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Abstract

Correlational data suggest that learned associations are encoded within neuronal ensembles. 

However, it has been difficult to prove that neuronal ensembles mediate learned behaviours 

because traditional pharmacological and lesion methods, and even newer cell type-specific 

methods, affect both activated and non-activated neurons. Additionally, previous studies on 

synaptic and molecular alterations induced by learning did not distinguish between behaviourally 

activated and non-activated neurons. Here, we describe three new approaches—Daun02 

inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been 

used to selectively target and study activated neuronal ensembles in models of conditioned drug 

effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-

overexpressing neurons — that have been used to study the role of neuronal ensembles in 

conditioned fear.

Introduction

In 1949, Hebb proposed that learned associations are encoded within specific patterns of 

neurons called cell assemblies (now called neuronal ensembles) that were selectively 

activated by environmental cues1. Since then, many electrophysiology and cellular imaging 

studies have found correlational evidence that supports the idea that learned associations 

between environmental cues and unconditioned rewards are encoded by neuronal ensembles 

that are activated by these same cues and rewards 2 (Figure 1). The neuronal ensemble 

hypothesis has had a transforming and long-lasting impact on modern neuroscience 

research, and has been the conceptual framework for numerous learning and memory 

studies 2–8. Since the 1950s 9, investigators have primarily used in vivo electrophysiology to 

characterize temporal activity patterns of putative neuronal ensembles in different brain 

areas in learned behaviours 5, 10–13. Since the late 1990s, investigators have also used 

double-labelling methods with immediate-early genes (IEGs) as markers of neural activity to 

characterize the spatial pattern of activated neuronal ensembles in the brain 14–19 (Box 1). 

More recently, in vivo two-photon calcium imaging methods were developed to 

simultaneously record from hundreds of activated neurons 20. These methods, which use 

calcium-sensitive synthetic dyes and genetically encoded calcium indicator proteins 

Correspondence to B.T.H: bhope@intra.nida.nih.gov. 

HHS Public Access
Author manuscript
Nat Rev Neurosci. Author manuscript; available in PMC 2015 August 09.

Published in final edited form as:
Nat Rev Neurosci. 2013 November ; 14(11): 743–754. doi:10.1038/nrn3597.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(GCaMPs), have been used to record learning-related alterations in the activity of neuronal 

ensembles in head-fixed 21 or freely moving awake behaving mice 22.

Box 1

Immediate early gene-based methods

Over the years, several immediate early gene (IEG)-based methods have been used to 

identify putative neuronal ensembles in the brain34, 130, 131. The general principle has 

been to use one neuronal activity marker to label neurons activated during the initial 

learning session or sessions and a different neuronal marker to label neurons that are 

activated during a subsequent session (which is typically used to assess the expression of 

the learned behaviour). A high level of double-labelling of the two activity markers 

would suggest the recruitment of neuronal ensembles that encode the learned behaviours.

In the late 1990s, Guzowski and colleagues introduced the ‘cellular compartment analysis 

of temporal activity by fluorescence in situ hybridization’ (catFISH) method 14. This 

procedure was based on the temporal characteristics of the IEG arc after neuronal 

activation: a nuclear arc RNA signal emerges 2 min after neuronal activation and persists 

for up to 16 min, whereas a cytoplasmic RNA signal emerges 20–45 min after 

activation 17. Accordingly, in situ hybridization can reveal neurons with cytoplasmic arc 

mRNA, which are neurons that were active earlier (e.g., during the first learning session), 

and neurons with nuclear arc mRNA, which are neurons that were active more recently 

(e.g. during the second learning session)17. Along with a variation on the procedure in 

which the IEG Homer1 is used to label initial neuronal activation and nuclear arc is used 

to label subsequent neuronal activation 112, 132, this method has been used to identify 

putative neuronal ensembles that encode specific cues or contexts. The method is useful 

in identifying neuronal ensembles that are activated during short (about 30 min) learning 

tasks or time intervals between presentations of the same or different stimuli 14, 17. The 

main limitation of the catFISH method is that it cannot be used in learning tasks in which 

the learning and the expression of the learned behaviour are separated by hours or days.

Another IEG-based method is double-labelling of the IEGs c-fos (using in situ 

hybridization) and FosB (using immunohistochemistry). FosB immunoreactivity labels 

neurons that were repeatedly activated during the first training or learning sessions, 

whereas c-fos in situ hybridization labels neurons that were activated during the second 

session. This method is based on the accumulation of long-lasting protein isoforms from 

a truncated fosB splice variant called deltaFosB in repeatedly activated neurons 133. This 

method has been used to identify putative neuronal ensembles in the nucleus accumbens 

in context-specific cocaine locomotor sensitization 15.

In a recently developed approach, a transgenic c-fos-tTA mouse is used to identify 

neuronal ensembles 16, 114. The c-fos-tTA transgene uses the c-fos promoter to induce the 

expression of a tetracycline (tet)-off transcriptional activator (tTA) protein in neurons 

that are activated during the first learning session. The tTA protein can then bind to a tet 

operator in the promoter of a second transgene to induce expression of a marker gene. 

tTA can be induced in activated neurons before and after training, but doxycycline, 

which binds to and represses tTA, can be added to the mouse diet to block expression of 
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the marker gene. If doxycycline is removed from the diet before the mouse undergoes the 

first learning session, the marker gene (e.g., lacZ, histone2B-green fluorescent protein 

(GFP)) can be expressed in neurons that were activated during a selected time window. 

Immunohistochemical labelling of the protein products of zif268 16 or c-fos 116 can be 

used to label neurons that were activated during the second session. The c-fos-tTA tool 

has been used to identify neuronal ensembles that control fear conditioning 16, 19, 33, 116.

An extensive literature, reviewed in the citations above and many other reviews, supports 

the notion that neuronal ensemble activity encodes diverse forms of learned associations that 

mediate learned behaviours. However, until recently this evidence was based only on 

correlations between behaviour and in vivo electrophysiological firing or two-photon 

calcium-imaging patterns during learning and memory tasks or postmortem activity patterns 

of different IEGs. Therefore, a causal involvement of the putative neuronal ensembles in 

learned behaviours had not been established. Until recently, methods aimed at assessing 

such causal roles in behaviour manipulated neuronal activity within specific brain areas — 

such as permanent excitotoxic lesions, reversible inactivation using GABAergic agonists or 

the sodium channel blocker tetrodotoxin, intracranial injections of selective receptor 

antagonists (e.g., dopamine or glutamate receptor antagonists), activation or inhibition using 

optogenetics or DREADD (designer receptors exclusively activated by designer drugs) 23 — 

affect neuronal activity of either all neurons or all neurons of a particular cell type, 

regardless of their activation state during the learned behaviours. Additionally, it had not 

been possible to characterize molecular and electrophysiological alterations within the 

activated neuronal ensembles that presumably mediate memory formation and learned 

behaviours. Indeed, the published literature on synaptic plasticity (as assessed by ex vivo 

slice electrophysiology techniques) and molecular mechanisms of learning and memory are 

based on results obtained from either randomly selected neurons or neurons of a particular 

cell type, independently of their activation state during learned behaviours 24–27.

The goal of this review is to describe several recent technical developments that make it 

possible to determine causal roles of putative activated neuronal ensembles in learned 

behaviours, and to characterize molecular and electrophysiological alterations within the 

activated neurons. We first describe three recently developed tools to study the role of 

neuronal ensembles in conditioned drug effects and relapse in rats. These include the 

Daun02 inactivation method 28, flow cytometry and fluorescence-activated cell sorting 

(FACS) of activated Fos-expressing neurons 29 and c-fos-GFP transgenic rats 30, which can 

be used to selectively inactivate neuronal ensembles and assess molecular and 

electrophysiological alterations within activated neuronal ensembles. We also describe two 

other methods — inactivation of CREB-overexpressing neurons 31, 32 and c-fos-tTA 

mice 16, 19, 33 — that have been used to study the role of neuronal ensembles in conditioned 

fear. These methods all rely on the c-fos gene promoter to manipulate the activity of strongly 

activated neurons and to identify these neurons for subsequent molecular and cellular 

analysis. The c-fos promoter is rapidly induced within strongly activated neurons (see Box 2 

for details) and c-fos mRNA and Fos protein products have been used in numerous papers as 

markers of neuronal activation in many neuronal phenotypes in many brain areas 34–36. 
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Below we describe the different methods, their application to studying learned behaviours, 

and the limitations of each method.

Box 2

The c-fos promoter as a marker of neuronal activity during behaviour

The widespread use of c-fos mRNA and its Fos protein products to identify neuronal 

activation in brain 34–36 has led to many studies that have examined the detailed 

molecular and cellular mechanisms of c-fos promoter activation. The relevant literature is 

immense and is summarized here with only a few selected citations. By necessity, the 

early studies of c-fos and IEG induction were performed under very artificial conditions 

using cell or slice culture. These studies were important for identifying candidate 

signalling mechanisms for IEG induction 34, 134, 135. Many of these mechanisms were 

also shown in the brain during either development, following chemical or mechanical 

damage, or following various manipulations that produced non-physiological activation 

of signal transduction pathways. However, only a few of these mechanisms have a 

significant role in c-fos promoter activation in the brains of intact behaving rats or mice. 

In the striatum and hippocampus, c-fos expression is mediated by ERK/MAPK-

dependent phosphorylation of Elk-1/SRF and CREB on the c-fos promoter 35, 136, 137, 

and not by the cAMP pathway 138, 139. Neuronal activation of the ERK/MAPK pathway 

requires consistent (not sporadic) high levels of calcium influx through NMDA receptors 

and voltage-sensitive calcium channels (VSCCs) 35, 137, 140, 141. Thus, we hypothesize 

that c-fos expression in behaving animals reflects a summation or integration of neuronal 

activity-dependent calcium influx over seconds to minutes, and only strong consistent 

activity over this timeframe will increase calcium levels enough to induce c-fos. 

Glutamatergic excitatory input (along with modulation by GABA inhibitory input) plays 

a major part in inducing strong neuronal activation 35. Drug-induced dopamine release in 

the striatum is often thought to have a direct pharmacological role in activating neuronal 

activity and Fos expression, but this is unlikely because dopamine and dopaminergic 

agonists tend to hyperpolarize striatal neurons in the absence of ongoing glutamatergic 

input 142. Instead drug-induced dopamine release is thought more likely to enhance the 

post-synaptic effect of ongoing glutamatergic input on the most strongly activated 

neurons which increases their neural activity even further 142 to a level sufficient for c-

fos promoter activation 35. In contrast drug-induced dopamine attenuates the effect of 

ongoing glutamatergic input and neural activity of the less activated majority of 

neurons 142.

Previous attempts to directly examine the association between electrophysiological 

activity and Fos expression in striatum and hippocampus have shown that the level of Fos 

expression correlates with the level of synaptic activity and not with the number of action 

potentials 131, 143. However, results from these studies are difficult to interpret in the 

context of Fos-related neuronal ensembles activity, because electrophysiological 

recordings of randomly selected striatal or hippocampal dentate gyrus neurons are almost 

certainly recordings from the majority of (less activated) neurons and not the neurons that 

were activated strongly enough to express Fos. In vivo calcium imaging has recently been 

used to demonstrate a low correlation between spontaneous neuronal activity and Fos 
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expression in single auditory cortex neurons in anaesthetized mice 121. However, these 

negative data are also difficult to interpret in the context of Fos-related neuronal 

ensemble activity, because anaesthesia has been shown repeatedly to block the more 

behaviourally relevant Fos expression induced in awake behaving rodents 144. In the 

future, it will be important to repeat similar studies with in vivo calcium imaging to 

appropriately compare neuronal activity with induced c-fos promoter activation in awake 

behaving rats or mice.

Neuronal ensembles in addiction and relapse

Neuronal ensembles in the nucleus accumbens and prefrontal cortex

Since the 1960s, many studies in humans and laboratory animals have demonstrated that 

classical and operant conditioning mechanisms play a major role in drug use and 

relapse 37–40. With repeated drug use, addicted individuals learn to associate drug effects 

with stimuli or cues in the drug environment (e.g., drug paraphernalia, places of drug taking, 

and co-users), and over time these cues often promote drug craving and drug seeking 39–41. 

Drug-related cues are complex combinations of different stimuli that are recognized with a 

high degree of resolution. Therefore, any neural mechanism capable of encoding these 

learned associations must have a comparably high degree of resolution. It has been proposed 

that neuronal ensembles can provide a mechanistic framework for understanding the 

behavioural and motivational effects of drug-associated cues 15, 42, 43. Indeed, over the past 

two decades, several studies combining drug self-administration procedures 44 with in vivo 

electrophysiology have provided correlative evidence for a role of neuronal ensembles in 

several brain areas (the nucleus accumbens, medial prefrontal cortex (mPFC), ventral 

pallidum and basolateral amygdala) in cue-induced drug seeking 45–50. There is also limited 

correlative evidence from studies that compared context-specific locomotor sensitization 
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behaviour with double-labelling of c-fos mRNA and FosB protein (Box 1) in context-

specific selection of neuronal ensembles in the nucleus accumbens 15.

The neuronal ensemble hypothesis has had some impact on addiction research, but studies 

based on this hypothesis still form only a small proportion of neurobiological research on 

drug addiction. The vast majority of studies on molecular and synaptic plasticity 

mechanisms of drug reward, relapse and conditioned drug effects assess drug- or cue-

induced molecular and cellular alterations in randomly selected neurons or in neurons of a 

particular cell type, independently of their activation state during behaviour in different 

animal models of drug addiction 51–57. Therefore, the alterations assessed in these studies 

were induced largely in the non-activated majority of neurons and not specifically in the 

neuronal ensembles that were selectively activated during the behaviour. The unique drug-

induced or cue-induced molecular and cellular alterations in the minority of activated 

neurons or neuronal ensembles, which presumably mediate drug-seeking behaviour and 

conditioned drug effects, were likely missed or masked by drug-induced alterations in the 

non-activated majority of neurons.

Based on the above considerations, during the last several years we have developed a set of 

pharmacogenetic, molecular biology and genetic tools to selectively inhibit neuronal 

ensembles and assess their unique molecular and synaptic alterations. We developed these 

tools in rats because long-term studies using intravenous drug self-administration 

procedures 44 and animal models of drug relapse and craving 58–60 are technically very 

challenging in mice.

The Daun02 inactivation method

The Daun02 method28 was developed to manipulate only those sparsely distributed neurons 

that are activated by specific stimuli or events without affecting either the surrounding non-

activated neurons or neurons that are activated by other stimuli or events. We applied the 

Daun02 inactivation procedure to selectively inactivate neurons that were previously 

activated by drug-associated cues or contexts 28 (Figure 2). Below we describe the method, 

its application to studying drug-related behaviours, as well as its limitations.

We used c-fos-lacZ transgenic rats, which have a transgene that contains a c-fos promoter to 

induce transcription of the lacZ coding sequence and translation of the protein product β-

galactosidase. This induction occurs only in strongly activated (that is, Fos-positive) 

neurons, but not in the surrounding non-activated or weakly activated (that is, Fos-negative) 

neurons 61–63. Once β-galactosidase is induced in neurons that are activated, these neurons 

can then be inactivated through injection of the inactive prodrug Daun02 28, 64–68. Daun02 is 

catalyzed by β-galactosidase into daunorubicin, which inactivates the previously activated 

neurons through two potential mechanisms: apoptotic cell death 65, 66 or blockade of 

voltage-dependent calcium channels 69. Thus, in our experiments, Daun02 injections disable 

those neurons that were activated by the cue, context or drug and thus presumably the 

neuronal ensemble that encodes the association between the cue or context and the 

drug24, 62, 63. On the test day, typically 3 days after Daun02 injections, we assess whether 

these injections decrease the ability of the drug-associated cues or contexts, or the ability of 

the drug itself, to reactivate the same drug-related neuronal ensemble and induce a 
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conditioned response or drug seeking. A critical control condition that is required to show a 

causal role of neuronal ensembles in the drug-related behaviour is that Daun02 injections 

after exposure to a non-drug-associated cue or context or to a novel context inactivates 

neurons distinct from those in the drug-related neuronal ensemble and should, therefore, 

have no effect on the drug-related behaviour on the test day.

We first used the Daun02 inactivation method 28 to demonstrate a causal involvement for 

neuronal ensembles in the nucleus accumbens in context-specific sensitization of cocaine-

induced locomotion 15, 70, 71. We first demonstrated context-specific activation of 

accumbens neurons by training a group of rats to associate cocaine (7 daily injections) with 

one context (A) and another group of rats to associate cocaine with a different context (B). 

After 7 withdrawal days, we injected rats with cocaine or saline in context A and perfused 

them 90 min later to assess Fos expression in the nucleus accumbens. Cocaine injections in 

test context A enhanced (sensitized) cocaine-induced locomotion and accumbens Fos 

expression in rats that were previously injected with cocaine in the same context A, but not 

in rats that were previously injected with cocaine in the different context B. Double-

labelling immunohistochemistry for Fos and the neuronal marker NeuN showed Fos 

expression in ~3% of accumbens neurons 72. To assess a causal role for this minority of 

activated Fos-expressing neurons in context-specific cocaine sensitization, we trained c-fos-

lacZ transgenic rats to associate context A with cocaine (7 daily injections). After 7 

withdrawal days, we injected separate groups of rats with cocaine in context A or in a novel 

context B, and then injected Daun02 or vehicle into the accumbens 90 min later. Three days 

later, on the test day, we found that prior Daun02 inactivation of accumbens neurons 

attenuated cocaine-induced locomotor sensitization and neuronal activation (assessed by c-

fos promoter-induced β-galactosidase expression) when Daun02 was injected following 

cocaine administration in context A, but not when it was injected following cocaine 

administration in the novel context B 28. Together, these results indicate that context-

specific locomotor sensitization to cocaine is mediated by context-specific selection of 

accumbens neuronal ensembles that are comprised of a small proportion of sparsely 

distributed neurons.

In our second application 67 of the Daun02 inactivation method, we demonstrated a causal 

role for neuronal ensembles in the ventral mPFC in context-induced reinstatement of drug 

seeking, an animal model of relapse induced by exposure to the drug-associated 

environment 73. We first trained rats to self-administer (by lever pressing) heroin in context 

A and extinguished lever pressing in context B. On the test day, 14+ days later, re-exposure 

to the heroin context (A), but not the extinction context (B), increased heroin seeking and 

increased Fos expression in ~6% of the ventral mPFC neurons. To assess a causal role for 

this minority of activated Fos-expressing neurons in context-induced reinstatement, we 

trained c-fos-lacZ transgenic rats to self-administer heroin in context A and extinguished 

lever pressing in context B. On induction day, 14+ days later, separate groups of rats were 

exposed to either the heroin context (A) or the extinction context (B) for 30 min and Daun02 

or vehicle was injected into the ventral mPFC 90 min after the beginning of context 

exposure. On the test day, 3 days later, we found that prior Daun02-induced inactivation of 

the ventral mPFC decreased context-induced reinstatement and neuronal activation when 

Daun02 was injected following exposure to the heroin-associated context (A), but not the 
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when it was injected after exposure to the extinction context (B). Of note, the magnitude of 

inhibition of context-induced reinstatement by Daun02 injections was similar to that 

observed following ventral mPFC injections of a mixture of GABAA and GABAB agonists 

(muscimol and baclofen, respectively) to reversibly inactivate this brain area 5–10 min 

before the reinstatement tests67. Together, these results indicate that a small subset of ventral 

mPFC neurons form neuronal ensembles that encode the learned association between heroin 

reward and the context in which the drug is self-administered.

In our most recent application 68 of the Daun02 inactivation method, we demonstrated a 

causal role for neuronal ensembles in the orbitofrontal cortex (OFC) in incubation of drug 

craving (as indicated by time-dependent increases in cue-induced drug seeking after 

withdrawal from the drug) 74–76. We trained rats to self-administer heroin (6-h/d for 10 d; 

drug infusions were paired with discrete light cue) and assessed cue-induced heroin seeking 

in extinction tests after 1 or 14 days of withdrawal. Cue-induced heroin seeking increased 

from 1 day to 14 days (incubation of heroin craving) and was accompanied by increased Fos 

expression in ~12% of OFC neurons on withdrawal day 14. To assess a causal role for this 

minority of activated Fos-expressing OFC neurons in heroin craving, we trained c-fos-lacZ 

transgenic rats to self-administer heroin. On induction day, 11 days later, we re-exposed 

these rats to the light cue in the heroin-associated context or to a novel context without the 

light cue for 15 min and injected Daun02 or vehicle into OFC 90 min after the beginning of 

context exposure. On the test day, 3 days later, we found that prior Daun02 inactivation of 

OFC neurons decreased cue-induced heroin seeking and OFC neuronal activation when 

Daun02 was injected following re-exposure to the heroin-associated cues, but not when 

Daun02 was injected following exposure to the novel context68. Non-selective inactivation 

of OFC neurons with muscimol and baclofen also decreased cue-induced heroin-seeking on 

withdrawal day 14 (but not on day 1) 68. These results indicate that heroin-cue-activated 

OFC neuronal ensembles play a causal role in persistent responding to heroin cues after 

withdrawal and incubation of heroin craving.

Taken together, the Daun02 inactivation procedure can be used to study the role of neuronal 

ensembles in the motivational effects of drug cues and contexts. However, the method has 

some limitations and unresolved issues. The Daun02 method, like all c-fos promoter-based 

methods, cannot manipulate behaviours that are dependent on a lower level of neuronal 

ensemble activity than that required to activate the c-fos promoter. Additionally, the method 

is limited to brain areas in which Fos and β-galactosidase are highly co-expressed (such as 

the striatum and the mPFC) and cannot be used to assess neuronal ensemble activity in brain 

areas in which co-expression is moderate or low (for example, the thalamus, unpublished 

observations). Furthermore, we have yet to assess a time course for Daun02 inactivation 

beyond three days and do not know the detailed molecular and cellular mechanism involved 

in Daun02 inactivation. If daunorubicin in activated neurons ablates these neurons through 

apoptosis, then some collateral effects of this apoptosis might be expected on the 

surrounding neurons. However, evidence suggests this is unlikely: as shown above, Daun02 

inactivation of neuronal ensembles that were activated by non-paired (B) or novel contexts 

did not decrease lever pressing or neuronal activity in the training context (A) 28, 67, 68; 

additionally, prior Daun02 inactivation of the cocaine-activated nucleus accumbens 

Cruz et al. Page 8

Nat Rev Neurosci. Author manuscript; available in PMC 2015 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ensemble in paired context A had no collateral effect on the ability of intra-accumbens 

injections of a cocktail of AMPA+picrotoxin to activate all accumbens neurons 28.

FACS sorting of activated Fos-expressing neurons

The studies described above indicate that selectively activated neuronal ensembles in 

accumbens and cortical areas have a causal role in context-specific sensitization of cocaine-

induced locomotion, context-induced reinstatement of heroin seeking, and incubation of 

heroin craving. Thus, molecular alterations within these neuronal ensembles are likely to 

have unique and important roles in these drug-related learned behaviours. FACS can be used 

to analyze and purify Fos-expressing neurons for molecular analysis. In the flow cytometry 

component of FACS, brain tissue is enzymatically and mechanically dissociated into single 

cells, which are then fluorescently labelled with antibodies and forced to pass single-file 

through a narrow flow cell in a flow cytometer. In the cell-sorting component of FACS, cells 

are sorted as they leave the flow cell according to their light-scattering and 

immunofluorescent characteristics 77–80. We recently developed a FACS-based method to 

assess gene expression in activated Fos-expressing neurons 29, 81 (Figure 3). In this method, 

neurons are identified by labelling with NeuN antibodies, and activated versus non-activated 

neurons are identified according to their labelling with Fos or β-galactosidase antibodies. 

Below we describe the method, its application to studying drug-related behaviours, as well 

as its limitations. We used FACS to purify activated neurons from different brain areas in 

two drug-induced behavioural models: context-dependent cocaine sensitization and 

incubation of heroin craving 29, 68.

In the first study, we assessed unique alterations of cocaine-induced gene expression in 

activated versus non-activated striatal neurons29. We used FACS to purify activated (β-

galactosidase-expressing) neurons 90 min after injections of cocaine in naïve and cocaine-

sensitized c-fos-lacZ transgenic rats rats. We then compared gene expression in these cell 

populations to gene expression in all neurons from control rats that had received saline 

injections 29. Microarray and qPCR analyses indicated several unique alterations for gene 

expression levels of IEGs (markers of activity) and other genes within activated neurons. 

Expression of the IEGs arc, fosB and nr4a3 was higher in activated neurons from cocaine-

injected rats than in non-activated neurons from the same cocaine-injected rats and in all 

neurons from saline-injected rats. Notably, gene expression was similar in the two control 

conditions: non-activated neurons from cocaine-injected rats and all neurons from saline-

injected rats29.

In the second study, we used the method to assess unique alterations of heroin cue-induced 

gene expression in activated versus non-activated neurons following FACS purification of 

activated Fos-expressing neurons from the mPFC and OFC 82. Rats were trained to self-

administer heroin as above and then remained in their home cages for 14–30 days. On the 

test day, we tested half of the rats for cue-induced heroin seeking in an extinction test (a test 

for incubation of craving after prolonged withdrawal) while the other half remained in their 

home cage (no-test rats). qPCR analyses indicated several unique alterations in gene 

expression levels for IEGs and other genes within activated neurons. Cue-induced heroin 

seeking increased the expression of the IEGs arc, fosB, egr1 and egr2 in activated neurons 
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relative to levels in the non-activated neurons from the same ‘test’ rats or in all neurons from 

the ‘no test’ rats 82.

Taken together, in both studies IEGs were induced in activated neurons but not in non-

activated neurons. This finding, along with our immunohistochemical findings 29, 82, 

supports the idea of sparse coding, in which only a small proportion of sparsely distributed 

neurons undergo the molecular and cellular alterations needed to encode conditioned drug 

effects, whereas the surrounding majority of neurons presumably play a much smaller role. 

As many of these IEGs are also transcription factors, it is likely that they can induce further 

alterations of gene expression within activated neurons that may play uniquely important 

roles in learned behaviours mediated by activated neuronal ensembles.

The FACS-based method has several limitations. We can only identify the relevant neuronal 

ensembles following their activation by acute drug or cue exposure on the test day. Thus, we 

cannot assess molecular alterations that were induced in these neurons during self-

administration training prior to acute drug or cue exposure on the test day. In addition, it is 

not possible to manipulate genes selectively in these activated neurons to assess any 

potential causal roles for these genes in behaviour. We are currently developing methods to 

overcome these issues. Additionally, until recently, our FACS-based method required 

pooling the relevant brain areas, such as the striatum and PFC, from 6–10 rats. This makes 

the method less useful for time- and labour-intensive studies that require intravenous surgery 

and many weeks of behavioural training (including studies on mechanisms of drug reward 

and relapse). Furthermore, different sub-regions of striatum and frontal cortex are known to 

have different roles in the behavioural effects of drugs and non-drug rewards, and the cues 

and contexts associated with them 55, 83–85. To address this issue, we recently combined our 

existing FACS method 81 with Arcturus PicoPure RNA Kit and pre-amplification of the 

target genes to assess gene expression from as few as 5 Fos-positive neurons. These 

modifications enable us to reliably measure gene expression changes in a limited number of 

Fos-expressing neurons from a single dorsal striatum of rats injected with saline or 

methamphetamine 86. We are currently using this improved FACS-method to study unique 

molecular alterations in activated Fos-expressing accumbens and dorsal striatum neurons 

using the context-induced reinstatement of drug seeking model.

c-fos-GFP transgenic mice and rats

Alterations in synaptic efficacy, particularly within excitatory synapses, are regarded as the 

main cellular mechanism underlying learning and memory processes 87, 88, including those 

involved in drug addiction 51, 89. However, as discussed above, previous studies examined 

drug-induced or drug–cue-induced global alterations of synaptic efficacy in randomly 

selected neurons, regardless of their activation state.

c-fos-GFP transgenic mice were developed to assess unique electrophysiological 

characteristics of activated Fos-expressing cortical neurons during different behavioural 

states 90–94. These mice can also be used to study unique synaptic alterations in activated 

Fos-expressing neuronal ensembles during learned behaviours; we describe this use below, 

including its application to studying drug-related behaviours and its limitations. The 

transgene of these mice contains a c-fos promoter that induces expression of green 
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fluorescent protein (GFP) to identify activated neurons in brain slice preparations. In our 

experience, confocal microscopy is necessary to visualize GFP-labelled neurons, because 

regular epifluorescence microscopy does not provide adequate sensitivity. Once a GFP-

labelled neuron is identified, infrared differential interference contrast (DIC) microscopy is 

used to perform whole-cell patch electrophysiology.

We have used these cfos-GFP transgenic mice to assess unique synaptic alterations within 

activated neurons in the nucleus accumbens following context-specific cocaine 

sensitization 95. We previously found that activated Fos-expressing neuronal ensembles in 

the nucleus accumbens mediate context-specific sensitization of cocaine-induced 

locomotion 28. The main finding in our study was that cocaine sensitization, but not acute 

cocaine, produced higher levels of ‘silent synapses’ (synapses that contain functional 

NMDA receptors but no functional AMPA receptors 96) in activated (GFP-positive) 

neurons, and not in non-activated or weakly activated (GFP-negative) neurons. Interestingly, 

the silent synapses induced in activated, GFP-expressing neurons appear different from 

those previously observed in randomly selected nucleus accumbens neurons following 

repeated cocaine injections 97, 98. Specifically, NMDA receptors in silent synapses from 

randomly selected neurons were characterized by high levels of the NR2B subunit 98, 

whereas this was not the case for silent synapses in our activated, GFP-positive neurons 95. 

We hypothesize that silent synapses in GFP-positive neurons may be due to AMPA receptor 

endocytosis resulting from strong activation of these neurons. The data from this study95., 

together with the finding described above28, suggest that distinct synaptic alterations are 

induced in the activated nucleus accumbens neurons that mediate context-specific cocaine 

sensitization.

The c-fos-GFP transgenic mouse is an excellent tool for studying unique synaptic alterations 

in activated neuronal ensembles following relatively simple behavioural models used in the 

addiction field, such as locomotor sensitization and conditioned place preference. However, 

transgenic mice are not ideal subjects for complex studies of drug reward and relapse that 

are based on intravenous drug self-administration. For this reason, we developed a c-fos-

GFP transgenic rat using the genetic construct described earlier 30 (Figure 4). In the initial 

neurobiological study with these transgenic rats, we adapted the classic reinstatement model 

of drug relapse 58 to study reinstatement of food seeking as an animal model of relapse 

during dieting 99. We assessed whether stress-induced reinstatement of palatable food 

seeking 100, which is dependent on dorsal mPFC activity 101, 102, is associated with unique 

synaptic alterations in this brain area. We found that reinstatement of food seeking induced 

by the pharmacological stressor yohimbine 103 was associated with reduced AMPAR/

NMDAR current ratios (indicating reduced glutamatergic synaptic efficacy 104) and 

increased paired-pulse facilitation (indicating decreased synaptic glutamate release 105) in 

activated GFP-positive but not non-activated or weakly activated GFP-negative neurons 30.

Taken together, these studies in c-fos-GFP transgenic rats and mice, as well as earlier 

studies 92, 93 demonstrate that these transgenic rodents are suitable for studying unique 

synaptic alterations in the minority of activated neuronal ensembles that presumably control 

learned behaviours. There are, however, several limitations of this approach. One limitation 

is that, as with the FACS procedure, we cannot assess synaptic alterations that were induced 
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in these neurons during training prior to acute drug or cue exposure on test day. Nor can we 

manipulate these altered synaptic mechanisms selectively in activated neurons to assess their 

causal roles in learned behaviours. Another limitation is that combining behavioural studies 

with synaptic physiology of activated neurons is technically challenging, because of the 

difficulties associated with identifying a sufficient number of GFP-positive neurons in a 

slice preparation. This difficulty arises from the fact that only a minority of neurons 

expresses GFP and this expression is transient, lasting only a few hours. Additionally, to 

date, we have only used this approach after pharmacological activation (using cocaine or 

yohimbine) that induces significantly stronger neuronal activation than that induced by 

exposure to drug or food cues. Thus, we have not yet established that c-fos-GFP rats can be 

used for studies of conditioned drug effects and cue-induced relapse to drug or food seeking. 

As is the case with c-fos-lacZ rats, electrophysiological studies with c-fos-GFP rats and 

mice are limited to behaviours that increase neural activity enough to activate the c-fos 

promoter and induce a high level of co-expression of Fos and GFP in the brain areas of 

interest.

Neuronal ensembles in fear conditioning

The neuronal ensembles hypothesis has been the inspiration for many studies on neuronal 

mechanisms of fear conditioning and extinction 13, 106. As in other neuroscience disciplines, 

most published work on this topic was derived from correlational studies between behaviour 

and in vivo electrophysiology 107, 108 or cellular imaging 109–112 (Box 1) methods. Recently, 

investigators have developed two methods to manipulate putative neuronal ensembles and 

examine their causal role in conditioned fear 18, 113. We describe these methods below 

(Figure 5).

Manipulation of neuronal ensembles in c-fos-tTA transgenic mice

In two recent studies, c-fos-tTA transgenic mice 16, 114 were used in combination with 

optogenetic or DREADD methods to examine causal roles of neuronal ensembles in fear 

conditioning 19, 33. As described in Box 1, c-fos induction of the tTA gene is repressed by 

doxycycline in the drinking water prior to learning. Doxycycline is removed before the first 

learning session, allowing tTA to be induced in neuronal ensembles that are activated during 

the learning task. The tTA activator protein can then bind to a tet operator in the promoter of 

a second transgene and drive the expression of this gene only in neurons that were activated 

(Fos-positive) during the learning task. Investigators have used optogenetic or DREADD 

genetic constructs as the second transgenes to selectively reactivate these neurons during 

tests for the expression of fear learning 19, 33.

Liu et al. 19 used the c-fos-tTA transgenic mice to determine causal involvement of 

hippocampal neuronal ensembles in Pavlovian fear conditioning. They tested whether 

reactivation of neuronal ensembles in the dentate gyrus that were activated during learning 

was sufficient for fear memory recall, operationally defined as increased freezing. The 

experimental group of consisted of c-fos-tTA mice that were injected with an adeno-

associated virus (AAV) expressing ChR2-EYFP and implanted with an optical fibre in the 

dentate gyrus. Mice were kept on doxycycline during habituation days, so that their basal 

freezing levels in context A could be determined during light-off and light-on epochs of 
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optical stimulation. The mice showed little freezing during these habituation sessions prior 

to fear conditioning. Mice were then taken off doxycycline and underwent tone (CS)–shock 

(UCS) pairing (fear conditioning) in context B to induce ChR2 expression in Fos-positive 

neurons that were activated during fear conditioning. Mice were given doxycycline again 

and tested during light-off and light-on epochs in context A. ChR2 activation by optical 

stimulation induced reactivation of the neurons that had previously been activated during 

fear conditioning in context B and produced increased freezing behaviour in context A. In an 

important control condition, after habituation with doxycycline in context A, the authors 

removed doxycycline and induced ChR2 in neuronal ensembles activated by exposure to a 

novel context C in the absence of fear conditioning. Doxycycline was then given to the mice 

before fear conditioning in context B. ChR2-induced activation of context C-related 

ensembles in these mice did not produce higher levels of freezing in context A, presumably 

because this ensemble was not associated with fear conditioning19.

The results of this elegant study 19 suggest a causal role for dentate gyrus neuronal 

ensembles in the formation of stable fear memories. This conclusion would be strengthened 

if it could be shown that halorhodopsin-dependent inhibition of the neuronal ensembles that 

were previously activated during fear conditioning in context B (and that presumably encode 

the fear memory) prevent tone-cue-induced freezing in context B. In other words, although 

the authors showed that activation of dentate gyrus neuronal ensemble is ‘sufficient’ for 

reactivating a fear memory, it is unknown whether endogenous activity of this putative 

ensemble is ‘necessary’ for encoding the fear memory.

In a second study, Garner et al. 33 used the c-fos-tTA transgenic mice with DREADD 

technology to activate Fos-expressing fear-encoding neurons in the brain. These transgenic 

mice have two transgenes that are widely expressed in many brain areas. The first transgene 

is the c-fos-tTA described above. The second transgene contains a tet operator that drives 

tTA-dependent expression of hM3Dq, an artificial Gq-coupled receptor that binds the drug 

clozapine-N-oxide (CNO), which is typically injected systemically to activate neurons 

expressing this receptor 115. One of the experiments of this study33 was similar to that used 

in the earlier study 19. Specifically, doxycycline was removed for 2 days, after which mice 

underwent fear conditioning training in context B, so that the hM3Dq protein was induced in 

neurons that were activated during the fear conditioning. On the test day, the mice were 

placed in a novel context (A) and CNO was systemically injected to activate hM3Dq and 

thereby reactivate those neurons that were previously activated during fear conditioning in 

context B. However, CNO did not induce freezing in context A, suggesting that DREADD-

mediated reactivation of neurons paired with fear conditioning was not sufficient to recall 

the fear memory. The authors also performed several experiments suggesting that co-

activation of artificially induced neuronal ensembles can interfere with naturally produced 

cue-activated neuronal ensembles. It is beyond the scope of this article to describe these 

other experiments, because they did not directly test a causal role for neuronal ensembles in 

conditioned fear.

The reasons for the different results between the two studies19, 33 are unknown. Optogenetic 

activation of neurons may be stronger than DREADD-based activation of neurons. Beyond 

methodological differences related to the fear conditioning procedures, a very important 
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difference is that one study 19 reactivated neuronal ensembles in only the dentate gyrus, 

whereas the other 33 reactivated ensembles in multiple brain areas, which may interfere or 

mask the expression of conditioned fear. Finally, it should be noted that in a different 

study116 using c-fos-tTA mice, the number of tTA-induced GFP-expressing hippocampal 

neurons was less than the number of Fos-expressing neurons following context-induced 

reactivation of fear on test day. This finding suggests that tTA activation in other studies 

using c-fos-tTA mice may underestimate the number of neurons that are activated during 

fear conditioning.

Inactivation of CREB-overexpressing neurons

Viral overexpression of CREB combined with diphtheria toxin or activation of allatostatin 

receptors for subsequent inactivation of CREB-overexpressing neurons has been proposed 

as a method to study neuronal ensembles in lateral amygdala in fear conditioning 31, 32. Han 

et al. 4 used herpes simplex virus (HSV) to overexpress both CREB and Cre recombinase 

transgenes from the same viral construct in a small number of lateral amygdala neurons in 

transgenic mice carrying a Cre-inducible diphtheria toxin receptor (DTR) transgene. 

Subsequent injections of diphtheria toxin (which binds to DTR) can then selectively 

inactivate neurons that express DTR 31. In the first phase of the experiment, test mice that 

overexpressed CREB and DTR in the same neurons and control mice that overexpressed 

DTR but not CREB underwent fear conditioning in what was termed weak (one tone–shock 

pairing) or strong (two tone–shock pairings) training in one context. All mice were tested 

one day later for expression of fear conditioning (freezing) in a different context. Similar to 

results in a previous study 117, CREB overexpression in the test mice increased neural 

responsiveness of the CREB-overexpressing neurons, which leads to their preferential 

activation during fear learning and enhanced fear expression in the weak but not strong 

training condition (presumably the strong training condition already produced maximal 

levels of fear learning) 31. In the subsequent lesioning phase of the experiment, control and 

test mice were injected systemically with diphtheria toxin to ablate DTR-expressing neurons 

and subsequently tested for expression of fear conditioning. Diphtheria toxin reduced the 

expression of fear memory in test mice but not in control mice, in which a similar number of 

lateral amygdala neurons overexpressing DTR (but not CREB) were inactivated by 

diphtheria toxin.

In second study, Zhou et al. 32 used a similar strategy. They used HSV to overexpress both 

CREB and the inhibitory drosophila allatostatin receptor (which is not expressed in rodents) 

in the same neurons; the peptide allatostatin binds to this receptor to reversibly inactivate 

neurons. The authors used experimental methods similar to those described above 31 to 

demonstrate that following auditory fear learning, inactivation of CREB-overexpressing 

neurons by allatostatin decreased the expression of conditioned fear32.

Although these two studies successfully inactivated CREB-overexpressing neurons and 

decreased the expression of conditioned fear, the CREB overexpression method is not 

optimal for studying causal roles for neuronal ensembles in learned behaviours. This is 

because the ‘neuronal ensembles’ that are inactivated by this method are artificially selected 

CREB-sensitized neurons rather than neuronal ensembles that were naturally selected by cue 
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or context exposure during fear conditioning training. That is, the neurons overexpressing 

CREB in these experiments are randomly selected during HSV infection, prior to any 

learning experience. CREB over-expression in these neurons results in the formation of a 

hypersensitive cell type with synaptic alterations that make them highly responsive to many 

stimuli 97, 118, 119. This leads to the formation of artificial ‘neuronal ensembles’ that 

probably have a very different composition than the putative endogenous neuronal 

ensembles that would be selected during the same learning experience. For comparison, in 

the c-fos promoter-based neuronal ensemble inactivation methods described above, only the 

neurons that are strongly activated by cues, contexts or drugs during learning are selected for 

subsequent inactivation. A promising future direction would be to combine the diphtheria 

toxin or allatostatin inactivation methods with c-fos promoter selection of neurons activated 

during learned behaviours.

Conclusions and future directions

We have discussed recent technical developments that make it possible to determine causal 

roles of putative activated neuronal ensembles in learned behaviours and to characterize 

molecular and synaptic physiology of the activated neurons. These methods are unique and 

largely orthogonal to current mainstream neuroscience research that followed the 

introduction of optogenetic- and DREADD-based methods to the field 23, 27. This is because 

the goal of most optogenetic and DREADD studies is to identify causal roles of specific cell 

types, receptors or cellular signalling molecules in a given brain area or a particular cell-

specific projection in learned behaviour, independently of the activation state of the neurons.

The study of the causal involvement of neuronal ensembles in drug addiction and fear is in 

its infancy, and as discussed above, each method has its own limitations. The only relatively 

clear-cut demonstration of causal roles of endogenous neuronal ensembles in learned 

behaviours has come from studies using the Daun02 inactivation procedure, in which 

inhibition of a small proportion of activated neurons in the nucleus accumbens or cortex 

inhibited context-specific cocaine locomotor sensitization, context-induced reinstatement of 

heroin seeking, and incubation of heroin craving 28, 67, 68. By contrast, as discussed above, 

studies combining optogenetic or DREADD methods with c-fos-tTA mice either only 

demonstrated the ‘sufficiency’ (but not the necessity) of neuronal ensembles in conditioned 

fear 19 or did not provide clear evidence for a role of neuronal ensembles in fear 

conditioning 33. Additionally, although studies using CREB overexpression demonstrated 

that selective inactivation of a small proportion of activated neurons decreases the 

expression of fear conditioning 32, 117, the neurons to be activated during fear learning and 

subsequently inactivated were pre-selected by the HSV viral manipulation. Thus, the 

neuronal ensembles identified in these studies may not reflect the composition of the 

endogenous amygdala neuronal ensembles that are normally selected by the learning 

experience.

There are also important limitations in the methods that have been developed for examining 

molecular 29, 81 and synaptic physiology 30, 95 alterations that were induced in neuronal 

ensembles activated during prior learning or on test day. One main limitation is that we 

cannot assess the basal conditions of the putative neuronal ensembles prior to activation, 
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because we must acutely induce GFP, β-galactosidase or Fos to identify the activated 

neurons. Thus, we cannot determine whether any observed alterations are due to prior 

learning during the training phase or due to acute expression of the learned behaviour on the 

test day. To solve this problem we need to identify neurons that are ‘destined’ to be 

activated and participate in an ensemble, prior to their activation on test day. The second 

limitation is that although we can potentially demonstrate causal roles of selectively 

activated neurons in learned behaviours, there are no tools to manipulate the molecular and 

synaptic alterations induced selectively in the activated neurons to demonstrate how these 

molecular or synaptic alterations affect learned behaviours or cell function. A third 

limitation is that the c-fos promoter-based techniques described above cannot identify 

groups of neurons that are inhibited or insufficiently activated by cues for c-fos promoter 

activation to occur. Therefore, an absence of c-fos activation in neurons does not necessarily 

imply that they were not active and have no role in the behaviour.

It may be possible to overcome the first limitation regarding basal conditions by using the c-

fos-tTA mouse system or our recently developed c-fos-tet-Cre recombinase transgenic rat 

system (unpublished data; FCC, YS, BTH) in which previously activated neurons can be 

identified with a constitutively expressed molecular marker (e.g., GFP) that persists for 

many days after the last manipulation when basal conditions are re-established. A similar 

strategy for identifying previously activated neurons involves tamoxifen-sensitive Cre 

recombinase induced by either the c-fos or arc promoter 120. Additionally, a recent and 

promising technology uses transgenic mice with photoactivable GFP that, once activated, 

can be placed in a long-lasting fluorescent state that permit neurons to be identified at a later 

time for more detailed analysis using slice electrophysiology 121. One study 122 has recently 

achieved selective manipulations within activated neurons by using transgenic mice carrying 

both c-fos-tTA and GFP-GluA1 transgenes 123. The authors used the GFP–GluA1 construct 

to assess structural changes in dendritic spines in hippocampal neurons that were activated at 

the time of fear learning. The main finding was that spines on active (Fos-positive) but not 

those on inactive (Fos-negative) neurons of context-fear-conditioned mice were reduced 24 

h after conditioned fear training, and this reduction did not occur in control mice (exposed to 

the context along or to an unpaired shock). To date, however, none of the published 

techniques described above have been used to define the interactions between neuronal 

ensembles in different brain areas that are active at the same time during learning and on test 

day that may form the circuitry underlying learned behaviour. It will also be important to 

expand on the present work using other activity-dependent promoters such as for arc, which 

has been used for two-photon imaging of integrated neural activity in arc-GFP mice 124, as 

well as for inducing Cre recombinase in activated neurons 120. The arc promoter is similar 

to the c-fos promoter, but generally has higher levels of basal activity and a lower threshold 

for activation 125.

Finally, it is perhaps too early to speculate about the clinical implications of a better 

understanding of the unique molecular and synaptic physiology alterations in behaviourally 

activated neuronal ensembles. Nevertheless, one potential implication is the shift in direction 

of medication development — from strategies that target specific receptor, cell type or 

signalling mechanism that are independent of the neuron’s activity status, to strategies that 
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target specific mechanisms that are observed only in activated neuronal ensembles. For 

example, drugs like ketamine or memantine that bind preferably to activated NMDA 

receptors 126–128 can be used to potentially erase (via interference with memory 

reconsolidation 26, 129) or diminish the motivational impact of memories of drug-associated 

or fear-associated cues. Thus, giving ketamine or memantine immediately after exposing 

drug users or PTSD patients to drug- or trauma-associated cues to reactivate neuronal 

ensembles that encode the drug- or trauma-associated memory may diminish the 

motivational impact of these cues and decrease relapse.
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Figure 1. Neuronal ensembles in the mesocorticolimbic dopamine reward system
Hypothetical schematic of how drug-associated stimuli activate specific patterns of neurons 

or neuronal ensembles in this brain system. Environmental stimuli (e.g., tones, lights, 

odours) and drug-induced interoceptive stimuli (e.g., heart rate, blood vessel tone) during 

drug self-administration activate specific neuronal ensembles in sensory regions of the 

neocortex and olfactory bulb that in turn activate specific neuronal ensembles in the 

prefrontal cortex, hippocampus, basolateral amygdala (BLA), and thalamus. Activated 

principal (glutamatergic) neurons in each brain area are indicated with red circles and non-

activated principal neurons are indicated by light blue circles. Neurons in the nucleus 

accumbens that receive the highest levels of convergent excitatory glutamatergic input (blue 

lines) from these latter brain areas are selectively activated to form a neuronal ensemble that 

corresponds to or encodes the specific combination of stimuli and their relationships on the 

basis of past experience. Depending on the salience and reward value of these stimuli, the 

ventral tegmental area (VTA) sends dopaminergic input (red lines) to the prefrontal cortex 

and nucleus accumbens that further enhances ongoing activity of the more highly activated 

neuronal ensembles while attenuating activity in the less activated majority of neurons in the 

prefrontal cortex and nucleus accumbens. Yellow lines indicate GABAergic outputs from 

the nucleus accumbens to the ventral pallidum (VP) and VTA. CeA, central nucleus of the 

amygdala.
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Figure 2. The Daun02 inactivation method
(A) The c-fos-lacZ transgene in the transgenic rats contains a c-fos promoter that regulates 

transcription of the lacZ coding sequence. Sufficiently strong and persistent neural activity 

induces fos expression and, subsequently, activates the c-fos promoter. As a result, the 

expression of lacZ mRNA and its protein product β-galactosidase is increased in these 

strongly activated neurons but not in the surrounding majority of neurons. The prodrug 

Daun02 is injected into the brain area of interest and is initially inactive. However, β-

galactosidase catalyzes Daun02 to the active product Daunorubicin that induces apoptosis 

and cell death in only those neurons that were activated strongly enough during behaviour to 

induce β-galactosidase. (B) The general experimental procedure requires repeated exposures 

in one context (context A) during the training phase, followed by withdrawal/abstinence or 

extinction in a different context (context B). On the induction day, specific neuronal 

ensembles can be reactivated by the training, extinction or exposure to a novel context 

(context C), along with cues and/or the drug to induce β-galactosidase. Vehicle or Daun02 is 

injected 90 minutes later (the time of maximal β-galactosidase protein induction after 

neuronal activation). On the test day, 3 days later, reactivation of these neurons and 

behavioural effects in the training context (context A) are assessed.
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Figure 3. FACS sorting of activated neurons
The FACS method is used for assessing unique molecular alterations within activated versus 

non-activated neurons. (A) In flow cytometry, including FACS, single cells are 

enzymatically dissociated from brain tissue and fluorescently labeled with different 

antibodies. Labelled samples are then forced to pass single file through a narrow flow cell. 

Absorbance of transmitted laser light for each particle is called Forward Scatter (FSC) light, 

whereas light scattered at a 90-degree angle is called Side Scatter (SSC) light. Each particle 

(cell or non-cell) is called an ‘event’. (B) Each event is indicated by a black dot in the 

Scattergram. The cluster of events in the lower part of the Scattergram corresponds to 

neurons that were subsequently selected (or ‘gated’) by the indicated triangle for further 

analyses of their fluorescence characteristics. Positively labelled events (e.g., Fos-positive 

cells) have high fluorescence levels (red circles), whereas negatively labelled events (e.g., 

Cruz et al. Page 26

Nat Rev Neurosci. Author manuscript; available in PMC 2015 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fos-negative cells) have low fluorescence levels (black circles). (C) These events are 

displayed in a Fluorescence scattergram. Rectangular gates are used to select positive events 

(e.g., Fos-positive and NeuN-positive cells) and negative events (e.g., Fos-negative and 

NeuN-positive cells) for collection using FACS. Droplets containing gated events can be 

programmed to receive an electric charge as they leave the flow cell. Magnetic plates direct 

the charged droplets and sort them into separate ‘positive’ or ‘negative’ sample tubes for 

further molecular analysis.

Cruz et al. Page 27

Nat Rev Neurosci. Author manuscript; available in PMC 2015 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Electrophysiology of activated neurons using the c-fos-GFP rat
Assessing unique electrophysiological alterations within activated versus non-activated 

neurons. The cfos-GFP transgene in transgenic rats (or mice) contains a c-fos promoter that 

regulates transcription of the coding sequence for green fluorescent protein (GFP). 

Sufficiently strong and persistent neural activity activates the c-fos promoter which induces 

GFP in these strongly activated neurons but not in the surrounding majority of neurons. (A) 

Coronal slices are obtained for electrophysiological analysis. (B) GFP expression (induced 

by drug or cue exposure) can be used to guide the electrode to GFP-positive or GFP-

negative neurons and attach it using differential interference contrast (DIC) optics. The 

arrow indicates a GFP-positive neuron with the shadow of the attached electrode to the right. 

(C) Alexa 568 in the electrode can diffuse into the attached cell to confirm that recorded cell 

was GFP-positive.
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Figure 5. Manipulating activated fear-encoding neuronal ensembles in the hippocampus and 
amygdala
(A) The c-fos-tTA transgene in transgenic mice contains a c-fos promoter that regulates 

transcription of the coding sequence for the tet-off transcriptional activator (tTA) protein. 

Sufficiently strong and persistent neural activity during a particular learned behaviour 

induces tTA in these strongly activated neurons but not in the surrounding majority of 

neurons. Doxycycline provided to the mice (commonly through the diet) inactivates tTA 

transcriptional activity. When doxycycline is removed from the diet, the tTA can bind to the 

tet operator and activate a second transgene (viral or genomic) that expresses the optogenetic 

activating protein channel rhodopsin-2 (ChR2) or the pharmacogenetic inactivating 
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DREADD receptor (hM3Dq) in those neurons that were previously activated during the 

behaviour. Blue light activates and manipulates the ChR2-expressing neurons, whereas 

clozapine-N-oxide (CNO) activates hM3Dq-expressing neurons that were activated (red) 

during subsequent behavioural tests. (B) A herpes simplex virus (HSV) transgene contains a 

constitutively activated HSV IE4/5 promoter that drives the expression of two genes 

encoding GFP-CREB fusion protein and Cre recombinase, separated by an internal 

ribosome entry site (IRES) (cds indicates coding DNA sequence). Over-expression of GFP-

CREB increases the sensitivity of neurons to synaptic input (red circles). Cre recombinase in 

the same neurons recognizes loxP DNA sequences in the DTR transgene of transgenic mice 

to cut out the Stop DNA sequence; this permits constitutive rosa26 promoter-induced 

expression of diphtheria toxin receptor (DTR) protein. Subsequent injections of Diphtheria 

toxin ablate DTR-expressing neurons. (C) A herpes simplex virus (HSV) transgene contains 

two separate genes: one uses a constitutively activated HSV IE4/5 promoter to drive the 

expression of the gene encoding GFP-CREB fusion protein, and the other gene uses a 

cytomegalovirus immediate early gene promoter (CMV) to drive expression of the gene 

(Alstr) that encodes the drosophila Allatostatin receptor. The same neurons (red circles) 

over-express GFP-CREB, which increases both the sensitivity of neurons (red circles) and 

the expression of the Allatostatin receptor. Subsequent site-specific injections of the 

Allatostatin peptide can inactivate these neurons during a behavioural test.

Cruz et al. Page 30

Nat Rev Neurosci. Author manuscript; available in PMC 2015 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


