte-
nance of stemness and resistance to drugs, 5-fluorouracil and
gemcitabine, through suppressing ROS generation induced
by those chemotherapeutic agents [34].

Recently, Diehn et al. investigated how CSCs maintained
the lower ROS levels [29]. It was found that the ROS were
reduced due to upregulation of free radical scavenging sys-
tems, such as glutathione (GSH) [29]. Furthermore, Nagano
et al. showed that expression of one of the CD44" variant
isoforms (CD44v) in CSCs contributed to upregulation of
GSH biosynthesis. The CD44v protein may promote cysteine
uptake by interacting with and stabilizing the xCT, which
is the subunit of the cysteine-glutamate transporter xc(-).
This process leads to increased GSH synthesis [35]. Recent
studies indicate that the epigenetic regulation may also
play an important role in the regulation of ROS in CSCs.
The downregulation of fructose-1,6-biphosphatase (FBP1) by
epigenetic mechanisms increased the rate of glycolysis but
decreased the ROS level in basal-like breast cancer, resulting
in the activation of S-catenin signaling to maintain CSCs
[36]. MicroRNA may also play an important role in the
regulation of ROS production/scavenging in CSCs [37, 38].

3. ROS-Dependent Signaling Pathways in CSCs

3.1. PTEN/PI3K/AKT/mTOR Pathway. The PI3K pathway is
commonly activated in human cancers. Numerous studies
have demonstrated that the PI3K pathway plays a prominent
role in cancer cell growth and survival [39]. The activated
PI3K/AKT/mTOR signaling pathway can also increase cell
metabolism and glycolysis, which in turn affects the intra-
cellular ROS level and tumorigenesis [40, 41]. Phosphatase
and tensin homolog deleted on chromosome 10 (PTEN),
a major negative regulator of PI3K, is a tumor suppressor
[42]. PTEN encodes a lipid phosphatase that converts phos-
phatidylinositol 3,4,5-trisphosphate (PIP3) to phosphatidyli-
nositol 4,5-bisphosphate (PIP2). PIP3 is necessary for the
downstream activation of AKT. PTEN mutations can lead
to PIP3 accumulation and as a result overactivate the AKT
pathway [43, 44]. The mutation or deletion of PTEN is well
known to be involved in the development of many cancers
(45, 46].

In CSCs, PI3K/AKT signaling pathway is upregulated.
During neovascularization, CSCs can function as initiators of
tumor neovascularization [47]. They can produce proangio-
genic factors and transdifferentiate into vascular mural cells
and form nonendothelium-lined vasculogenic mimicry [47].
Activation of the PI3K/AKT signaling pathway can induce
vascular endothelial growth factor (VEGF) production in
CDI133" glioma stem-like cells [48]. VEGE, in turn, induces
angiogenesis and vasculogenesis by driving the transdif-
ferentiation of CSCs [48]. Consistent with this, another
study showed that activation of the PI3K/AKT pathway was
required for breast cancer stem-like cell maintenance [49].
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On the other hand, inhibition of PI3K/AKT/mTOR activity
by NVP-BEZ235 (the dual PI3K/mTOR inhibitor) led to a
decrease in the CD133"/CD44" stem-like populations [50].
PTEN also plays a critical role in CSCs. Its expression is lower
in recurrent hepatocellular carcinoma [51]. Furthermore,
the upregulation of the miR-216a/217 cluster, which targets
PTEN (51, 52], downregulates PTEN and elicits epithelial-
mesenchymal transition (EMT) and cancer stem-like prop-
erties in hepatocellular carcinoma [51]. PTEN deletion con-
tributes to the depletion of normal HSCs but increases the
generation of leukemia-initiating cells. This brings a rare
distinction in PTEN regulation in the maintenance of nor-
mal stem cells compared with leukemia-initiating cells [53].
PTEN knockdown by shRNA leads to an increase in sphere
formation for enriching prostate cancer stem-like cell as well
as increases in clonogenic and tumorigenic potential [50].

In CSCs, regulation of the PTEN/PI3K/AKT/mTOR sig-
naling pathway can be ROS-dependent/redox regulation.
Higher H,O, treatment (100 4uM) can induce the phospho-
rylation of AKT and activate its activity in glioma-initiating
cells [54]. In CSCs, ROS-dependent oxidized cellular envi-
ronment is important in modulating the catalytic activity of
PTEN. H,O, may abrogate PTEN activity through inducing
the formation of a disulfide bond between the active sites
Cys'** and Cys’", while Trx may reduce oxidized PTEN to
reactivate it [55].

The PTEN/PI3K/AKT/mTOR signaling pathway in CSCs
could control cellular ROS levels through regulating nuclear-
localized FOXOs [29]. The FOXOs regulate the production
of MnSOD and catalase to scavenge ROS [56]. Dey-Guha et
al. reported that, in ER"/HER®~ human breast cancer MCF7
cell line, the ROS'" cancer cells had higher levels of nuclear-
localized FOXO1 [32]. Furthermore, the repression mTOR
will inhibit hypoxia-inducible factor-la (HIF-1«) translation
in hypoxic conditions [57]. The transcriptional targets of
HIF-1x contain VEGF and FOXOs which are related to the
stemness and ROS removal [58].

3.2. ATM Pathway. ATM is critical for maintaining genome
stability. It can regulate DNA damage repair, particularly for
double-strand breaks [24]. ATM upregulates the glucose-6-
phosphate dehydrogenase to promote NADPH production
and thus reduces the ROS level [59]. In CSCs, ATM signaling
pathway is highly active. In CD44"/CD24~ stem-like cells
compared to other cell populations from breast cancer cell
lines and breast tumors, the expression of ATM was sig-
nificantly increased [60]. The ATM inhibitor reversed the
radiation resistance of CD44"/CD24" cells, which suggests
the importance of ATM signaling in CSCs [60].

3.3. Notch Pathway. The Notch pathway is critical for a series
of processes, including cell fate specification, differentiation,
proliferation, survival, and apoptotic programs [61]. It is
essential for the maintenance of stem cells, such as neu-
ral stem cells and HSCs [62-64]. However, this pathway
is also very important in CSCs. Recent evidence showed
that HIF-la-induced activation of the Notch pathway was
essential for hypoxia-mediated maintenance of glioblastoma

stem cells [65]. McAuliffe et al. demonstrated that the Notch
signaling pathway, Notch3 in particular, was critical for
ovarian CSC survival and platinum resistance [66]. Notch3
overexpression in ovarian tumor cells resulted in expansion
of CSCs and platinum chemoresistance. On the contrary,
y-secretase inhibitor, a Notch pathway inhibitor, or Notch3
siRNA knockdown, increased tumor sensitivity to platinum
[66]. Besides Notch3, Notchl and Notch2 also protected
glioma stem-like cells against radiation. Knockdown of
Notchl or Notch2 sensitized glioma stem-like cells to radi-
ation and impaired xenograft tumor formation [67]. These
results confirm the significance of Notch signaling in CSCs.

The Notch pathway is critical for controlling the ROS
level in CSCs. One possible target is the PI3K/AKT pathway.
Prosurvival factor AKT is upregulated by Notch in glioma
stem cells [65]. The PI3K/AKT pathway will later upregulate
the ROS scavenging enzymes. On the other hand, ROS
can also stimulate the Notch signaling pathway in order to
maintain the CSCs. The nitric oxide released by endothelial
cells can activate Notch signaling and promote the stemness
of the PDGF-induced glioma cells [68]. Charles et al. showed
that nitric oxide pathway enhanced the side population
phenotype in cultured human glioma cells through activation
of Notch signaling [68].

3.4. Wnt Pathways. Wnt signaling is important in embryo
development and also controls homeostatic self-renewal in
adult tissues [69]. Radioresistant breast cancer cells showed
CSC-like properties and elevation of f-catenin. NS398, a
cyclooxygenase 2 inhibitor, enhanced the radiosensitivity of
these cells, which may be partially via downregulating the
expression of f3-catenin [70].

High levels of ROS can inhibit -catenin activation
[36, 71]. Nucleoredoxin, a Trx family protein, was found
to interact with disheveled, which was important in Wnt
signaling [72]. In line with this finding, H,O, inhibited the
association between disheveled and nucleoredoxin, blocking
the Wnt-p-catenin pathway [72]. Recent studies indicated
that, in basal-like breast cancer stem cells, overexpression
of FBPI enhanced oxidative phosphorylation and ROS pro-
duction and decreased f-catenin signaling by promoting
its dissociation from TCF4 [73]. However, whether Wnt
signaling is directly involved in this metabolic regulation
remains for further investigation.

3.5. STAT Pathway. STAT3 is highly expressed in solid tumor
and is involved in the formation of nitric oxide to promote
cell survival [74]. In head and neck squamous cell carcinoma,
CD44" ALDHI" cells are tumorigenic and radioresistant [75].
Interestingly, cucurbitacin 1, a STAT3 inhibitor, effectively
inhibited the tumorigenicity, sphere formation, resistance to
radiation, and BCL-2 expression in these cells [75]. STAT
signaling is also activated in non-small cell lung cancer,
in which CD133" stem-like cells showed high p-STAT3
levels compared to CDI33™ cells. Inhibition of STAT3 by
cucurbitacin 1 decreased the p-STAT3 level and the CD133"
population, while increasing apoptosis [76].



In contrast, in breast cancer cells, the STAT3 is redox-
sensitive and H,O, decreases STAT3 binding to the con-
sensus serum-inducible elements with inhibition of cell
proliferation and reduced survival [77]. The STAT3 pathway
can be positively regulated by mTOR signaling in human
breast cancer stem-like cells [49]. The PTEN is found as a
negative regulator of both STAT3 and mTOR [49]. The ROS
effects on CSCs by STAT3 signaling may be mediated through
the PTEN/PI3K/ATK/mTOR signaling.

Other signaling pathways may also regulate ROS in
CSCs. The p-ERK was found to be higher in CD133" human
hepatocellular carcinoma compared to CD133™ cells. Further
studies showed that the lower ROS levels were related to
ERK activation and were important for the radioresistance
of CDI133" cells [78]. The p38 MAPK signaling can be
activated by ROS. In glioma-initiating cells, H,O, induced
ROS can increase p38. The upregulated p38 will induce Bmil
protein degradation and FOXO3 activation, leading to the
differentiation [54].

4. ROS-Dependent Transcription
Factors in CSCs

4.1. HIF. The HIF family transcriptional factors are upregu-
lated in hypoxia [79]. Hypoxia is a well-recognized microen-
vironmental condition in stem cells and CSCs [, 58, 65, 80].
HIFs have an oxygen-sensitive HIFa subunit and a constitu-
tively expressed HIF3 subunit. Under normoxic conditions,
HIF« could be targeted for proteasomal degradation with the
Von Hippel-Lindau (VHL) tumor suppressor gene product.
In hypoxia condition, the interaction between HIFa and VHL
is abrogated. Then the stabilized HIF«x could dimerize with
HIFf and then induce transcription of its target genes [81, 82].
HIFa has 3 isoforms and recent studies have demonstrated
that HIF-1ae and HIF-2« play a critical role in CSCs. Li et al.
found that HIF-2« was highly expressed in glioma stem cells
(GSCs) and its regulated genes were preferentially expressed
in comparison to nonstem tumor cells and normal neural
progenitors [82]. As compared to growth at 20% oxygen
level, tumor stem-like cells (CD133" cells) from human
glioblastoma grown at 7% oxygen level show an increase in
the expression levels of the neural stem cell markers CD133
and nestin as well as the stem cell markers Oct4 and Sox2 [83].
HIF-le is not affected in CD133" tumor stem-like cells grown
at 7% oxygen level but HIF-2« is expressed at higher levels as
compared with that at 20% oxygen level [83]. However, the
hypoxia (1% oxygen) promotes the self-renewal capacity of
CDI133" CSCs by upregulation of HIF-1« in glioma stem cells
(84].

Some studies indicate that ROS can regulate HIFa
expression. HIF-1a has been found to mediate EGF-induced
prostate cancer cell EMT phenotype [85] and STAT3 down-
stream of ROS is implicated in EGF-induced HIF-1« tran-
scription and protein expression [85]. Another study indi-
cated that increased level of intracellular ROS in well-
oxygenated conditions, but not hypoxia, was a causative
factor of the transient upregulation of HIF-1 activity during
the metastatic colonization of cancers in the lungs [86]. One
possible reason is that the Fe’" is essential for the prolyl
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hydroxylation of HIF-1« by prolyl hydroxylase domain pro-
teins (PHDs) and the PHDs-VHL-proteasome is important
for HIF-la stability. However, the Fe** could be oxidized
by the ROS [86]. Further studies found that the HIF-la-
mediated metabolic reprogramming (mitochondrial oxida-
tive phosphorylation to anaerobic glycolysis and lactic acid
fermentation) reduced ROS levels and increased the survival
of metastatic cancers [86].

4.2. NF-xB. The transcription factor NF-«B plays a critical
role in cell survival, proliferation, immunity, and inflamma-
tion [87]. NF-xB has been widely studied in breast cancer
and acute myelogenous leukemia (AML) and other cancers
for chemotherapy resistance [88]. Once activated, it will
induce the expression of a variety of cell survival factors to
prevent apoptosis. NF-xB regulation is important in CSCs.
Inhibition of NF-«B in mammary epithelial cells may reduce
tumor stem cell marker expression and CSC populations
[89]. Parthenolide, a sesquiterpene lactone, can block NF-
kB, leading to the death of AML progenitor and stem cell
population and a decrease of engraftment in vivo [90]. It is
suggested that parthenolide may render these cells sensitive
to oxidative stress [90]. NF-«B activation triggered by RACl
and ROS production is important in colorectal cancers
initiation [91].

There is an extensive cross talk between ROS and NF-«B
signaling. Morgan and Liu showed that ROS may regulate
NF-«B activation to express antioxidant genes coding man-
ganese superoxide dismutase (MnSOD, or SOD2), copper-
zinc superoxide dismutase (Cu, Zn-SOD, or SODI), catalase,
and Trx [92]. These enzymes can directly or indirectly scav-
enge ROS and protect cells from ROS-induced cytotoxicity.
However, in immune cells, activated NF-xB may regulate
Nox, resulting in elevated production of ROS [93]. In the
cytoplasm, oxidizing conditions may cause IxBa degradation
and NF-xB activation, while, in the nucleus, a reducing envi-
ronment is necessary for DNA binding and transcriptional
activity of NF-«B dimmers [94].

Considering the low ROS levels, the upregulation of
NF-«B in CSCs may contribute to redox balance. NF-
kB suppresses ROS- and/or JNK-mediated killing induced
by oncogene products or anticancer agents [95]. In acute
myelogenous leukemic stem cells (LSCs), quenching ROS
by the GSH precursor, N-acetylcysteine, will weaken the
niclosamide-induced apoptosis. The niclosamide (an anti-
neoplastic) may inhibit the TNF«-induced NF-«B activation
and increase the intracellular ROS levels [96].

4.3. p53. The p53 plays an important role in protecting
normal cells from cancer development. Almost all human
cancers lost the activity of p53 [97]. In CSCs of nasopha-
ryngeal carcinoma, treatment by resveratrol suppressed the
CSC properties including resistance to therapy and self-
renewal, tumor initiation, and metastatic potential [98].
Mechanistically, resveratrol impeded CSC functions through
the activation of p53 and knocking down p53 could reverse
this effect. In addition, resveratrol exploited p53 to suppress
stemness and EMT [98]. In an ErbB2 transgenic model of
breast cancer, the p53 in mammary stem cells was found to
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regulate the cell division polarity and the knockout of p53
induced the symmetric divisions of CSCs and tumorigenesis
[99]. Furthermore, treatment of leukemia CSCs with sele-
nium would increase ROS levels and induce the apoptosis
via the activation of the ATM-p53. This treatment would
not affect hematopoietic stem cells [100]. The inhibition
of NF-xB, activation of p53 and increased ROS levels by
parthenolide can induce the apoptosis of LSCs in AML [90].

The p53 can regulate genes that generate or scavenge ROS
and can exert pro- and antioxidant effects depending on its
levels [101]. Sablina et al. found that the prooxidant function
of p53 was due to release of mitochondrial ROS during stress-
induced apoptosis. But the antioxidant function of p53 was
related to the expression of antioxidant gene products, which
were responsive to lower levels of p53 in no stressed or
physiologically stressed cells [101]. On the other hand, ROS
can also regulate p53 activity via oxidation of p53 cysteine
residues to inactivate p53 [102]. The cross talk between p53
and ROS signaling is of great importance in cell cycle and
apoptosis regulation [102].

4.4. Nrf2. 'The nuclear factor erythroid 2-related factor (Nrf2)
is a key regulator of defense against endogenous and exoge-
nous stresses by governing expression of many antioxidant
and detoxification genes [103]. In normal cells, Nrf2 binds to
the inhibitor protein Keapl [104]. But in many cancer cells,
loss of Keapl function activates Nrf2 and promotes cancer
growth [105]. Nrf2 is a key factor to inhibit the differentiation
of glioma stem-like cells, and the knockout of Nrf2 may
promote the differentiation process [106].

Nrf2-regulated antioxidant genes include GSH synthesis
and GSH reductase and peroxidase families [107]. In a secre-
tome analysis of colon CSCs, there is a significant overlap
between the set of proteins in the secretome and those that are
regulated by transcription factor Nrf2, which suggests that,
in CSCs, activation of the Nrf2-antioxidant pathway protects
them from oxidative stress [108]. In mammospheres, which
are thought to enrich breast cancer cells with stem/progenitor
features, the Nrf2-mediated cellular protective response is
induced under the taxol treatment. Inhibition of the Nrf2
pathway enhanced intracellular ROS levels and rendered
mammospheres more sensitive to taxol [109].

5. Antioxidant Proteins in CSCs

5.1. Trx. The Trx system contains the redox-active protein
Trx, thioredoxin reductase (TrxR), and NADPH. This system
is important for cellular functions especially for protection
against oxidative stress [110]. Three Trxs, including Trx1, Trx2,
and spTrx (specifically expressed in human spermatozoa),
have been identified in mammalian cells. All of them con-
tain a conserved -Cys-Gly-Pro-Cys- active site. This site is
essential for disulfide oxidoreductase [110, 111]. The Trx1 and
Trx2 are similar in structure and catalytic mechanism. TrxRs
catalyze Trxs through the NADPH-dependent reduction of
the disulfide. The C-terminus of reduced TrxRs possesses
the high reactivity of selenide, which can help the balance
of redox [112]. In the cell, the endogenous inhibitor of

Trxl is the thioredoxin-interacting protein (TXNIP), which
is dramatically downregulated in various human cancers
(113].

In cancer cells, high proliferation results in high ROS
production [20, 114, 115]. To maintain redox homeostasis,
cancer cells also produce high levels of antioxidant proteins.
In non-small cell lung cancer, Trx and TrxR are highly
expressed [116]. Ceccarelli et al. derived cell clones with
different levels of Trx from the same lung carcinoma cell lines.
It was found that high level of Trx correlated with invasive
and metastatic potentials of the cells [117]. A significant
correlation exists between tumor resistance to docetaxel
and Trx expression in breast cancer patients [118]. A recent
study showed that a histone methyltransferase inhibitor killed
CD34"CD38™ leukemia stem cells by reactivating TXNIP and
inhibiting Trx activity [119]. These results suggest Trx may be
critical for CSC function.

5.2. Grx. Glutaredoxin (Grx) system is another important
redox system in cells. It was firstly discovered in Trx-
mutant Escherichia coli that show a fully active NADPH-
dependent ribonucleotide reductase system [120]. Grxs are
small heat-stable oxidoreductase [121]. Grxs catalyze thiol-
disulfide exchange reactions with GSH, glutathione reductase
(GR), and NADPH. The Grx is reduced via GSH within
the Grx system, while the GSH disulfide is reduced by
GR and NADPH [122]. Besides the maintenance of cellu-
lar redox environment, Grxs are involved in the mainte-
nance of cytosolic and mitochondrial iron homeostasis [122,
123].

In breast cancer cells, Grxl overexpression can cause
adriamycin-resistance [124]. Recently, two human testis-
specific isoforms of Grx2, Grx2b and Grx2c, are abnormally
expressed in various cancer cell lines [125]. In human cancer
cells, Grx overexpressed cells showed the resistance to glu-
cose deprivation-induced cytotoxicity. Glucose deprivation
induces the ROS stress and activates the ASKI-SEKI1-JNK1
signaling causing cytotoxicity [126]. Whether Grxs play an
essential role in CSCs remains to be determined.

5.3. Prdx. Peroxiredoxins (Prdxs) are a group of peroxidases
that consist of one or two redox-active cysteine residues and
reduce peroxides with conserved cysteine residues [127], six
isoforms of which are present in mammalian tissues (PrdxI-
Prdx6) that play a role in cellular protection against oxidative
stress [127].

Expression of Prdxs is upregulated under oxidative stress.
Prdx1 has been proposed as a potential breast cancer marker
[128]. It was reported that the increased Prdx6 activity
promotes the growth of lung cancer cells and enhances the
metastatic potential of lung cancer cells [129]. The Prdx3 is
upregulated in many endocrine-regulated tumors, such as
prostatic intraepithelial neoplasia [130]. In the antiandrogen-
resistant cell lines, increased Prdx3 enhanced resistance
to H,O, [130]. The knockout of Prdx3 can trigger the
proapoptotic signals with antiandrogen and H,O, treatment
[130].



6. ROS Regulation in
Therapeutical Implication

CSCs has been found to exist in different cancers, includ-
ing AML, breast, brain, head and neck, pancreas, lung,
prostate, colon, and sarcoma cancers. In cancer treatment,
the chemotherapy and radiation therapies are widely used but
the patients invariably relapse. The CSCs are always dormant,
which can help its resistance to conventional chemotherapies
that brings cytotoxicity to dividing cells [131]. CSCs keep
lower ROS level with overexpression of antioxidant enzymes,
which can help them survive from chemotherapy and radia-
tion induced ROS [132, 133].

Considering the importance of ROS in CSCs, ROS
regulation is also significant in therapy resistance as chem-
otherapy and radiation therapy affect ROS levels. Phillips
et al. found that CD247/°/CD44" breast cancer stem/
initiating cells were resistant to radiotherapy and possessed
low ROS levels [5]. Similarly, prostate CSCs contained
more low-to-intermediate ROS-producing cells after ioniz-
ing radiation [134]. After chemotherapy, CD13" liver CSCs
decreased the ROS level by expressing a scavenger enzyme
CDI13/aminopeptidase N [133]. Chemotherapeutic drugs can
also generate ROS and DNA double-strand breaks in cancer
treatment. In the chemoresistant case, the ROS/SUMO (small
ubiquitin-like modifier) axis is not activated. The sensitivity
of LSCs can be achieved by inhibiting the ROS/SUMO
pathway [135].

Interfering with intracellular redox balance for selectively
killing the cancer cells is becoming a hot topic in therapeu-
tical treatment. Lagadinou et al. found that these ROS'"
LSCs overexpressed BCL-2. Inhibition of BCL-2 decreased
levels of GSH, which could increase the oxidative state and
selectively eradicate quiescent LSCs [136]. In treatment with
glioblastoma multiforme, the inhibitors of GSH synthesis
can potentiate TMZ- (DNA alkylating agent temozolomide-)
induced bystander effect [137]. Brusatol, an inhibitor of the
Nrf2 pathway, downregulates the protein level of Nrf2 and
its target genes. As a result, it sensitizes mammospheres
to taxol [109]. Deregulation of miRNAs related to ROS is
also a new therapeutic approach in cancer treatment [38].
The ROS induces miR-200 family expression and further
downregulating ZEB1, which is likely to play a key role in
ROS-induced apoptosis and senescence [138]. The induction
of ROS and the inhibition of the Nrf2 and HIF-1a pathways
can also decrease the colony-forming ability of LSC-like
cells and apoptosis [139]. A new drug, fenretinide, has been
developed to directly target AML-stem cells. The drug can
induce AML-stem cells death by rapid generation of ROS,
upregulation of the stress responses and apoptosis related
genes, and downregulation of the genes in NF-xB and Wnt
signaling [140].

Recent studies showed that the shikonin (a TrxR1
inhibitor) could induce apoptosis mediated by ROS in human
promyelocytic leukemia HL-60 cells. The chemical broke
the ROS balance by targeting the selenocysteine residue in
TrxRI and blocked its physiological function [112]. The 3-
deazaneplanocin A can reactivate TXNIP, which in turn
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inhibits the Trx activity and increases the level of ROS. As
a result, it leads to the apoptosis in AML cell lines, primary
cells, and CD34"CD38™ LSCs [119].

7. Conclusions

While there is limited information on ROS regulation in
CSCs, there is fast emerging evidence that ROS may play an
essential role in the self-renewal and differentiation ability
of CSCs. ROS-dependent signaling pathways and transcrip-
tional activities control redox balance and ROS regulation in
CSCs. Targeting CSCs via ROS regulation and antioxidant
proteins holds great potential in improving cancer therapy.
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