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Abstract

The COMT gene modulates dopamine levels in prefrontal cortex with Met allele carriers having 

lower COMT enzyme activity and, therefore, higher dopamine levels compared to Val/Val 

homozygotes. Concordantly, Val/Val homozygotes tend to perform worse and display increased 

(interpreted as inefficient) frontal activation in certain cognitive tasks. In a sample of 209 

participants, we test the hypothesis that Met carriers will be advantaged in a decision-making task 

that demands sequencing exploratory and exploitive choices to minimize uncertainty about the 

reward structure in the environment. Previous work suggests that optimal performance depends on 

limited cognitive resources supported by prefrontal systems. If so, Met carriers should outperform 

Val/Val homozygotes, particularly under dual-task conditions that tax limited cognitive resources. 

In accord with these a priori predictions, Met carriers were more resilient in the face of cognitive 

load, continuing to explore in a sophisticated manner. We fit computational models that embody 

sophisticated reflective and simple reflexive strategies to further evaluate participants' exploration 

behavior. The Ideal Actor model reflectively updates beliefs and plans ahead, taking into account 

the information gained by each choice and making choices that maximize long-term payoffs. In 

contrast, the Naïve Reinforcement Learning (RL) model instantiates the reflexive account of 

choice, in which the values of actions are based only on the rewards experienced so far. Its beliefs 

are updated reflexively in response to observed changes in rewards. Converging with standard 

analyses, Met carriers were best characterized by the Ideal Actor model, whereas Val/Val 

homozygotes were best characterized by the Naive RL model, particularly under dual-task 

conditions.
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1. Introduction

Effective decision-making requires a balance of exploratory and exploitative behavior (Daw 

et al., 2006, Cohen et al., 2007, Hills et al., 2015). For example, consider the problem of 

choosing the best route to work. Routes change over time because of construction, changes 

in traffic patterns, etc. such that one cannot be certain which route is currently best. In this 

non-stationary environment, one either chooses the best-experienced route so far (i.e., 

exploit) or tries a route that was inferior in the past but now may be superior (i.e., explore). 

Which actions a commuter should take in a series of choices is a non-trivial problem as 

optimal decision-making requires factoring in uncertainty about the state of the 

environment. An actor who excessively exploits will fail to notice when another action 

becomes superior. Conversely, an actor who excessively explores incurs an opportunity cost 

by frequently forgoing the high-payoff option.

Our focus is on the timing of exploratory choices. People should explore when they are 

uncertain about the state of the environment. Reflective belief-updates do this by 

incorporating predictions about unobserved changes in the environment. For example, a 

reflective belief-updater would increase their belief that an inferior route has improved as 

more time passes since the last observation because it becomes more likely that disruptive 

construction will have completed. In contrast, a reflexive belief-updater is only informed by 

direct observations of rewards and, therefore, does not fully utilize environmental structure 

to update beliefs and guide actions resulting in randomly timed exploratory choices.

This distinction closely echoes contemporary dual-system reinforcement learning (RL) 

approaches in which a reflexive, computationally parsimonious model-free controller 

competes for control of behavior with a reflective, model-based controller situated in 

prefrontal cortex (Daw et al., 2005). Previous work on exploration and exploitation indicates 

that reflective choice is resource intensive, perhaps relying on prefrontal systems (Badre et 

al., 2012, Otto et al., 2014). Correspondingly, populations that have reduced executive 

function, such as those experiencing depressive symptoms, are impaired in reflective 

decision making (Blanco et al., 2013), as are individuals under a secondary task load that 

exhausts limited cognitive resources (Otto et al., 2014).

Here, we test the hypothesis that reflective exploration is mediated by prefrontal systems by 

examining differences in the functional Val158Met polymorphism within the COMT gene 

(rs4680). The COMT gene modulates dopamine levels in prefrontal cortex with Met allele 

carriers having lower COMT enzyme activity and, therefore, higher dopamine levels, 

compared to Val/Val homozygotes (Gogos et al., 1998, Yavich et al., 2007, Kaenmaki et al., 

2010). Val/Val homozygotes tend to perform worse on executive tasks and display increased 

frontal activation that may reflect inefficient processing compared to Met-carriers (Blasi et 

al., 2005, Winterer et al., 2006, Tan et al., 2007). Animal studies examining set-shifting 

behavior also indicate he crucial role of PFC dopamine (Stefani and Moghaddam, 2006), 

which can be manipulated by COMT (Tunbridge et al., 2004). In humans, the COMT 

genotype predicts participants' ability to adapt behavior on a trial-by-trial basis (Frank et al., 

2007), has been associated with performance on reversal learning tasks (Nolan et al., 2004), 

and has been linked to uncertainty-based exploration (Frank et al., 2009). But, the influence 
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of the Val158Met polymorphism on cognitive function is debated, with some conflicting 

results. A recent meta-analysis concluded that there was little or no association between 

COMT genotype and scores on a set of standard cognitive tests (e.g. the Wisconsin Card 

Sorting task), though a reliable association was found between Met/Met genotype and higher 

IQ (Barnett, Scoriels, & Munafò, 2008).

It may be that COMT genotype has a more specific or subtle influence on cognition than is 

measured by many of the standard behavioral tests. Here we directly assessed the role of 

COMT variation in an exploratory decision-making task. We use computational models, 

related to reflective and reflexive exploration, to provide a clearer picture of the behavioral 

data. The main prediction is that Met carriers will explore reflectively, whereas Val/Val 

homozygotes will rely on simpler reflexive strategies.

One possibility is that the additional dopamine available for Met carriers functions more as a 

reserve rather than to facilitate cognitive function in general. We predict that Met carriers 

will be more resilient when cognitive resources are taxed under dual-task load.

2. Materials and Methods

We examined associations of COMT variants with exploratory strategies by using a 

paradigm termed the “Leapfrog” task (Knox et al., 2012), a variant of the “bandit” task 

(Sutton and Barto, 1998) that is specifically designed to evaluate exploratory behavior. In 

this task (Fig. 1), one of two options provides a higher reward than the other. With a fixed 

probability on each trial, the currently inferior option can increase in value, becoming the 

better option. Because the relative superiority of the options switches over time, participants 

must choose between exploiting the option with the highest observed reward and exploring 

to see whether the other option has surpassed it. This task is ideally suited to evaluate the 

timing of exploratory choices and to what extent they are guided by uncertainty in the 

environment, distinguishing reflective from reflexive choice strategies.

To tax mechanisms that support reflective exploration, which are thought to be resource 

intensive, participants in the dual-task condition also performed a tone counting task. Dual-

task manipulations using tone counting are known to increase the prevalence of reflexive 

exploration strategies (Otto et al., 2014). More generally, secondary tasks that exhaust 

working memory resources tend to increase reliance on implicit strategies (Foerde et al., 

2006, Zeithamova and Maddox, 2006) and cognitively inexpensive model-free choice 

strategies (Otto et al., 2013, Gershman et al., 2014).

2.1. Models Evaluated

We fit computational models that embody reflective and reflexive strategies to participants' 

data to evaluate their exploration behavior. The Ideal Actor model reflectively updates 

beliefs and plans ahead, taking into account the information gained by each choice and 

making choices that maximize long-term payoffs. Action-values are a product of both 

expected rewards and the potential to reduce uncertainty about the state of the environment. 

In contrast, the Naïve RL model instantiates the reflexive account of choice, in which the 
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values of actions are based only on the rewards experienced so far. Its beliefs are updated 

reflexively in response to observed changes in rewards.

Both models incorporate a Softmax choice rule (Sutton and Barto, 1998), which chooses 

options as a function of the computed action-values. The Softmax inverse temperature is a 

free parameter in both models. Critically, the action-values used in the Softmax choice rule 

differ between the two models, leading to qualitative differences in exploratory behavior. 

The Naïve RL model explores with equal probability on every trial, whereas the probability 

of exploring increases after each successive exploitive choice for the Ideal Actor model (see 

Fig. 3A).

For the Naïve RL model, the value of each action is equal to the last observed reward for 

that action. The Ideal Actor computes action-values in two steps. First, it optimally updates 

its (Bayesian) beliefs about the state of the environment based on observations and its 

estimate of the environment volatility—a free parameter denoted P(flip). The Ideal Actor 

then optimally converts those beliefs into action-values using established methods in RL 

(Kaelbling et al., 1996). More detailed descriptions of the models are provided in the 

Appendix. For full formal descriptions of these models, see Knox et al. (2012).

2.2. Leapfrog Task

Prior to the main task, participants passively viewed 500 training trials, in blocks of 100 

trials. During these training trials, the rewards read CHANGED or SAME indicating 

whether the reward increased or not on that trial for each option. Each trial lasted for 0.5 s. 

Before each training block, participants estimated the number of jumps they expected to see 

in that block.

Participants then performed 300 trials of the main task, with a brief break after each 50 trial 

block. On each trial (see Fig. 1B) the word ‘CHOOSE’ appeared, and subjects had 1.5 s to 

select one of the two options by pressing a key on the keyboard. The chosen option was 

highlighted for the remainder of the trial. The reward received for the choice (e.g. ‘+ 60’ 

presented in the center of the screen for 1 s. Visual presentation of the reward was the only 

form of feedback. If the participant failed to respond in time the message ‘TOO SLOW, 

TRY AGAIN’ was displayed and the trial repeated. Every fourth time that they missed the 

response deadline, the experiment encouraged them to pay attention and respond more 

quickly. Immediately after reward presentation, the next trial began.

At the start of the main task, one option yielded a reward of 10 points and the other 20 

points. On any trial the currently lower option could, with fixed probability of 0.075, 

increase by 20 points, becoming the higher-valued option. In this way, the two options 

alternate over time as the best option. Participants were informed of the initial starting 

values of the two options. They were also told that the two options would take turns being 

the better option and that the only way to know which was currently better was to sample the 

options. They were informed that the reward values options would change at the same rate 

that they observed in the training trials.
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Participants were randomly assigned to either the single or dual task condition. In addition to 

the Leapfrog task, participants in the dual-task condition performed an auditory tone-

counting task. On each trial, a series of high and low tones played and participants were 

instructed to count the total number of high tones over blocks of 50 trials while ignoring the 

low tones. At the end of each block, participants reported the total number of high tones in 

the block. At the start of each block, participants resumed counting from zero. The number 

of tones played per trial varied uniformly between 1 and 4. The base rate of high tones was 

determined every 50 trial block, selected randomly from a uniform distribution between .3 

and .7. For example, for a base rate of .4, each tone played had a 40% chance of being a high 

tone. Tones occurred at random between 500 ms and 1750 ms after trial onset.

Participants were instructed that their goal was to earn as many points as possible during the 

task. They were told that there was a cash bonus associated with their performance, and that 

the more points they earned the more they would be paid in cash. At the end of the 

experiment all participants were paid a $2 cash bonus. There were no specific instructions 

regarding incentive to perform well in the tone counting task.

2.3. Participants

226 participants aged 18-35 were recruited from the greater Austin community through 

fliers and newspaper ads and received $10 (which includes the $2 bonus mentioned above) 

for their participation. Potential participants were screened for significant psychiatric disease 

via telephone using the Mini International Neuropsychiatric Interview (MINI), which 

screened for 17 different Axis I Diagnostic and Statistical Manual of Mental Disorders-IV 

(DSM-IV) disorders, including alcohol and drug abuse and/or dependence and attention-

deficit hyperactivity disorder (ADHD). The MINI was chosen because of its acceptable 

validity, test-retest, and inter-rater reliability (Sheehan et al., 1998). Participants who met the 

MINI criteria for a current or past psychiatric diagnosis, currently taking psychoactive 

medication, currently in psychotherapy, or history of brain trauma were excluded from the 

study. Excluded participants were offered referrals to local mental health clinics.

Participants were excluded from further analysis when failing to satisfy one or more of three 

task engagement checks. (1) Choosing the lower value option (according to recent 

observations) for 10 or more consecutive trials (7 participants failed this check). (2) As 

explained in the Results section, being best fit by a baseline model of choice that was 

indicative of not processing sequential rewards (5 participants failed this check). (3) Having 

error of 70 or greater for two or more blocks in the secondary task of the dual-task condition 

(6 participants failed this check, including one who also failed the first check). Overall, 17 

participants were excluded, leaving 209 for further analysis. Checks 1 and 2 were designed 

to exclude participants that were not engaged in the Leapfrog task, while check 3 excludes 

participants that were not attending to the tone counting task. The Baseline model picks out 

participants that were not processing reward values for the entirety of the task, while check 1 

picks out participants that failed to attend to reward values for a substantial portion of the 

task, repeatedly and consecutively choosing the option that was observably inferior.
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2.4. Genotyping

For all participants genomic DNA was collected and isolated from buccal swabs using 

published procedures (Lench et al., 1988, Freeman et al., 1997). The COMT Val158Met 

polymorphism (rs4680) was genotyped using Taqman assay C_ _25746809_50 (Applied 

Biosystems) using an ABI 7900HT Real time PCR system. Our sample included 71 Val/Val 

homozygotes (mean age: 25.14; 41 female) and 138 Met carriers (mean age: 24.80; 78 

female). Met carriers and Val homozygotes did not differ significantly in terms of age, 

t(207)= 0.46, p=0.65, gender, χ2(1,N=209)=0.03, p=.87, or years of education(15.28 vs. 

15.80 years, respectively), t(207)= 1.52, p=0.13. This sample did not violate the Hardy-

Weinberg equilibrium, χ2(1,N=209)=1.52, p=.22, indicating that the collected sample is 

representative of the population. In the results that follow, the qualitative pattern of results 

holds when the sample is restricted to Caucasians.

3. Results

Preliminary analyses evaluated the overall rate of exploration and participants' performance 

in the tone counting task in the dual-task condition. Subsequent analyses evaluate the main 

hypotheses by considering the sequencing of exploratory choices.

3.1. Preliminary Analyses

Met carriers and Val/Val homozygotes did not significantly differ in their mean error rate 

(21.85 vs. 17.51) in the tone counting task, t(97)=1.76, p=.08. Also easing the interpretation 

of the main analyses, Met carriers and Val/Val homozygotes did not significantly differ in 

their overall rate (.156 vs. .159) of exploration in the Leapfrog task across conditions, 

t(207)=.36, p=.72, nor within the single (.155 vs. .161) and dual (.156 vs. .156) task 

conditions, t(108)=.60, p=.55; t(97)=.03, p=.97, respectively. The two groups also did not 

differ in the mean number of flips that they predicted (8.49 vs. 8.79) in training blocks of 

100 trials, t(207) = 0.95, p=0.34.

3.2. Basic Measures of Performance in the Leapfrog Task

Overall, the results support the main hypothesis that Met carriers will be more reflective in 

their exploration choices than Val/Val homozygotes when under dual-task conditions. This 

conclusion is supported by consideration of choice (Fig. 2a) and response time data (Fig. 

2b).

The choice data shown in Fig. 2a were analyzed using a task × genotype ANOVA. The main 

prediction was confirmed – there was an interaction such that Met carriers tended to perform 

better under dual-task conditions, F(1,205)=4.17, p<.05. The main effects for task and 

genotype were not significant, F(1,205)=1.54, p=.22; F(1,205)=1.26, p=.26, respectively. 

While the two groups did not differ significantly in tone counting performance that Met 

carriers performed better on the Leapfrog task, but made slightly more errors in tone 

counting, suggests that these differences might result from Met carriers allocating more 

cognitive resources to the main task. To investigate this possibility we tested for a 

correlation between tone counting error rate and Leapfrog task performance across all dual-
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task participants. The correlation was not significant, r = -0.04, t(97) = -0.39, p=0.70, 

providing evidence against this hypothesis.

Because heterozygote (Val/Met) performance appeared intermediate between Met 

homozygote and Val homozygote performance, and because some studies report gradual 

effects of COMT genotype (e.g Egan et al., 2001) we performed a task × genotype ANOVA 

with genotype coded as the number of Val alleles. There was a marginal task × genotype 

interaction on performance in this analysis, F(1,205)=3.63, p=0.058.

The response time data shown in Fig. 2b were also analyzed using a task × genotype 

ANOVA. The results were consistent with a speed-accuracy tradeoff in which participants 

were slower under more difficult conditions as participants were slower in the dual-task 

condition, F(1,205)=18.88, p<.05. The main effect of genotype was not significant, 

F(1,205)=0.12, p=.73, nor was the interaction, F(1,205)=0.91, p=.34.

Overall, these analyses converge in support of the main hypotheses. The dual-task 

manipulation exhausted limited cognitive resources and this adversely affected performance 

in the Leapfrog task. As predicted, Met Carriers showed greater resilience under this load.

3.3. Analyses of Reflective vs. Reflexive Choice

The previous analyses considered basic performance measures. Although these analyses 

bear on the question of reflective vs. reflexive exploration, they did not directly evaluate 

participants' patterns of exploration. In this subsection, indices of reflective and reflexive 

exploratory choice are measured directly from the data and inferred using computational 

models to further evaluate the main hypotheses.

The Ideal Actor and Naive RL models were used to evaluate whether participants were 

reflective or reflexive explorers. The Ideal Actor's propensity to explore increases the longer 

it has been since an exploratory choice because uncertainty about which option is better 

grows, whereas the Naive RL model explores randomly independently of uncertainty (see 

Fig. 3a). We fit the Ideal Actor and the Naïve RL model to participants' trial-by-trial choice 

data by conducting an exhaustive grid search to find the set of parameters that maximized 

the likelihood of each model for each participant. Because the two models have different 

numbers of free parameters, we determined which model best characterized each participant 

using the Bayesian Information Criterion (BIC; Schwarz, 1978), mirroring previous used 

methods (Knox et al., 2012, Blanco et al., 2013). This same procedure was used to fit a 

baseline model mentioned in the Methods section – participants that were best characterized 

by a baseline model that assumed a fixed probability for selecting the left option (i.e., a 

model that is not reactive to the rewards in the task) were excluded from all analyses. Best-

fitting parameter values for each group and condition are listed in Table 2 in the Appendix.

Each participant was classified as either an Ideal Actor or Naive RL model explorer 

depending on their BIC scores (see Fig. 3b). As predicted, there was a significant task × 

model interaction, G2=6.40, p<.05, such that the Naive RL model better characterized 

participants under dual-task conditions. As predicted, there was a significant task × model × 

genotype interaction, G2=3.89, p <.05, such that Val/Val homozygotes were 
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disproportionately more likely to be characterized by the Naive RL model under dual-task 

conditions in comparison to Met carriers.

These results support the hypothesis that Met carriers are more likely to remain reflective 

explorers when under cognitive load. As shown in Fig. 3A, the Naive RL and Ideal Actor 

models predict different functional relationships between the probability of exploring and 

the number of trials since an explorative choice. To confirm that these model signatures are 

present in the behavioral data, we evaluated whether participants displayed a flat slope (i.e., 

intercept only) relationship between the probability of exploration and the number of trials 

since the last exploratory choice as in the Naive RL model or a rising slope (i.e., linear with 

slope and intercept) as in the Ideal Actor model. BIC was again used to compare these two 

options to determine which regression model best characterized each participant's choices 

(see Fig. 3C). There was a significant task × model × genotype nteraction, G2=6.91, p<.05, 

indicating that Met carriers were more likely to maintain the linear exploration pattern under 

dual-task conditions. There was also a significant task × model interaction, G2=4.39, p<.05, 

indicating that the intercept-only model was more prevalent under dual-task conditions. 

These regression analyses parallel the full model-based analyses of the Naive RL and Ideal 

Actor models. We also directly analyzed exploration rates as a function of number of trials 

since the last exploratory choice (Fig. 3C and D) by genotype and task. A task × genotype × 

trial (since last exploratory choice) ANOVA revealed a significance 3-way interaction, 

F(1,1036)=5.31, p=0.02, which confirms that the genotype groups differ on this measure in 

the dual-task condition. As expected there were also a main effect of trial, F(1,1036)= 

219.49, p<0.05, and a task × trial interaction, F(1,1036)=16.4, p<0.05. No other main 

effects or interactions reached significance.

One question is whether genotype predicts exploratory behavior above and beyond common 

measures of cognitive ability. As part of a larger data collection effort independent of this 

study's design, a number of measures, including WAIS vocabulary, logical memory 

immediate recall test, logical memory, digit span, and the Stroop task, were collected in a 

separate session. These measures, along with genotype, were entered into a stepwise 

regression to predict whether each participant in the dual-task condition followed the Ideal 

Actor. The stepwise regression solution only included digit span, z=1.61, p=.11, and 

genotype, z=1.97, p<.05, as predictors. This result indicates that genotype significantly 

predicts exploration behavior even when common measures of cognitive function are 

included as competing alternative predictors.

4. Discussion

Consistent with past research, participants' exploratory behavior was reflective under single-

task conditions and became more reflexive under dual-task conditions that taxed limited 

cognitive resources. The main hypothesis tested was that Met carriers would be more 

resilient in the face of cognitive load and continue to explore reflectively. This hypothesis is 

based on how the COMT gene modulates dopamine levels in prefrontal cortex (Gogos et al., 

1998, Yavich et al., 2007, Kaenmaki et al., 2010) and the associated performance 

differences between Met carriers and Val/Val homozygotes in cognitive tasks (Blasi et al., 

2005, Winterer et al., 2006, Tan et al., 2007). Our analyses, which involved fits of 
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computational models of reflective and reflexive exploration and standard statistical tests, 

converge in support of our a priori predictions.

An important aspect of our results is that the differences between genotypes only emerged 

under dual-task conditions. When the task became cognitively demanding and executive 

resources were taxed, Met carriers performed better than Val/Val homozygotes. This may be 

an important difference between out task and other cognitive tasks for which conflicting 

results have been found or which meta-analyses suggest may not be influenced by COMT 

genotype (Barnett, Scoriels, & Munafò, 2008). It may be that the higher levels of dopamine 

associated with having he Met allele affords an individual a greater reserve of resources 

available when needed under taxing conditions, but which does not improve functioning 

under less demanding conditions. The level of cognitive demand of many standard cognitive 

tasks like the Wisconsin Card Sorting task may be more comparable to that of our single 

task condition.

These findings advance our understanding of the mechanisms of exploratory behavior and 

suggest that reflective exploratory behavior shares a neural basis with the frontal systems 

critical in model-based reinforcement learning (Daw et al., 2005, Badre et al., 2012). 

Frontal-dopamine systems appear crucial for maintaining, manipulating, and evaluating 

representations of the environment across a number of related tasks. One possible 

mechanism for this effect is that the Met allele has been associated with a greater prefrontal 

neuronal signal-to-noise ratio (Egan et al., 2001; Winterer et al., 2006). It could be that 

higher signal-to-noise ratio promotes greater stability in maintaining the representation of 

the environment, producing better estimates of current uncertainty and enabling more 

effective reflective updating of the environmental representation. Better representations of 

the environment allow directed exploratory choices, like those produced by our Ideal Actor 

model that optimally maintains and updates the environmental representation. Without 

accurate representations, exploratory choices become less structured, as in our Naïve RL 

model.

In addition to elucidating the cognitive and neural mechanism underlying exploratory 

behavior, we hope our tasks and analysis methods will prove useful to researchers 

considering related questions. For example, our Leapfrog task and modeling approach are 

readily adapted to non-human animal studies, which presents exciting possibilities such as 

manipulating COMT expression directly. Some limitations of this contribution include 

relatively low sample size and the possibility of a third variable explanation including but 

not limited to another polymorphism in linkage disequilibrium with rs4680 or within-

ethnicity population stratification. Additionally, our study lacks a replication sample. An 

independent replication of this finding to determine the robustness of the effect is an 

important direction for future research. Nevertheless, given the broad literature describing 

the cognitive consequences of variation in the COMT gene, and our attempts to reduce the 

risk of population stratification by conducting ethnicity-specific analyses, we believe these 

data add substantively to the literature and provide direction for future studies.
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Appendix

Appendix Model details

Naïve Reinforcement Learning (RL) Model

The Naïve RL model reflexively updates its beliefs about reward values based only on its 

observations (i.e. it believes that the payoffs for each option are as they were last observed). 

In brief, the model simply remembers which option was best based on recent observations 

and exploits that option with a fixed probability, exploring the remainder of the time.

Accordingly, the model assumes that Action H (that with highest observed reward) and H 

(the alternative action with lower observed reward) give rewards of 1 and 0 respectively, 

corresponding to the higher and lower payoffs. Its expectation of each action's reward, Q(H), 

is input into a Softmax choice rule (Sutton & Barto, 1998), resulting in a constant 

probability of exploring or exploiting:

where γ is an inverse temperature parameter, referred to as the Softmax parameter in the 

text. As γ increases, the probability that the highest-observed action (H) will be chosen 

increases. As γ approaches zero, the model moves towards choosing actions with uniform 

randomness. This parameter is the only free parameter in the model.

Ideal Actor Model

The reflective Ideal Actor model maintains optimal beliefs about the probability that each 

option will give a higher immediate reward. These beliefs are then used to compute optimal 

action values. The model has two free parameters: P(flip), its estimate of how often flips 

occur, which it uses to perform belief updates, and γ, the inverse temperature parameter used 

in the Softmax choice rule, as in the Naïve RL model above.

The Ideal Actor model maintains a probabilistic distribution over possible underlying 

environment states, represented as a belief B, which is the probability that the exploitative 

action—i.e., choosing the option with the currently highest observed reward—will actually 

yield the larger immediate reward. The underlying environment state can be formulated as 

the number of unobserved (i.e., true) flips at a given time point. If there are 0 or 2 

unobserved flips, then the exploitative action will yield the higher reward. If there is 1 

unobserved flip, then the option with the lower observed reward yields the true higher 
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immediate reward. Beliefs are optimally updated following each choice and observation of 

the resulting reward. Updating the belief Bt+1—the probability distribution over the number 

of unobserved flips (0, 1, or 2) before taking the action at trial t+1—depends on the revious 

belief state Bt, the action taken at trial t (exploratory or exploitative), the observed number 

of flips seen as a result of that action and the assumed volatility rate of the environment—

the free parameter P(flip). Individual state transition probabilities based on these factors are 

combined and normalized to form a posterior belief:

where the state si,t+1 refers to the number of unobserved flips after the choice and reward 

observation were made while si,t refers to the number of unobserved flips before the choice.

Using these optimally maintained beliefs, the Ideal Actor then optimally computes action-

values for each action. This is accomplished by formulating the task as a Partially 

Observable Markov Decision Process (POMDPs) and using methods for solving POMDPs. 

To calculate these optimal action values, we employed Cassandra et al.'s (Cassandra, 

Littman, & Zhang, 1997) incremental pruning algorithm, an exact inference method that 

calculates values for each possible belief state at each time horizon (i.e., number of choices 

remaining). These routines are implemented in Cassandra et al.'s POMDP-Solve library 

(Cassandra et al., 1997). The resulting action values express the statistical expectation of the 

sum of all future reward given that the option is chosen and assuming that all subsequent 

choices are performed optimally. The true Ideal Actor deterministically chooses the option 

with the highest resulting action value. However, for the purpose of fitting the model to 

participants' choice data, we use a Softmax choice rule (identical to that used by the Naïve 

RL model) to generate response probabilities from these action values. The Softmax inverse 

temperature γ is a free parameter.

Table 2

Best-fitting parameter values for each condition and group for the reflective Ideal Actor and 

the reflexive Naïve Reinforcement Learning models. Standard errors of the mean are listed 

in parentheses.

Ideal Actor Naïve RL model

P(flip) Softmax parameter Softmax parameter

Single-Task

Met Carriers 0.032 (0.005) 0.163 (0.007) 0.148 (0.003)

Val Homozygotes 0.036 (0.005) 0.160 (0.006) 0.146 (0.004)

Dual-Task

Met Carriers 0.033 (0.007) 0.152 (0.005) 0.149 (0.004)

Val Homozygotes 0.016 (0.004) 0.127 (0.009) 0.137 (0.006)
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Hightlights

• We examine exploratory behavior in relation to frontal dopamine gene COMT 

genotype.

• We model participant's behavior with reflective and reflexive computational 

models.

• Met carriers perform better than Val/Val homozygotes under dual-task 

conditions.

• Met carriers better maintain reflective behavior under dual-task conditions.
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Figure 1. 
The Leapfrog task: example choices over 100 trials. On any trial the lower option might, 

with a probability of 0.075, increase its reward by 20 points, surpassing the other option. 

The relative superiority of the two options alternates as their reward values “leapfrog” over 

one another. The lines represent the true reward values, the dots a participant's choices.
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Figure 2. 
The main behavioral results. (a) Met Carriers (N = 138; 72 Single Task; 66 Dual Task) 

tended to choose the higher-valued option under dual-task conditions than did Val/Val 

homozygotes (N = 71; 38 Single Task; 33 Dual Task), indicated by a significant task × 

genotype interaction, F(1,205)=4.17, p<.05. (b) Response times for both groups and task 

conditions. Error bars reflect standard errors.
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Figure 3. 
Exploration patterns characteristic of reflective and reflexive processing. (a) The Naive RL 

model predicts a constant probability of exploration as a function of the number of trials 

since the last exploration, whereas the Ideal Actor model is more likely to explore the longer 

it has been since the last exploration. (b) The Ideal Actor and Naive RL model were fit to 

each participant's data to determine which model best characterized each participant's 

choices. (c) Participants' choices in the single-task condition conform to the predictions of 

the reflective model. (d) In the dual-task condition the genotype groups show different 

patterns of exploratory choices. Error bars reflect standard errors.
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Table 1

Demographic information by genotype. Standard deviations are in parentheses.

Met/Met Val/Met Val/Val

N 44 94 71

Age, years 25.22 (4.96) 24.61 (4.26) 25.1 (4.26)

Gender F = 31; M = 13 F = 47; M = 47 F = 41; M = 30

Years of education 15.2 (2.45) 15.32 (2.54) 15.8 (2.01)

Ethnicity

 Hispanic 10 19 12

 Non-Hispanic 32 71 57

 Decline to state 2 4 1

Race

 Asian 5 20 21

 African American 1 4 3

 Caucasian 34 53 40

 Other 2 9 6

 Decline to state 2 8 1
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