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The human polyomavirus, JCPyV, is the causative agent of progressivemultifocal leukoencephalopathy, a rare
demyelinating disease that occurs in the setting of prolonged immunosuppression. After initial asymp-
tomatic infection, the virus establishes lifelong persistence in the kidney and possibly other extraneural sites.
In rare instances, the virus traffics to the central nervous system, where oligodendrocytes, astrocytes, and
glial precursors are susceptible to lytic infection, resulting in progressive multifocal leukoencephalopathy.
The mechanisms by which the virus traffics to the central nervous system from peripheral sites remain
unknown. Lactoseries tetrasaccharide c (LSTc), a pentasaccharide containing a terminal a2,6elinked sialic
acid, is the major attachment receptor for polyomavirus. In addition to LSTc, type 2 serotonin receptors are
required for facilitating virus entry into susceptible cells. We studied the distribution of virus receptors in
kidney and brain using lectins, antibodies, and labeled virus. The distribution of LSTc, serotonin receptors,
and virus binding sites overlapped in kidney and in the choroid plexus. In brain parenchyma, serotonin
receptors were expressed on oligodendrocytes and astrocytes, but these cells were negative for LSTc and did
not bind virus. LSTc was instead found on microglia and vascular endothelium, to which virus bound
abundantly. Receptor distribution was not changed in the brains of patients with progressive multifocal
leukoencephalopathy. Virus infection of oligodendrocytes and astrocytes during disease progression is LSTc
independent. (Am J Pathol 2015, 185: 2246e2258; http://dx.doi.org/10.1016/j.ajpath.2015.04.003)
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The human polyomavirus (JCPyV) is the causative agent of
progressive multifocal leukoencephalopathy (PML), a rapidly
progressing, often fatal neurodegenerative disease. Although
PML is rare, JCPyV infection is widespread, infecting
approximately 50% to 80% of the healthy adult population.1,2

As the initial infection is asymptomatic, the mode of JCPyV
transmission is unknown. The virus establishes a persistent
infection in the kidney and urinary tract of immunocompetent
hosts,3 and about 20% of these infected individuals shed virus
in their urine.4 JCPyV DNA has also been detected in other
tissues, including B lymphocytes in the bone marrow, tonsillar
stromal cells, lungs, spleen, and brain,5e13 suggesting addi-
tional sites of viral persistence. The route of viral transmission
from the initial site(s) of infection and latency to the central
nervous system (CNS), the main site of pathogenesis, is not
clearly understood.
stigative Pathology.
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Under conditions of immunosuppression, JCPyV infects and
destroys the myelin-producing oligodendrocytes, resulting in
demyelination, which is the hallmark of this fatal disease; to a
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JCPyV Receptors in Kidney and Brain
lesser degree, astrocytes and neurons are infected as well.14,15

When PML was first described, it was a rare disease that pri-
marily affected patients with B-cell lymphoproliferative disor-
ders.16,17 During the AIDS pandemic, the prevalence of PML in
patients rose significantly, with 3% to 5% of HIV/AIDS
patients developing PML.18,19 With the advent of combined
antiretroviral therapy, the number of HIV/AIDS patients with
PML has declined, although it has decreased less significantly
than that of other opportunistic infections.20 While the occur-
rence of PML historically has been linked to HIV/AIDS,
recently the rate of PML has risen again with the intro-
duction of immunomodulatory therapy for autoimmune
diseases, such as multiple sclerosis, rheumatoid arthritis,
psoriasis, and Crohn disease.21e25 PML has been reported
to occur in patients receiving treatment with drugs
including the monoclonal antibodies natalizumab, efali-
zumab, and rituximab.22,26 One action of these therapies is
to inhibit leukocyte migration into the CNS, suggesting
that a key to JCPyV pathogenesis in the brain is the sup-
pression of cells that normally perform immune surveil-
lance. In addition to PML, JCPyV causes other diseases of
the CNS, including JCPyV granule cell neuronopathy27

and JCPyV encephalopathy,28 and has been associated
with isolated cases of JCPyV-associated nephropathy in
kidney transplant recipients.29e32

JCPyV has a circular, double-stranded DNA genome that is
enclosed by a nonenveloped, icosahedral capsid, which is
composed of three proteins, viral proteins (VP)-1, -2, and -3.33

VP1 is the main component of the capsid and is the primary
means by which the virus engages receptors to initiate infection
of host cells.

JCPyV requires at least two known functional receptors for
attachment and subsequent entry. Previous in vitro experiments
have demonstrated that the virus initially binds to an a2,6 sialic
acid on the cell surface.34e36 Crystallographic and functional
studies with VP1 demonstrated that JCPyV VP1 binds to the
host cell via the a2,6-linked glycan lactoseries tetrasaccharide c
(LSTc).37 Although LSTc recognition is required for JCPyV
attachment, it is not sufficient for viral infection. In addition to
engaging LSTc on the cell surface, JCPyV entry requires the
presence of a serotonin (5-HT)-2 receptor family member.
Virus internalization in a nonpermissive cell line was markedly
enhanced when the cell line was transfected with any of the
three 5-HT2 receptor family subtypes, 5-HT2A, 5-HT2B, or
5-HT2C, and shown to act early in the virus life cycle by
facilitating virus entry.38,39 JCPyV infection is blocked by an-
tibodies to 5-HT2s and other specific inhibitors of these
receptors.

Despite JCPyV being a significant human pathogen, many
questions about its etiology remain unresolved. The species
specificity of JCPyV is highly restricted to humans, an obstacle
that has stymied efforts to develop an animal model to follow
the path of the virus from initial infection to CNS penetration.

The current study focused on identifying determinants of
tissue tropism of JCPyV in two known sites of JCPyV infection,
the brain and the kidney, using labeled virus, and identified
The American Journal of Pathology - ajp.amjpathol.org
receptors as markers to trace JCPyV interaction with specific
cell types in the human host. This work has relevance in un-
derstanding the basic mechanism by which JCPyV engages its
target cell(s) in the host and its route to the CNS, as well as
clinical interest in that it suggests possibilities for specific
interference of infection.

Materials and Methods

Virus Purification and Labeling

Generation of the JCPyV virus strain Mad-1/SVED has been
described previously.40,41 Purified JCPyV was labeled with
Alexa Fluor 488 (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instructions. Labeled virus was added to kidney
sections at concentrations of 2 and 20 mg/mL on brain sections.

Tissue Preparation and IHC Staining

Human brain (from frontal and parietal lobe), choroid plexus,
meningeal, and kidney tissues (Table 1) were obtained from the
National NeuroAIDS Tissue Consortium42 and from Rhode
Island Hospital (Providence, RI) in accordance with protocols
approved by the Institutional Review Boards at Brown Uni-
versity (Providence, RI) and Rhode Island Hospital. Neural
tissues selected as normal controls were from patients whowere
HIV-seronegative and died of causes not related to HIV/AIDS.
Formalin-fixed, paraffin-embedded slides were deparaffinized
in xylene followed by a series of graded ethanol washes and
subjected to sodium citrate antigen retrieval if necessary. Fresh-
frozen brain tissues were embedded in OCT, sectioned, and
fixed for 10 minutes in 70% acetone and 30% ethanol at 4�C
before staining. Sections were stained with antibodies against
mucin (MUC)-1 (sc-53377; Santa Cruz Biotechnology, Dallas,
TX), 5-HT2A [S1001-16 (US Biological, Salem, MA) and LS-
A1106 (LSBio, Seattle, WA)], 5-HT2B [S-1001-17A (US
Biological) and HPA012867 (Sigma, St. Louis, MO)], 5-HT2C
[AB9507 (Millipore, Billerica, MA) and LS-A1119 (LSBio)],
T antigen (Ab-2; Millipore), JCPyVVP1 (pAb 59743; gifted by
Dr. Edward Harlow, Harvard Medical School, Boston, MA),
carbonic anhydrase II44 (PC076; The Binding Site, Birming-
ham, UK), glial fibrillary acidic protein (G-A-5; Sigma),
OLIG2 (MABN50; Millipore), and CD68 (Cell Marque,
Rocklin, CA). For immunofluorescence detection, slides were
then incubated in secondary antibody conjugated to Alexa
Fluor 488 or 594 at 10 mg/mL (Invitrogen) and mounted in
media containing DAPI (Vector Laboratories, Burlingame,
CA). For lectin staining, slideswere blockedwith carbohydrate-
free blocking solution and streptavidin/biotin block (Vector
Laboratories) and incubated with biotinylated Polyporus
squamosus lectin (PSL) at 20 mg/mL (E-Y Laboratories, San
Mateo, CA), followed by streptavidin conjugated to Alexa
Fluor 488 or 594 at 3.3 mg/mL (Vector Laboratories). For
immunohistochemistry, primary antibody incubation slides
were stained with ImmPRESS Universal secondary antibody
(Vector Laboratories) and developed using the DAB system
2247
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Table 1 Human Patient Information

Subject Tissue type Age Sex Race HIV PML Pathology Cause of death

1 Brain 36 M W þ þ PML HIV/AIDS
2 Brain 30 M W þ þ PML HIV/AIDS
3 Brain 51 M W þ þ PML HIV/AIDS
4 Brain 47 M W þ þ PML HIV/AIDS
5 Brain 46 M NR þ þ PML HIV/AIDS
6 Brain 39 F NR þ þ PML HIV/AIDS
7 Brain 43 M NR þ þ PML HIV/AIDS
8 Brain 45 M NR þ þ PML HIV/AIDS
9 Brain 84 M NR � þ PML PML
10 Brain 64 F W � þ PML PML
11 Brain 44 M W þ � HIV no E HIV/AIDS
12 Brain 46 M W þ � HIV no E HIV/AIDS
13 Brain 48 M W þ � HIV no E HIV/AIDS
14 Brain 69 F W � � Normal Myocardial infarction
15 Brain 57 M W � � Normal Myocardial infarction
16 Brain 59 M W � � Normal Cardiac arrhythmia
17 Kidney 50 M W � � Normal NA
18 Kidney 67 F W � � Normal NA
19 Kidney 41 F W � � Normal NA
20 Kidney 32 M W � � Normal NA

F, female; M, male; HIV no E, HIV-positive patient with no observed encephalopathy; NA, not applicable; NR, not recorded; PML, progressive multifocal
leukoencephalopathy; W, white.
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(Vector Laboratories) according to the manufacturer’s protocol.
Slides were then counterstained with hematoxylin. To deter-
mine areas of demyelination, PML tissue sections were
deparaffinized as described in Tissue Preparation and IHC
Staining, then incubated in Luxol fast blue solution (Sigma)
Figure 1 Attachment of the human polyomavirus (JCPyV) to kidney tubules i
detection shows that JCPyV-488 (green; DAPI stained nuclei, blue) binds to the
neuraminidase abolishes JCPyV binding. C and D: LSTc pretreatment inhibits JCPyV b
JCPyV attachment to tubules. E: Colocalization analysis with the marker MUC-1 (red)
collecting ducts of the kidney. F: Polyporus squamosus lectin (PSL), a lectin recogn
ducts (PSL, green; MUC1, red). G: PSL label is removed with neuraminidase. H: JCP

2248
for 2 hours at 60�C. Slides were decolorized in ethanol and then
differentiated in saturated lithium carbonate. The samples were
then counterstained with hematoxylin and eosin. Tissues were
analyzed using an Eclipse E800 microscope (Nikon, Melville,
NY) equipped with an ORCA-ER digital camera (Hamamatsu
s mediated by lactoseries tetrasaccharide c (LSTc). A: Immunofluorescence
apical side of kidney tubules. B: Removal of sialic acid binding sites with
inding (C), whereas in a serial section (D) LSTb pretreatment has no effect on
demonstrates that JCPyV-488 (green) specifically binds to distal tubules and
izing the terminal trisaccharide of LSTc, labels distal tubules and collecting
yV (green) colocalizes with the lectin PSL (red). Scale bars: 25 mm.
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Figure 2 Viral entry receptor expression and human polyomavirus
(JCPyV) binding to kidney distal tubules. Double immunofluorescence
analysis demonstrates that virus entry receptors serotonin (5-HT) 2A (A),
5-HT2B (C), and 5-HT2C (E) (red) colocalize with distal tubule and collecting
duct marker MUC-1 (green). B, D, and F show that labeled JCPyV (green)
colocalizes with each of the 5-HT2 receptor family members: 5-HT2A (B), 5-
HT2B (D), and 5-HT2C (F) (red). Scale bars: 25 mm.

JCPyV Receptors in Kidney and Brain
Photonics KK, Hamamatsu, Japan) and OpenLAB software
version 5.5.1 (Agilent Technologies, Santa Clara, CA).

Neuraminidase Treatment

Slides were rehydrated and then incubated in Neuraminidase
Type V from Clostridia perfringens (Sigma) at 1 U/mL in
phosphate-buffered saline supplemented with 1 mmol/L CaCl2
and 1 mmol/L MgCl2 (pH 6.0) for 1 hour at 37�C before
blocking and incubation with lectin or virus.

LSTb/LSTc Competition

JCPyV-488 was preincubated with either 10 mmol/L of
LSTb or LSTc (V labs, Covington, LA) in phosphate-
buffered saline for 2 hours on ice, with mixing every 15
minutes (1 mg/mL final virus concentration). The
JCPyVeLST complexes were then added to tissue sections
that had been rehydrated and blocked as described in Tissue
Preparation and IHC Staining and incubated overnight at
The American Journal of Pathology - ajp.amjpathol.org
4�C. Slides were then washed in FTA hemagglutination
buffer (Becton Dickinson, Franklin Lakes, NJ) and analyzed
for virus binding by immunofluorescence.

Results

JCPyV Specifically Binds to the Distal Tubules and
Collecting Ducts of the Normal Human Kidney via
Interaction with LSTc

Incubation of kidney tissues with fluorescently labeled
JCPyV demonstrated virus attachment to the apical side of
tubules (Figure 1A). This binding was mediated by sialic
acid, as pretreatment of the tissue with neuraminidase
inhibited binding by removing the sialic acid terminal
sugars from the cell surface (Figure 1B). It is known that
JCPyV specifically binds to the sialic acid pentasaccharide
LSTc.37 To test whether the binding is specific for LSTc, the
virus was preincubated with LSTc before addition to tissue
samples. This pretreatment also inhibited virus binding
(Figure 1C). If however the virus was preincubated with
LSTb, no inhibition of virus attachment was observed
(Figure 1D). LSTb is identical to LSTc in molecular weight
and composition but features a branching rather than linear
a2,6-linked sialic acid. Therefore, JCPyV binding to the
kidney tissue is likely mediated by sialic acid interactions,
specifically with LSTc. The preferential binding sites of
JCPyV in the kidney were distal tubules and collecting
ducts, as shown by colocalization of the virus with the
marker MUC1 (Figure 1E).45,46 JCPyV binding was
observed in these tubules in both the medulla and cortex of
the kidney. Although some MUC1þ tubules did not appear
to be bound by JCPyV, we did not observe JCPyVþ tubules
that were MUC1�. On extended incubation times and high
virus concentration, a small amount of virus binding to
Bowman’s capsule, to endothelial cells of the glomeruli, and
to proximal tubules could be observed, but this binding was
minor compared with that to the collecting ducts and distal
tubules.

The nature of JCPyV binding to the kidney was further
analyzed using PSL, a lectin from the mushroom Polyporus
squamosus. PSL has high specificity toward nonreducing
terminal Neu5Aca2,6Galb1,4GlcNAc, the terminal trisac-
charide sequence of LSTc47,48 of asparagine-linked (N-
linked) oligosaccharides. PSL is more specific than is the
more commonly used Sambucus nigra lectin, which also
detects terminal a2,6-linked N-acetylneuraminic acid pre-
sent on serine/threonine-linked oligosaccharides.49 In the
kidney, PSL exhibits a binding profile broader than that of
JCPyV, binding to the distal tubules and collecting ducts,
glomeruli, and endothelium. JCPyV bound mostly to the
apical side of the tubules, whereas PSL labeled the basal and
lateral sides of these cells as well. Neuraminidase treatment
removed lectin binding sites (Figure 1G). This finding
demonstrated that an a2,6 sugar closely related to LSTc was
on the kidney structures to which JCPyV bound, especially
2249
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Figure 3 Human polyomavirus (JCPyV) receptor expression and virus binding in the choroid plexus. A: JCPyV-488 (green) binding to choroid plexus
epithelium. B: Polyporus squamosus lectin (PSL; red) binding to choroid plexus. C: JCPyV-488 (green) and PSL (red) colocalize to blood vessels in the choroid
plexus. Serotonin (5-HT) 2A (D), 5-HT2B (E), and 5-HT2C (red) (F) are expressed in choroid plexus epithelium. G: Treatment of choroid plexus with neur-
aminidase removes JCPyV binding sites. H: PSL binding is abolished following neuraminidase treatment. I: Secondary antibody only. Scale bars: 25 mm.

Haley et al
the distal tubules and collecting ducts (Figure 1, F and G).
JCPyV and PSL colocalized on the same kidney distal tu-
bules and collecting ducts. There were occasionally PSLþ

tubules that were JCPyV� but not PSL� tubules that were
JCPyVþ (Figure 1H).

In addition to the sialic acid motif necessary for specific
JCPyV attachment to cells, the 5-HT2 family of 5-HT
receptors were also expressed on the distal tubules and
collecting ducts of the normal human kidney (Figure 2). It is
known that the 5-HT2 family of receptors is the functional
receptor for JCPyV entry into cells.38,39,50 All three 5-HT2

family members colocalized with MUC1 on the collecting
ducts and distal tubules of the kidney (Figure 2, A, C, and
E). 5-HT2A appears specifically on the apical side of the
tubules, whereas 5-HT2B and 5-HT2C also label the baso-
lateral sides. Fluorescently labeled JCPyV also colocalized
in the kidney with 5-HT2A, 5-HT2B, and 5-HT2C (Figure 2,
B, D, and F).
2250
JCPyV Specifically Binds to Choroid Plexus Epithelium
and Meninges

Similar to those of the distal tubules of the kidney, the cells
of the choroid plexus epithelium (CPE) and the meninges
expressed both the attachment and entry receptors for
JCPyV. Labeled JCPyV bound to the apical and basolateral
sides of the CPE (Figure 3A), and this attachment was
dependent on the presence of sialic acid as neuraminidase
treatment removed virus binding sites (Figure 3G). PSL also
bound to CPE (Figure 3B), and the binding was sialic
acidedependent as it was abolished by neuraminidase
(Figure 3H). The CPE also expressed all three of the 5-HT2

receptors (Figure 3, DeF and I). In addition to the CPE,
JCPyV bound to the blood vessels in the choroid plexus and
colocalized with PSL binding (Figure 3C). In the meninges,
JCPyV bound to sialic acid receptors on meningeal cells
(Figure 4, A, E, and G). Meningeal cells also expressed the
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Human polyomavirus (JCPyV) receptor expression and virus binding in the meninges. Colocalization of JCPyV with Polyporus squamosus lectin
(PSL) (A), serotonin (5-HT) 2A (B), 5-HT2B (C), and 5-HT2C (D). E: JCPyV-488 (green) and PSL (red) colocalize to blood vessels in the meninges. F: A CD68þ cell
(red) in the stroma of the meninges is bound by JCPyV-488 (green). G: Neuraminidase treatment removes JCPyV binding sites. H: Secondary antibody only.
Scale bars: 25 mm (AeE, G and H); 10 mm (F).

JCPyV Receptors in Kidney and Brain
three members of the 5-HT2 subtypes (Figure 4, BeD and
H). The virus bound to the meningeal vessels (Figure 4E) as
well as to CD68þ cells in the stroma (Figure 4F).
JCPyV Specifically Binds to LSTcþ Microglial Cells and
Brain Vascular Endothelial Cells But Not to
Oligodendrocytes or Astrocytes that Are LSTce But
5-HT Receptorþ

In contrast to the kidney and choroid plexus, JCPyV
attachment and entry receptors were expressed on different
glial cells in human brain parenchyma, as summarized in
Table 2. Oligodendrocytes expressed 5-HT2B and 5-HT2C

and were LSTce (Figure 5, A, D, G, and J). Astrocytes
expressed 5-HT2A and 5-HT2B but were 5-HT2C and LSTce

(Figure 5, B, E, H, and K). Microglia, on the other hand, did
not appear to express any of the 5-HT2 family members but
had abundant LSTc-like sugar on their surfaces (Figure 5, C,
F, I and L and Figure 6A). JCPyV bound only to the LSTcþ

microglial cells and brain endothelial cells (Figure 6A),
Table 2 Summary of Receptor Expression and JCPyV Attachment in B

Receptor Oligodendrocyte Astrocyte

5-HT2A � þ
5-HT2B þ þ
5-HT2C þ �
PSL � �
JCPyV � �
JCPyV, human polyomavirus; PSL, Polyporus squamosus lectin.
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consistent with the observation that LSTc is the primary
attachment receptor for the virus. Treatment of the brain tissue
with neuraminidase eliminated virus binding (Figure 6B).
These interactions were specific for LSTc, as virus binding
was unaffected by preincubation with LSTb, but virus binding
was abolished by competition with LSTc (Figure 6, C and D).
PSL labeling of microglia and neuroendothelium was also
removed by neuraminidase (Figure 6, E and F). Virus
attachment and receptor expression patterns were the same in
both formalin-fixed, paraffin-embedded and fresh-frozen brain
tissues (Supplemental Figure S1).
JCPyV Attachment and Entry Receptor Expression in
PML Brain

Sections of brain parenchyma from patients with PML were
treated with Luxol fast blue staining for the visualization of
demyelinated lesions. The sections were also analyzed for
virus binding to cells in the lesions as well as virus attach-
ment and entry receptors expressed by specific cell types,
rain Parenchyma

Neuron Microglia Neuroendothelium

þ � �
þ � �
þ � �
� þ þ
� þ þ
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Figure 5 Glial cell typeespecific expressionof humanpolyomavirus (JCPyV) attachment and entry receptors in the brain. JCPyV entry receptors serotonin (5-HT) 2A,
2B, and 2C, and attachment receptor marker Polyporus squamosus lectin (PSL) (green) colabel with glial cell typemarkers carbonic anhydrase II (oligodendrocyte) (A, D,
G, and J), glial fibrillary acidic protein (astrocyte) (B, E, H, and K), and CD68 (microglia) (C, F, I, and L) (red). Scale bars: 25 mm.

Haley et al
using immunohistochemistry analysis. The lesions were
readily discernable (Figure 7, A and G), and the expression of
LSTc as determined by PSL binding was restricted to
microglia and monocyte or macrophage cells infiltrating the
lesions (Figure 7, BeD). Virus bound only to LSTcþ

microglial cells and infiltrating monocytes or macrophages
and did not bind to the LSTce oligodendrocytes or astrocytes
(Figure 7, E and F). This finding is consistent with the role
that LSTc plays in attachment but it is inconsistent with the
fact that virus targets oligodendrocytes and astrocytes, but
not microglia, for infection. LSTc was not detected on either
oligodendrocytes or astrocytes, but these cells did express 5-
HT2 receptors (Figure 7, HeK), similar to findings observed
in normal brain. Oligodendrocytes were positive for
expression of the late viral protein 1 (VP1), indicating that
these cells were lytically infected by JCPyV (Figure 7L).
2252
Although we did not observe 5-HT2Aeexpressing VP1þ cells
(Figure 7M), JCPyV-infected glial cells expressing 5-HT2B and
5-HT2C were present in the PML lesions (Figure 7, N and O).
Discussion

In vitro experiments have shown that for productive host
cell infection, JCPyV requires surface expression of the
attachment receptor LSTc as well as one of the members of
the 5-HT2 family, G proteinecoupled receptors required for
entry.37,38 In the present study, we investigated the in vivo
expression of these receptors in human kidney and brain, the
main sites of latency/persistence and pathogenesis, respec-
tively, and compared receptor-expression profiles with the
pattern of virus attachment. Here, we show that virus
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 Human polyomavirus (JCPyV) binds to brain endothelium and
microglial cells via attachment receptor lactoseries tetrasaccharide c (LSTc). A:
Colocalization with CD68 (red) shows that JCPyV-488 binds to microglial cells.
Arrow indicates neuroendothelium. B: Treatment with neuraminidase abol-
ishes virus binding. C: Competition with LSTb does not affect JCPyV-488
binding to brain. D: Competition with LSTc abolishes JCPyV-488 binding to
brain tissue. E: Polyporus squamosus lectin (PSL; red) labels microglia and
neuroendothelium. F: PSL no longer binds to brain tissue following treatment
with neuraminidase. Scale bars: 25 mm.

JCPyV Receptors in Kidney and Brain
binding to the plasma membrane depends on the presence of
LSTc.

In addition, the attachment and entry receptors were coex-
pressed in the kidney tubule epithelium and CPE, two cell
types that the virus has been shown to infect, whereas in the
brain parenchyma, the entry receptors were present on the
main targets of JCPyV infection, and the attachment receptors
were instead largely expressed on neuroendothelium and cells
of myeloid lineage, suggesting potential mechanisms of entry
into the CNS. We did not observe qualitative differences in the
binding of antibodies, lectins, or virus to tissues from different
patients.

JCPyV Attachment to Renal Tubules

JCPyV binds specifically to the distal tubule epithelium and
collecting ducts in the human kidney. JCPyV infection has
The American Journal of Pathology - ajp.amjpathol.org
previously been shown in the tubular epithelium of immune-
suppressed patients. By in situ hybridization, JCPyV DNA
was detected in the collecting tubules of a PML patient.51

JCPyV VP1 protein has been detected in the epithelial tu-
bules in kidneys of AIDS patients52 and renal transplant
recipients,53e55 and one report of a non- PML renal cancer
patient described JCPyV in collecting ducts.56 Although not
nearly as often as the closely related polyomavirus BKPyV,
JCPyV can cause JCPyV-associated nephropathy.57,58 Here,
we show that virus binding is dependent on the virus
attachment receptor, as shown by specific LSTc competition
assay. The lectin used for detecting LSTc-like sugars not
only bound predominantly to distal tubules and collecting
ducts but also detected a2,6 sialic acid on kidney endo-
thelium, glomeruli, and Bowman’s capsule. However, only
minor virus attachment to these nontubular cells was
observed after prolonged virus exposure. It is possible that
either the lectin is detecting a sugar other than LSTc or that
an additional factor is contributing to additional specificity
of virus attachment to the distal tubules and collecting ducts.
JCPyV entry into cells depends on the presence of 5-HT2

receptors, and the distal tubules and collecting ducts express
each of these receptors, suggesting that the virus can attach
and enter these cells to cause persistent infection and, in
some cases, pathogenesis.

Direct Binding of JCPyV to Barriers of the CNS

To infect cells in the brain and cause neurological disease,
JCPyV must cross one of the barriers that protect neural
tissue from the periphery, the bloodebrain barrier (BBB)
and the bloodecerebrospinal fluid barrier (BCSFB), which
restrict the passage of cells and microbes between the pe-
ripheral circulation, brain, and CSF. How JCPyV crosses these
obstacles to the CNS is not yet known. Here, we demonstrate
that JCPyV attaches via LSTc directly to neuroendothelial
cells that make up part of the BBB. Although the virus binds
avidly to the neuroendothelium, these cells are not considered
target host cells for JCPyV, and we did not detect entry
receptor expression in brain microvascular cells. In rare cases,
in situ hybridization experiments have detected JCPyV DNA
in brain endothelium of PML patients,59,60 and JCPyV infec-
tion of cultured human brain microvasculature endothelial
cells has been reported in vitro,61 but productive JCPyV
infection has not been shown in neuroendothelium of human
tissue.

The BBB forms an interface between the bloodstream and
the CNS and is composed of highly specialized endothelial cells
bound by tight junctions, astrocytic endfeet, the capillary
basement membrane, and pericytes embedded in this extracel-
lular matrix. The migration of cells from the periphery to the
brain parenchyma is highly regulated, and under normal con-
ditions the BBB blocks circulating monocytes from migrating
into the brain. However, these structures must be dynamically
regulated to allow a small population of lymphocytes engaged
in immune surveillance to pass into the brain parenchyma62,63
2253
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Figure 7 Human polyomavirus (JCPyV) bind-
ing, receptor expression, and infection in demye-
linating lesions of progressive multifocal
leukoencephalopathy (PML). A, B, and GeK: Serial
sections of a PML brain were used for immuno-
histochemistry staining. A: PML brain stained with
Luxol fast blue (Sigma) and hematoxylin and eosin
(H&E). B: Serial section of A stained with Poly-
porus squamosus lectin (PSL). CeF and LeO:
Immunofluorescence staining images of a PML
lesion. C: Cells in lesion labeled with PSL (red). D:
The PSLþ cells are CD68þ (green). E: Cells in lesion
labeled with JCPyV-488. F: Cells in lesion colabeled
with JCPyV-488 and CD68. G: PML brain stained
with Luxol fast blue and H&E. H: Serial section of
same lesion labeled with serotonin (5-HT) 2A. I:
Higher magnification of boxed region in H, 5-HT2A
in PML lesion. J: Cells in PML lesion labeled with 5-
HT2B. K: Cells in PML lesion labeled with 5-HT2C.
JCPyV-infected cells of a PML lesion express virus
entry receptors. LeO: Cells in lesion labeled with
viral protein (VP)-1 (red) and oligodendrocyte
marker carbonic anhydrase II (green) (L), VP1
(red) and 5-HT2A (green) (M), VP1 (red) and 5-
HT2B (green) (N), and VP1 (red) and 5-HT2C
(green) (O). Scale bars: 50 mm (A, B, G, and H); 25
mm (CeF); 10 mm (IeK); 5 mm (LeO).
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and also circulating monocytes to replace perivascular macro-
phages.64,65 Some pathological conditions such as viral or
bacterial infection can disrupt the integrity of the BBB and
allow less restricted passage of leukocytes from the systemic
circulation into the brain and additional monocytes to enter the
brain.66,67 During the course of HIV infection, monocytes cross
in response to proinflammatory cytokines released by astrocytes
and parenchymal myeloid cells.68,69 After HIV neuroinvasion,
the BBB is disrupted as a result of loss of transmembrane tight
junction integrity in the neuroendothelium,70 and glycoprotein
120 has been shown to contribute to BBB leakiness, perhaps by
increased expression of proteases.71 Also, elevated levels of
lipopolysaccharide as a result of bacterial infection can
2254
compromise the BBB.72,73 Lipopolysaccharide can also in-
crease endocytic activity of brain microendothelial cells.74 It is
possible that JCPyV already bound to the neuroendothelium
enters the brain parenchyma after transient disruption of the
BBB.
The BCSFB, or choroid plexus, constitutes another po-

tential site of JCPyV entry into the CNS. The BCSFB is
formed by a monolayer of polarized epithelial cells enclosing
a highly vascularized stroma populated with a variety of cell
types, including fibroblasts and macrophages.75 Like the
endothelial cells of the BBB, the CPE cells express tight
junctions and serve as a barrier to separate the CNS from the
circulation, and the migration across the BCSFB is restricted.
ajp.amjpathol.org - The American Journal of Pathology
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However, monocytes76,77 and T cells78 have been shown to
enter the CNS via the BCSFB in response to injury. It is
known that JCPyV entry 5-HT2 receptors are expressed in the
CPE79,80 and that 5-HT2C isolated from the rat choroid plexus
is N-glycosylated.81 Gene-profiling studies in the rat choroid
plexus have shown that chronic stress affects the levels of
expression of serotonin 5-HT2 family expression.82 Here, we
show that the CPE expresses both the JCPyV attachment and
entry receptors and that the virus interaction with the CPE is
LSTc dependent. Recently, JCPyV VP1 was detected in the
CPE in a case of JCPyV-associated meningitis,83 demon-
strating that JCPyV can productively infect these cells. Direct
infection of the CPE could allow JCPyV access to brain
parenchyma.

Profile of Virus Attachment in the Brain

In the brain parenchyma, JCPyV binds specifically to
microglial cells, the resident immune cells of the CNS. This
interaction is mediated by the virus attachment receptor
LSTc as virus binding is blocked by competition with LSTc
and when the tissue is treated with neuraminidase. Although
the microglia can support virus attachment, these cells are
not known to be infected by JCPyV. Microglia are long-
lived tissue macrophages unique to the neural tissue. Under
normal conditions, the microglia extend and retract their
thin, highly ramified cell processes to continuously monitor
the immediate microenvironment.84 The processes of each
microglial cell do not overlap; each cell surveys its own
territory85; and some cells, the juxtavascular microglia,
directly contact the basal lamina of blood vessels.86 On
injury to the brain, including infection, inflammation, and
trauma, microglial cells undergo a transformation from a
resting to an activated state, assuming an ameboid shape and
migrating to the site of injury to phagocytose dead cells,
clear extracellular debris, and produce cytokines.87e89 On
damage to the CNS (including in PML lesions), circulating
immune cells, including peripherally derived monocytes,
macrophages, and dendritic cells, are recruited to the brain
parenchyma. Additional myeloid cells in the CNS are found
at the junctions where the brain parenchyma meets the rest
of the CNS, including perivascular cells, and macrophages
and monocyte-derived cells resident in the choroid plexus
and meninges.90 These cells have distinct embryological
origins but share many markers and membrane properties
and similar functions, including local immune surveillance
and debris removal.

JCPyV is not known to infect microglia. However, recent
reports have shown polyomaviruses interact with CD68þ

cells in other organs. Human polyomavirus KI infects
CD68þ cells in the human lung,91 and one study demon-
strated that JCPyV and BKPyV viruslike particles are taken
up by mouse CD68þ cells in the mouse liver when
administered i.v.92 Here we show that JCPyV attaches to the
plasma membranes of CD68þ monocyte/macrophages in the
stroma of the choroid plexus and meninges. It is possible
The American Journal of Pathology - ajp.amjpathol.org
that the virus enters the brain bound to the outside of an
LSTcþ cell and then infects oligodendrocytes and astrocytes
through a mechanism not yet defined.

JCPyV is known to infect oligodendrocytes, astrocytes,
and neurons. JCPyV infection of oligodendrocytes leads to
cell destruction and subsequent demyelinating lesions and
loss of neuronal function. Astrocytes have also been shown
to support JCPyV replication in the PML brain, and infec-
tion of neurons has been described in JCPyV neuropathy
and encephalopathy. Here we show that the cell types that
are known to be infected by JCPyV express entry receptors
that would allow virus entry to permit a productive infec-
tion. However, we did not observe the presence of an
attachment receptor on these cells, nor did we observe
appreciable JCPyV binding to the plasma membrane of
these cells. It should be noted that productive viral repli-
cation is not solely dependent on the presence of the 5-HT2

receptors, as many cell types that express 5-HT2 receptors
are not infected by JCPyV. Multiple cellular factors, some
known and some yet to be discovered, dictate the ability of
the virus to productively infect a host cell. Elucidating the
factors necessary for permitting productive infection in a
host cell is an important component of understanding viral
pathogenesis. In our study we observed entry receptor
expression in astrocytes, particularly in the reactive astro-
cytes in the PML brain. It is possible that the virus enters
these cells by a mechanism that does not require attachment
receptors on the host cell plasma membrane. This concept
may explain the evolution of mutants in PML brain that
have lost the ability to bind sialic acid.93e95
Conclusion

JCPyV infects approximately half of the population world-
wide.1,2 After initial infection, the virus persists in the kidney,
tonsils, bone marrow, and most likely the brain. After reac-
tivation, the virus can be shed in the urine and usually does
not cause disease. However, under conditions of immune
suppression, such as HIV/AIDS or treatment with immune-
modulatory therapies, JCPyV levels increase and in some
patients pathology is observed, either in the brain or, in rare
cases, the kidney. It appears that the loss of T cells and their
immune surveillance is necessary for the progression of
JCPyV pathogenesis. The mechanisms by which JCPyV
enters the CNS remain unknown. Here we demonstrate that
virus binds specifically to the neuroendothelial cells of the
BBB. It is possible that on disruption of the BBB, either
transient, in normal brain, or under conditions of pathogen-
esis, the virus migrates into the brain parenchyma. JCPyV
also binds to the plasma membranes of monocytes that
infiltrate the brain on BBB disruption, providing an addi-
tional mechanism for JCPyV to reach the parenchyma. An
alternative pathway to the CNS is via JCPyV infection of the
choroid plexus. Once JCPyV is in the brain, glial cells are
exposed and infected by JCPyV by an as-yet undefined
2255
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mechanism. With the increase in immune-suppressing ther-
apies used for addressing autoimmune conditions, more pa-
tients are potentially at risk for PML. The identification of the
pathways from the environment to the CNS and of agents to
block viral infection is essential for developing antiviral
therapies for this incurable disease.
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